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The results of the GA in Newly Diagnosed Diffuse Large B-Cell Lym-
phoma (GAINED) study demonstrated the success of an 18F-FDG
PET–driven approach to allow early identification—for intensification
therapy—of diffuse large B-cell lymphoma patients with a high risk of
relapse. Besides, some works have reported the prognostic value of
baseline PET radiomics features (RFs). This work investigated the
added value of such biomarkers on survival of patients involved in the
GAINED protocol. Methods: Conventional PET features and RFs
were computed from 18F-FDG PET at baseline and extracted using
different volume definitions (patient level, largest lesion, and hottest
lesion). Clinical features and the consolidation treatment information
were also considered in the model. Two machine-learning pipelines
were trained with 80% of patients and tested on the remaining 20%.
The training was repeated 100 times to highlight the test set variability.
For the 2-y progression-free survival (PFS) outcome, the pipeline
included a data augmentation and an elastic net logistic regression
model. Results for different feature groups were compared using the
mean area under the curve (AUC). For the survival outcome, the pipe-
line included a Cox univariate model to select the features. Then, the
model included a split between high- and low-risk patients using the
median of a regression score based on the coefficients of a penalized
Cox multivariate approach. The log-rank test P values over the 100
loops were compared with a Wilcoxon signed-ranked test. Results: In
total, 545 patients were included for the 2-y PFS classification and
561 for survival analysis. Clinical features alone, consolidation features
alone, conventional PET features, and RFs extracted at patient level
achieved an AUC of, respectively, 0.65 6 0.07, 0.64 6 0.06, 0.60 6

0.07, and 0.62 6 0.07 (0.62 6 0.07 for the largest lesion and 0.54 6

0.07 for the hottest). Combining clinical features with the consolidation
features led to the best AUC (0.72 6 0.06). Adding conventional PET
features or RFs did not improve the results. For survival, the log-rank
P values of the model involving clinical and consolidation features
together were significantly smaller than all combined-feature groups
(P , 0.007). Conclusion: The results showed that a concatenation of
multimodal features coupled with a simple machine-learning model

does not seem to improve the results in terms of 2-y PFS classification
and PFS prediction for patient treated according to the GAINED
protocol.
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The use of PET with 18F-FDG is now considered the standard
imaging procedure not only for staging but also for therapeutic
response assessment of patients with diffuse large B-cell lym-
phoma (DLBCL) (1). Yet, the number of patients who do not
respond after standard front-line therapy—that is, a combination
of anti-CD20 monoclonal antibody with cyclophosphamide, doxo-
rubicin, vincristine, and prednisone chemotherapy—is still signifi-
cant (30%–40%) (2) and advocates for the use of new biomarkers
to determine patients with a high risk of relapse. In that respect,
approaches based on interim PET to identify these patients and to
adapt consolidation strategies accordingly have been explored for
over 10 y (3). Several studies also evaluated the potential benefit of
using imaging biomarkers extracted from PET volumes (4) in com-
bination (or not) with other clinical or demographic features at
baseline. Most of the studies focused primarily on assessment of
the SUV extracted from the most intense lesion (SUVmax), the total
metabolic tumor volume (TMTV), and dissemination. Although the
role of SUVmax at baseline to predict 2-y progression-free survival
(PFS) or overall survival was shown to be limited (4), TMTV (5)
and dissemination (6) appeared to be promising at baseline (7).
Another area related to the high-throughput extraction of quantita-

tive data from medical images has gained importance by considering
the measurement of the spatial heterogeneity within a tumor (hereaf-
ter called radiomics) (8). Evaluation of the predictive values of
these other potential image-based biomarkers in DLBCL patients
has recently been considered (9–17). However, the usefulness of
complex radiomics in this context remains controversial, as some
studies reported a potential added value (9–11,14–17) whereas
others concluded that there is a lack of, or only a moderate,
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predictive value for 2-y PFS when these biomarkers are considered
alone or combined (12,13). These contradictory results may be
explained partly by the prospective or retrospective nature of each
study, the population size and type, the presence (or not) of a test
dataset, the monocentric or multicentric characteristic of the study,
the heterogeneity in immunochemotherapy regimen and patient
management, and the features considered in the model.
The GA in Newly Diagnosed Diffuse Large B-Cell Lymphoma

(GAINED) randomized phase III trial was the first study demon-
strating the success of a PET-driven strategy. Interim PET inter-
pretation criteria were simple and based on SUVmax reduction
(DSUVmax) (18). The purpose of our work was to explore the
prognostic added value on 2-y PFS and survival (using PFS as the
endpoint) of a combination of clinical, PET-based, and radiomics
features (RFs) extracted at baseline in DLBCL patients included in
this latter prospective multicenter cohort in which patient manage-
ment is driven by PET follow-up. A secondary objective was to
identify whether baseline PET characteristics could predict patients’
response after 4 cycles of chemotherapy and consequently the treat-
ment arm to which they would be assigned. Finally, a third was to
assess whether a specific volume of interest (VOI) was more rele-
vant for radiomics computation when the 2-y PFS classification and
treatment prediction are considered.

MATERIALS AND METHODS

Patients and PET/CT Imaging
The GAINED phase 3 trial (NCT 01659099) was conducted in 99

centers and enrolled newly diagnosed untreated DLBCL patients
between 18 and 60 y old. The main exclusion and inclusion criteria
have already been reported (18). The patients received cyclophospha-
mide, doxorubicin, vincristine, and prednisone or ACVBP (doxorubi-
cin, cyclophosphamide, vindesine, bleomycin, and prednisone) on a
14-d schedule plus obinutuzumab (GA-101) or rituximab. Interim PET
was performed at diagnosis and after 2 and 4 cycles of chemotherapy
(respectively, PET2 and PET4) and analyzed according to DSUVmax.

Patients with an early good response (defined as negative PET2 and
PET4) continued the planned immunochemotherapy; slow responders
(positive PET2 and negative PET4) received intensification therapy
with 2 courses of high-dose methotrexate followed by autologous
stem cell transplantation. Patients with positive PET after 4 induction
cycles received salvage therapy. No difference in terms of 2-y PFS
was reported between the 2 induction arms (GA-101 vs. rituximab).
Early good responders and slow responders had similar 2-y PFS and
overall survival. 18F-FDG PET scans were performed according to the
local procedure of each center. All images were reconstructed in SUV
normalized for body weight.

Segmentation, Features Processing, and Selection
A gross VOI was manually delineated for each tumor, removing

nontumor adjacent regions when needed. The final segmentation for
each tumor was extracted using a fixed SUV threshold of 4.0 (19).
Several PET-based imaging biomarkers were extracted from each
reconstructed volume using PyRadiomics version 3.0 (20). Four con-
ventional PET features were extracted: TMTV, whole-body total
lesion glycolysis, SUVmax, and dissemination (maximum distance
between 2 lesions normalized by body surface area). Among the RFs
available for computation, a subset of 39 features was preselected
(Supplemental Fig. 1; supplemental materials are available at http://
jnm.snmjournals.org), choosing those that presented the best proper-
ties of repeatability (21–23). Before RF computation, PET images
were resampled to the same voxel size (23 2 3 2mm) using a bicubic
spline interpolation. Data were subsequently normalized using 2
approaches: a linear equalization using 64 bins and a fixed bin width
of SUV 0.3. A subsequent preprocessing step was used to enhance
imaging characteristics: a wavelet transform using coiflet-1 filters to
decompose the original image into 8 decomposition frequencies and an
edge-enhancement Laplacian of gaussian filter (with 2- and 6-mm s).
This led a total of 647 RFs, which were computed from 3 different
VOIs: the VOI with the most intense SUVmax (named hottest), the VOI
that corresponded to the largest volume (named largest), and TMTV.

The RF selection step was divided into 3 parts. First, the reliability
of textural RFs (excluding first-order and shape features) was derived

TABLE 1
Description of Different Models

Model no. Model name Associated features

1 aaIPI aaIPI

2 Consolidation Chemotherapy regimen, autologous cell
transplantation, salvage therapy

3 Clinical Age, Ann Arbor stage, ECOG status, number of
extranodal sites, LDH

4 Conventional PET TMTV, total lesion glycolysis, SUVmax, sDmax

5 Radiomics PET Selected RFs after selection step using largest
lesion

6 Consolidation 1 clinical (models 213) All features from clinical and consolidation

7 Consolidation 1 clinical 1 conventional PET
(models 213 1 4)

All features from clinical, conventional (PET), and
consolidation

8 Consolidation 1 clinical 1 radiomics PET
(models 213 1 5)

All features from clinical, radiomics (PET), and
consolidation

9 Consolidation 1 clinical 1 conventional PET 1
radiomics PET (models 213 1 415)

All features from clinical and conventional (PET),
radiomics (PET). and consolidation

aaIPI 5 age-adjusted international prognostic index; ECOG 5 Eastern Cooperative Oncology Group; LDH 5 lactate dehydrogenase;
sDmax 5 maximum distance between 2 lesions normalized by body surface area.
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following the methodology proposed by Pfaehler et al. (24). Briefly,
for each patient and each RF, the signal within the ROI was randomly
shuffled 50 times and RF subsequently computed. The RF was consid-
ered unreliable if its original value lay within the 95% CI computed

using the random shuffling. Finally, the RF was kept if its original
value was outside the proposed CI for 90% of the patients. Second, all
RFs that correlated strongly (Spearman correlation higher than 0.9)
with 1 of the 4 conventional PET features were removed. Lastly, a
hierarchic agglomerative clustering was applied to manage multicol-
linearity between features (supplemental methods).

All features were then standardized, setting the mean to zero and
the SD to 1 to make the feature space homogeneous.

Machine-Learning Models
The population was split into training and testing datasets with a

ratio of 80% to 20%, stratified according to the 2-y PFS outcome for
the 2-y PFS classification objective and according to the censorship
and number of events per quartile for the survival analysis. Data aug-
mentation was used on the training dataset to increase the minority
class cardinal to the cardinal of the majority class. Both the synthetic
minority oversampling technique (25) and the adaptive synthetic sam-
pling approach for imbalanced learning (26) were considered one of
the hyperparameters of the model.

For the 2-y PFS classification objective and the PET4 prediction, a
logistic regression (LR) including elastic net regularization was con-
sidered. A 4-fold cross validation for the grid search was used on the
training dataset (parameters detailed in Supplemental Table 1), with
an objective of maximizing the area under the receiver operator char-
acteristic (ROC) curve (AUC). The whole process was repeated 100
times to assess the variance of the model linked to the choice of the
test dataset (Supplemental Fig. 2).

For the survival analysis, the model building was done in 2 main
steps. A univariate analysis for each considered feature was conducted
by fitting the Cox proportional-hazards model on the training dataset
to select only those features significantly associated with the patient
outcome using the training dataset. A penalized multivariate Cox analysis
was then conducted using a 4-fold cross validation on the training dataset
to select the best hyperparameters among the penalization strengths (Sup-
plemental Table 2). A regression score (RS) was then derived for each
patient by summing each term of the Cox proportional-hazards model
(weight multiplied by the corresponding feature) (15). The population
was then split according to the median of the RS to derive 2 survival
groups. This RS cutoff was subsequently applied to the testing dataset.
This process was repeated 100 times as for the previous 2-y PFS classifi-
cation objective (Supplemental Fig. 3).

The 2 models (one for classification and one for survival) were
implemented for 9 groups of different feature subsets, summarized in
Table 1. Model 3, termed clinical, includes the same features as
model 1, termed age-adjusted international prognostic index, with the
difference being that the features are considered continuous in model
3 whereas a categorical score is used in model 1.

Since the consolidation arm was included in the features groups,
none of the patients who died before the con-
solidation phase were considered in the study.
Moreover, patients censored before 24mo
were not included for the 2-y PFS classifica-
tion task.

Patient Follow-up and Statistical
Analysis

The 2-y PFS was defined as the time from
randomization to disease progression, relapse,
or death of any cause. A mean ROC curve for
2-y PFS and PET4 classification was generated
taking into account the 100 loops. Accuracy,
balanced accuracy, sensitivity, specificity, and
AUC were computed. AUC among the 100
loops was compared using a 1-sided Wilcoxon

TABLE 2
Patient Characteristics

Characteristic
2-y PFS classification

(n 5 545)
Survival
(n 5 561)

Events 86 (100%) 107 (100%)

Age (y) 48 (18–60) 48 (18–60)

Sex, male 305 (56%) 314 (56%)

aaIPI

0–1 230 (42%) 242 (43%)

2–3 315 (58%) 319 (57%)

Ann Arbor stage

I–II 102 (19%) 106 (19%)

III–IV 443 (81%) 455 (81%)

Extranodal involvement

,2 259 (48%) 269 (48%)

$2 286 (52%) 292 (52%)

Performance status

0–1 470 (86%) 485 (86%)

.1 75 (14%) 76 (14%)

LDH

#Normal 147 (27%) 155 (28%)

.Normal 398 (73%) 406 (72%)

Treatment arm

GA-101 278 (51%) 286 (51%)

Rituximab 267 (49%) 275 (49%)

Induction treatment

GA-101-CHOP 142 (26%) 145 (26%)

Rituximab-CHOP 144 (26%) 148 (26%)

GA-101-ACVBP 136 (25%) 141 (25%)

Rituximab-ACVBP 123 (23%) 127 (23%)

aaIPI 5 age-adjusted international prognostic index; CHOP 5

cyclophosphamide, doxorubicin, vincristine, and prednisone.
Qualitative data are number and percentage; continuous data

are mean and range.

FIGURE 1. Mean ROC curves for models 1–5 (A) and 6–9 (B) for 2-y PFS classification.
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signed-rank test among the 9 models embedding different feature subsets.
A similar approach was used to derive the most valuable ROI (among
the 3 studied) to compute RFs. We reported the results of the 9 models
using only the ROI leading to the best performance when radiomics is
involved in the considered models. Feature importance was subsequently
derived from the LR weights to highlight which features were the most
informative. To this end, the best parameters of LR were chosen by
4-fold cross-validation on the training dataset, and then LR was retrained
100 times (Supplemental Fig. 2). Finally, box plots and sorted bar charts
of absolute values were derived from LR weights.

Patient survival was estimated by Kaplan–Meier analysis, and sur-
vival curves were compared using the log-rank test. Box plots of

P values related to each model (over the 100
loops) were plotted and then were compared
using a 1-sided Wilcoxon signed-rank test.
The probability of selecting a feature after
the univariate Cox analysis was also com-
puted to highlight feature importance. All
statistical analyses were done using Python
version 3.7.9. A P value of less than 0.05
was considered statistically significant.

RESULTS

Patient Characteristics
Among the 670 patients enrolled in the

GAINED study, 561 were considered for
this analysis. For the 2-y PFS classification
approach, the study included 545 patients,
of whom 86 underwent an event before
24mo. For the survival approach, the
study included 561 patients, of whom 107
underwent an event before the last follow-
up. These patients have demographic and

clinical characteristics similar to those of the entire GAINED pop-
ulation. Patient characteristics are summarized in Table 2. Among
the 561 patients in our cohort, there were 386 early responders, 84
slow responders, and 91 who did not respond.

2-Year PFS Classification
Comparisons of the predictive values of radiomics extracted

from different VOIs are presented in Supplemental Figure 4. The
mean AUC was 0.62 6 0.07 for radiomics extracted from both the
largest lesion and the TMTV but was 0.54 6 0.07 for radiomics
extracted from the hottest lesion. Since the Wilcoxon test reported
a significant difference (P , 0.0001) between results extracted

from either the largest lesion or TMTV and
the hottest lesion, only radiomics computed
from the largest lesion were considered.
ROC curves for models involving 1 group

of features (from models 1 to 5) are shown
in Figure 1A. The model with the highest
predictive value was that including clinical
features (model 3), with a mean AUC of
0.656 0.07. Models involving consolidation
features (model 2) and conventional PET
(model 4) achieved a mean AUC of 0.64 6

0.06 and 0.60 6 0.07, respectively, which
are better than for model 1 (age-adjusted
international prognostic index), which
achieved a mean AUC of 0.56 6 0.06. Only
model 1 was significantly different from all
others (P , 0.001). Models combining sev-
eral groups of features (from models 6 to 9)
reached a mean AUC from 0.72 6 0.06 to
0.69 6 0.06 without significant differences
in between.
The importance of each feature was

derived from the weights resulting from the
LR attached to each feature. A positive
weight sign tends to classify patients in the
positive class (progression occurred) when
the feature value increases. Inversely, a nega-
tive weight sign tends to classify patients in

FIGURE 2. Feature importance according to relative weight attached to each feature in LR model
for models 6 (A) and 7 (B) for 2-y PFS classification. ECOG 5 Eastern Cooperative Oncology Group;
LDH5 lactate dehydrogenase; SDmax5 maximum distance between 2 lesions normalized by body
surface area; TLG5 total lesion glycolysis.

FIGURE 3. Example of RS for training set (A) and corresponding test set (C), along with associated
Kaplan–Meier plots for PFS for training set (B) and test set (D). Low- and high-risk groups were
dichotomized using median RS determined on training set and applied on test set.
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the negative class when the feature value increases. The feature impor-
tance for models 6 and 7 is plotted in Figure 2. The number of extra-
nodal sites, Eastern Cooperative Oncology Group scale, and Ann
Arbor stage were among the most important features when considering
clinical features. The consolidation treatment regimen received was
also highly predictive of 2-y PFS. Adding conventional PET features
(Fig. 2B) or radiomics did not notably change the ordering of the most
important features (Supplemental Fig. 5).

Survival Analysis for PFS
The probability of selecting each feature for its superior signifi-

cance compared with others (computed over the 100 loops) using
the models combining several groups of features (from models 6 to 9)
is presented in Supplemental Figure 6. The most important features
selected in the previous classification task were also always selected for
this current survival analysis study. An example relative to 1 loop of an
RS histogram and associated Kaplan–Meier curves built using the
median cutoff RS is shown in Figure 3 for model 6. The correspond-
ing log-rank P values for the test dataset are presented in Figure 4.
The median P value for models involving 1 group of features (from
models 1 to 5) was lowest for the model involving only the con-
solidation treatment (model 2) and was significantly different

from models involving age-adjusted in-
ternational prognostic index (model 1,
P , 0.0001), clinical parameters (model 3,
P , 0.05) conventional PET features
(model 4, P , 0.0001), or RFs (model 5,
P , 0.0001). Among models that com-
bined the consolidation treatment plus one
or more feature groups (from models 6
to 9), the median P value was the lowest
for model 6 but without being significantly
lower than for all other models (from
models 7 to 9).

PET4 Prediction
Comparisons of predictive values of

radiomics extracted from different VOIs
are presented in Supplemental Figure 7.
No significant difference was highlighted
between the different VOIs. Then, for con-
sistency reasons with the 2-y PFS classifi-
cation, the largest one was retained.

ROC curves for models involving 1 group of features (models 1,
3, 4, and 5) are shown in Figure 5A. The model involving radiomics
(model 5) was significantly better than all others (P , 0.0001), with
a mean AUC of 0.61 6 0.07. When combined, only the models
involving radiomics exhibited the best performance (Fig. 5B), with a
mean AUC of 0.626 0.07 (P, 0.0001).

DISCUSSION

The last 2 decades witnessed multiple trials exploring a PET-
driven strategy to identify poorly responding DLBCL patients
requiring more intensive salvage therapy. These works have yielded
heterogeneous results, as many relied on qualitative visual evalua-
tion (3). Assessing DSUVmax after 2 and 4 cycles of induction regi-
mens showed improved reproducibility and significantly reduced
false-positive rates. This semiquantitative criterion was applied in
2 large multicentric prospective PET-guided trials (PETAL and
GAINED). The first one, although disappointingly reporting no effi-
cacy in escalation of PET2-positive patients to an intensified Burkitt
chemotherapy, clearly defined DSUVmax as a valid measure to dif-
ferentiate patients with chemotherapy-sensitive tumors from those
with chemotherapy-resistant tumors. In the GAINED study, as
opposed to PETAL, positive interim PET’s unfavorable prognostic

value could be overcome with escalation of
therapy and autologous stem cell trans-
plantation. These data represented an im-
portant cornerstone in the management of
DLBCL patients, suggesting that quantita-
tive DSUVmax criteria can be applied in
routine practice to evaluate metabolic
response and drive the therapeutic strategy.
The question now arises as to what addi-
tional data would refine the prediction of
early response to therapy. In a multipara-
metric approach, some teams are exploring
circulating tumor DNA analysis, whereas
some are investigating the value of PET bio-
markers at baseline. Although the role of
SUVmax at baseline to predict the 2-y PFS or
overall survival was shown to be limited (4),
evaluation of predictive value in DLBCL

FIGURE 4. Log-rank P values over 100 loops for 9 models considered for survival analysis study.

FIGURE 5. Mean ROC curves for models 1, 3, 4, and 5 (A) and for models that combined several
features (B) for PET4 prediction. Model 7b 5 combination of clinical and conventional PET features;
model 8b 5 combination of clinical and radiomics; model 9b 5 combination of clinical and conven-
tional PET features and radiomics.
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patients using TMTV (5), dissemination (6), and RFs (9–17) has
recently been considered.
In this study, our findings supported the fact that conventional

PET metrics, dissemination, or RFs are predictive of outcome.
Nevertheless, we extend these results by showing that these fea-
tures seem to have no additional predictive capabilities compared
with treatment arm or clinical features in the frame of the
GAINED protocol. Interim PET assessment through the use of
DSUVmax allowed an accurate stratification of DLBCL patients
into 3 risk groups, of which PET4-positive patients are those with
the worst outcome, despite salvage therapy. The impact of the
GAINED strategy in modifying conventional immunochemotherapy
on the basis of these findings significantly and sufficiently improved
patient outcome to override the value of the other PET parameters.
The results were also suggested by the HOVON-84 trial, in which
baseline TMTV did not add prognostic value to DSUVmax (27).
This work also allowed exploration of the influence of VOI choice

on the prognostic performance of radiomics. We were able to con-
firm the results of Eertink et al. (13) on interest in computing RFs
from the TMTV or the largest lesion rather than the hottest lesion.
Although this observation may seem surprising, it provides a better
understanding of intrapatient interlesional tumor heterogeneity. This
is an important factor that is actually also explored by the DSUVmax

method. It compares the lesion with the highest SUVmax, at baseline
and at interim PET, which is not necessarily the same hottest lesion
as before the start of treatment, to measure the metabolic activity of
the most active or aggressive tumor contingent.
Baseline PET characteristics showed limited performance in

predicting results at PET4 and subsequently each patient’s risk
group and treatment arm. Nevertheless, unlike the 2-y PFS classifi-
cation, radiomics seems to be of importance in that context since it
outperformed the models that involved only the clinical informa-
tion or the PET conventional features. This paves the way to the
development of more advanced machine-learning models taking
into account (or not) hand-crafted radiomics. Moreover, early
identification of patients at highest risk could be of relevance in a
context where innovative treatments, such as cell-based therapies,
require a significant preparation and set-up phase.

CONCLUSION

This study suggests that metrics extracted from 18F-FDG PET
at baseline for this cohort of DLBCL patients and treated ac-
cording to the PET-driven design of the GAINED protocol do not
improve the 2-y PFS classification and PFS prediction. The model
including the consolidation strategy, which was in turn directed by
DSUVmax, combined with clinical features achieved the best
performances.
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KEY POINTS

QUESTION: Do baseline 18F-FDG PET biomarkers add prognostic
value to the PET-driven strategy of the GAINED study in DLBCL
patients?

PERTINENT FINDINGS: Regardless of the VOI or features
selection, conventional or radiomics 18F-FDG PET biomarkers
extracted at baseline do not seem to improve the results in terms
of 2-y PFS and survival prediction for patients treated according
to the GAINED protocol.

IMPLICATIONS FOR PATIENT CARE: Interim PET assessment
using DSUVmax variation allows for accurate and simple monitoring
and should be considered for use in routine practice in patients
with advanced DLBCL.
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