
S T A T E O F T H E A R T

Artificial Intelligence for PET and SPECT Image
Enhancement

Vibha Balaji1, Tzu-An Song1, Masoud Malekzadeh1, Pedram Heidari2, and Joyita Dutta1

1Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts; and 2Division of Nuclear
Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts

Nuclear medicine imaging modalities such as PET and SPECT are
confounded by high noise levels and low spatial resolution, necessi-
tating postreconstruction image enhancement to improve their quality
and quantitative accuracy. Artificial intelligence (AI) models such as
convolutional neural networks, U-Nets, and generative adversarial
networks have shown promising outcomes in enhancing PET and
SPECT images. This review article presents a comprehensive survey
of state-of-the-art AI methods for PET and SPECT image enhance-
ment and seeks to identify emerging trends in this field. We focus on
recent breakthroughs in AI-based PET and SPECT image denoising
and deblurring. Supervised deep-learning models have shown great
potential in reducing radiotracer dose and scan times without sacrific-
ing image quality and diagnostic accuracy. However, the clinical utility
of these methods is often limited by their need for paired clean and
corrupt datasets for training. This has motivated research into unsu-
pervised alternatives that can overcome this limitation by relying on
only corrupt inputs or unpaired datasets to train models. This review
highlights recently published supervised and unsupervised efforts
toward AI-based PET and SPECT image enhancement. We discuss
cross-scanner and cross-protocol training efforts, which can greatly
enhance the clinical translatability of AI-based image enhancement
tools. We also aim to address the looming question of whether the
improvements in image quality generated by AI models lead to actual
clinical benefit. To this end, we discuss works that have focused on
task-specific objective clinical evaluation of AI models for image
enhancement or incorporated clinical metrics into their loss functions
to guide the image generation process. Finally, we discuss emerging
research directions, which include the exploration of novel training
paradigms, curation of larger task-specific datasets, and objective
clinical evaluation that will enable the realization of the full translation
potential of thesemodels in the future.
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PET and SPECT are nuclear medicine–based molecular imag-
ing modalities that generate 3-dimensional (3D) visualizations of
the biodistribution of exogenous radiotracers. These modalities
provide functional and physiological information and are vital for
disease diagnostics, staging, treatment planning, and therapeutic
evaluation for a wide range of disorders, including many cancer

types, neurodegenerative disorders, cardiovascular disease, and
musculoskeletal disorders (1–6). Recent advances in hardware and
software have greatly enhanced the quantitative capabilities of PET
and SPECT imaging, addressing issues related to both high noise
and low spatial resolution, while also augmenting their traditionally
semiquantitative clinical utility. The emergence of artificial intelli-
gence (AI) has brought forth a multitude of image enhancement
techniques for denoising, deblurring, and partial-volume correction
of PET and SPECT images. AI-based enhancement methods can be
implemented after reconstruction into existing PET/SPECT clinical
workflows to achieve purely software-based improvement in image
quality without expensive hardware upgrades. These models that
learn image representations directly from data benefit from the
increasing volume (i.e., more training examples) and variety (i.e., a
diverse training population) of training datasets. AI-based image
enhancement techniques accomplish a range of tasks, including
boosting the signal-to-noise ratio, enhancing spatial resolution,
shortening scan times, and reducing radiotracer dose. In this review,
we discuss emerging denoising and deblurring techniques that can
be potentially transformative for PET and SPECT imaging.
Most AI-based image enhancement techniques rely on a deep-

learning model that receives a corrupt image as its input and gener-
ates a clean image as its output. For denoising, the corrupt input
image is noisy, whereas for deblurring, it is low resolution. Deblur-
ring efforts for PET and SPECT encompass partial volume correc-
tion approaches that seek to mitigate the partial volume effect. The
latter arises from the blurring of tissue boundaries (the predominant
factor for modalities such as PET and SPECT) and discretizing the
image space (7). Unlike image reconstruction, AI-based image
enhancement models do not require raw data and can be readily
trained and validated by existing image repositories. These methods
are thus rapidly gaining popularity in nuclear medicine, where large
image-domain datasets are much more accessible than list-mode or
sinogram datasets. AI models for image enhancement have consis-
tently outperformed filtering, deconvolution, and other traditional
analytic or model-based iterative approaches for denoising or partial
volume correction. AI has led to new approaches for multimodality
fusion (8) that can provide improved cross-modality anatomic guid-
ance to PET and SPECT using information from high-resolution
MRI or CT. The evolution of deep neural network architectures,
training strategies, and data requirements over the past several years
has contributed to the accuracy, usability, robustness, and versatility
of these models.
Figure 1 presents a Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) flowchart illustrating this
review’s systematic article selection process, and Figure 2 offers a
breakdown of the selected articles. We exclude articles that involve
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projection- or sinogram-domain approaches, data correction techni-
ques, and motion compensation methods. In the subsequent sections,
we present a survey of recent works on PET and SPECT image
enhancement and highlight emerging areas in this field. We provide
an overview of predominant deep-learning architectures, loss func-
tions, and training strategies relevant to PET and SPECT image

enhancement. We then present and chrono-
logically tabulate a selection of related arti-
cles for each modality, emphasizing
publications from the last 2 y. A discussion
of emerging directions concludes the review.

TECHNICAL CONSIDERATIONS FOR
AI-BASED IMAGE ENHANCEMENT

Deep-learning models are characterized
by multilayered network architectures that
learn complex feature representations at var-
ious levels of abstraction directly from the
data. Figure 3 illustrates a typical supervised
learning setup for an image-denoising task.
In this setup, the neural network’s layer
weights are iteratively adjusted during the
training phase to minimize a loss function
that compares the denoised image with a tar-
get low-noise or noiseless image. The
denoised image is assessed using evaluation
metrics in the subsequent validation phase.

Network Architectures
The current state of the art in PET and

SPECT image enhancement features a variety
of network architectures. Early implementa-
tions used convolutional neural networks
(CNNs) that reduce computational complexity
via parameter sharing. Many CNNs discussed
here have an encoder–decoder structure,
wherein an encoder estimates a latent repre-
sentation through downsampling operations
and a decoder upsamples it to match the input
image’s dimensions. Skip connections are
often used to recover finer details.
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FIGURE 1. PRISMA flow diagram demonstrating selection strategy of research articles included in
review.

FIGURE 2. Categorywise split of selected articles reviewed here.

NOTEWORTHY

� A variety of recent advances in deep neural network architec-
tures, loss functions, and training strategies have facilitated
the application of AI models to PET and SPECT image
enhancement.

� Unlike supervised learning models, which require paired cor-
rupt and clean images for training, emerging unsupervised
approaches obviate paired training data and are better suited
for most clinical image enhancement applications.

� Task-based objective clinical evaluation of AI-based
approaches for PET and SPECT image enhancement is
required to ensure their future clinical and diagnostic use.
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The U-Net (9), which evolved from fully convolutional archi-
tectures, has a U-shaped structure with a contracting path followed
by a symmetric expanding path. It is widely used in image
enhancement models, including those for PET and SPECT, with
most being 3D because of the nature of the input images (10).
Promising variants include conditional U-Nets, capturing mutual
conditional dependence across modalities (11), and coupled
U-Nets, containing modified single U-Nets that are interconnected
for reduced learning redundancy (12).
The deep image prior (DIP) (13) is a widely used convolutional

architecture for medical image enhancement that relies on a gener-
ator to learn clean image characteristics directly from noisy data
without prior training. DIP architectures often use U-Net-like gen-
erators. In the case of PET image synthesis, anatomical images
can be used for DIP initialization.
Generative adversarial networks (GANs) consist of a generator

network that synthesizes an enhanced version of a subject’s corrupt
input image and a discriminator network that assesses how realistic
the synthetic image is by comparing it with a clean image from the
same subject or an unpaired clean image from a different subject
(14). Both networks are jointly trained in competition with each
other. Various GAN variants have been applied to PET and SPECT
image enhancement, including conditional GANs (cGANs), which

use additional prior information to guide image synthesis (15), and
cycleGANs, which use 2 generator–discriminator pairs and can be
trained with unpaired datasets (16).
Transformer architectures have shown potential in enhancing

PET images by capturing long-range dependencies between differ-
ent image regions (17). Additionally, diffusion models, which pro-
gressively contaminate the training data with increasing noise
levels and then reverse the process to recover the data, are gaining
popularity in medical imaging (18).

Loss Functions
Alongside network architecture, the loss function, which com-

pares the target and predicted output, has a profound impact on
model performance. Standard loss functions used in training image
enhancement models include mean-squared error and mean abso-
lute error. These functions compute the L2 and L1 norms, respec-
tively, of voxelwise differences between the enhanced and target
images. Mean-squared error is more sensitive to outliers in the
training data. These loss functions lack sensitivity to visual per-
ception, as they ignore voxel interactions and overall image struc-
ture. Perceptual loss functions address this limitation by using a
pretrained network to assess high-level content and global struc-
ture in the enhanced and target images. GANs use adversarial loss

FIGURE 3. Typical supervised framework for PET image denoising using deep learning with training phase that minimizes loss function and validation
phase that evaluates deep-learning model’s performance. conv 5 convolution; ReLU 5 rectified linear unit; maxpool 5 maximum pooling; up-conv 5

upsampling convolution.
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functions, which are a type of loss function used to determine
whether images synthesized by a generator network have character-
istics comparable to target images. However, joint generator–
discriminator training can be unstable. Among GAN variants, Was-
serstein GANs implement adversarial losses based on Wasserstein
distances and have more training stability and less sensitivity to net-
work architecture and parameter selection than regular GANs.
CycleGANs use cycle-consistency loss functions to reduce the num-
ber of mappings between corrupt and clean image domains.

Training Strategies
Conventional supervised learning frameworks, such as the one

illustrated in Figure 3, require paired clinical datasets for training,
which are easy to simulate but challenging to obtain clinically as
they require dual scans or access to raw data for synthesizing low-
count images from standard-count ones. Furthermore, supervised
learning models may not generalize well across datasets. Unsuper-
vised approaches are thus gaining traction as they obviate the need
for paired training data. Certain approaches rely solely on corrupt
input data. For example, Noise2Noise (19) uses noisy inputs
exclusively during training. Methods such as DIP benefit from the
addition of anatomic information or from population-based unsu-
pervised pretraining, which has a regularizing effect (20).

PET IMAGE ENHANCEMENT

Table 1 showcases many recent efforts that use AI for PET
image enhancement. Most works on PET image enhancement
focus on the image denoising task, the goal of which is to generate
standard- or high-count PET images from noisy, low-count inputs.
Early attempts using AI for PET denoising involved supervised
CNNs. One study used an autocontext CNN with a sequence of
convolutional modules to denoise 18F-FDG PET images and
examined the impact of additional anatomic T1-weighted MRI
inputs on denoising performance (21). A dose reduction factor of
2003 was reported using an encoder–decoder architecture that
outperformed autocontext CNNs, nonlocal means filtering, block
matching, and 3D filtering (22). A shift toward generative models
helped overcome the limitations of traditional CNNs in capturing
the underlying statistical distribution of PET images. One paper
proposed a progressive refinement scheme based on concatenated
3D cGANs (23). Their network relied on a U-Net-like generator.
Concatenated 3D cGANs were compared with single 3D cGANs,
2-dimensional cGANs, and U-Nets using 18F-FDG PET brain
scans from both healthy subjects and patients with mild cognitive
impairment. One of the first applications of AI-based denoising to
a non–18F-FDG dataset was a cGAN-based ultralow-count PET
imaging technique applied to 18F-florbetaben scans for amyloid
plaques in the brain (24). Importantly, the loss function in this
work included a task-specific perceptual loss term that compares
actual and predicted amyloid status determined by 2 expert radiol-
ogists. One paper proposed a locality-adaptive GAN model for
PET image denoising in which the parametric weights are
location-dependent and channel-dependent, providing a more eco-
nomic way to fuse multimodal information than standard CNNs,
where weights are shared across voxel locations and input chan-
nels (25). One work reported task-specific evaluations conducted
by clinicians to determine overall image quality and lesion detect-
ability for a denoising model based on a 3D U-Net architecture
(26). Dilated convolutional kernels have been proposed in the con-
text of PET image denoising to enable CNNs to capture a larger
spatial context and detect features more robustly without the

expensive downsampling and upsampling of internal representa-
tions (27). Several GAN refinements have improved GAN denois-
ing performance in standard supervised learning scenarios. These
include self-attention (28), cycleGAN implementations (29), and
alternative loss functions such as the Wasserstein loss (30). As
with other imaging modalities, there is currently great interest in
diffusion models in the PET field. One paper proposed a diffusion
model for PET denoising that leveraged an MRI-based prior and
reported results based on 18F-FDG and 18F-MK-6240 radiotracers
(31). A spatially adaptive technique and a transformer fusion net-
work outperformed existing U-Net methods using a spatially adap-
tive block to extract features from both T1-weighted MRI and
PET and a transformer network that established a pixelwise rela-
tionship between the 2 modalities (32). A Spach transformer was
developed for PET denoising, which can capture long-range infor-
mation efficiently, and outperformed other transformer networks
and U-Nets (33). Notably, whereas the models were trained using
18F-FDG and 18F-ACBC (fluciclovine) data, the test dataset
included 2 additional tracers, 18F-DCFPyL and 68Ga-DOTA-
TATE, which were not used for model training.
In recent years, the research emphasis has largely shifted toward

unsupervised models that can be trained using a single noisy
image (no clean ground-truth images needed for training). The
DIP has successfully performed unsupervised denoising using sin-
gle noisy PET images (34). An extension of this idea showed
improved results via population-level pretraining followed by indi-
vidual fine-tuning (35). Noise2Void is another unsupervised
approach applied for PET image denoising (36). It uses a single
noisy input and is based on the idea of a blind spot network to esti-
mate the intensity of a central pixel from its neighbors in a noisy
image patch. Noise2Void has also been demonstrated to benefit
from population-level pretraining and individual fine-tuning.
A key challenge with most supervised denoising approaches is

their poor generalizability across different noise levels. A person-
alized denoising strategy has been proposed that uses different
noise levels for training and incorporates a weighting factor that is
based on the noise level in a task-dependent manner (37). A feder-
ated learning framework for PET image denoising was success-
fully tested with a simulated dataset with different noise settings
corresponding to protocols from different institutions (38). Gener-
alizability concerns also emphasize methods that can be adapted
across scanners and tracers. One study customized a cGAN model
for cross-scanner and cross-tracer optimization working with 3
scanner models (GE Healthcare Discovery MI, Siemens Biograph
mCT, and Siemens Biograph Vision) and 3 radiotracers (18F-FDG,
18F-fluoroethyl-L-tyrosine (18F-FET), and 18F-florbetapir) (39).
The results were independently assessed by 3 clinicians to ensure
clinical utility.
Another key research theme for PET image enhancement centers

around image deblurring and the related tasks superresolution and
partial volume correction. A supervised approach for superresolving
PET images by mapping from the lower-resolution Siemens HR1
scanner to the higher-resolution Siemens HRRT scanner used a very
deep CNN with anatomic and spatial inputs (40). Later, a self-
supervised solution to the same problem was proposed using a
cycleGAN-like architecture and incorporating simulation guidance
(41). This model was trained using unpaired low- and high-resolution
images from the 2 scanners. A supervised cycleGAN framework was
used to map PET image inputs not corrected for partial volume to
outputs corrected for partial volume (42). The method was applied
to 18F-FDG, 18F-flortaucipir, 18F-flutemetamol, and 18F-fluorodopa
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datasets. In a joint denoising and partial volume correction frame-
work, a cycleGAN variant was also trained in supervised mode to
generate standard-count partial-volume–corrected PET images from
low-count inputs for 3 tracers (18F-FDG, 18F-flortaucipir, and 18F-flu-
temetamol) (43). A similar concept was also presented using a
U-Net–based model for joint denoising and partial volume correction
(44). Time-of-flight PET imaging has been shown to improve the
image signal-to-noise ratio significantly. Although most denoising
works focus on reducing scan time or tracer dose, one AI-based
denoising approach computed time-of-flight–quality images from
non–time-of-flight PET image inputs (45).

SPECT IMAGE ENHANCEMENT

Several recent efforts that use AI for SPECT image enhance-
ment are highlighted in Table 2. Similar to PET reports, most
papers on SPECT image enhancement focus on image denoising
models, which generate standard- or high-count SPECT images
from noisy, low-count inputs. One of the earliest applications of
AI for SPECT myocardial perfusion imaging (MPI) using a
99mTc-sestamibi rest-and-stress protocol involved a 3D convolu-
tional autoencoder to map low-count SPECT images (1/8 and 1/16
of standard) to standard-count images (46). An extension of this
work reported comparisons of several convolutional autoencoder
architectures and evaluated the denoising model for the clinical
task of perfusion-defect detection at several successively reduced
dose levels (1/2, 1/4, 1/8, and 1/16 of standard count) (47). The
paper also showed that dose-specific models outperformed a one-
size-fits-all model trained using inputs at different noise levels.
Pix2Pix, a cGAN architecture, was applied to 99mTc-sestamibi
stress scans with reduced counts (7/10 to 1/10 of standard) and led
to improved denoising performance relative to convolutional

autoencoders and conventional gaussian and Butterworth filters
(48). A dual-gated (cardiac and respiratory) SPECT MPI study
suggested that using a patient’s own dataset for training a cGAN
architecture was superior to conventional training based on cross-
patient data (49). The cGAN led to the lowest noise level but also
exhibited the poorest defect detection performance compared with
CNN and U-Net. One recent study provided a theoretical frame-
work for assessing signal detection accuracy for AI-based SPECT
denoising and demonstrated the utility of virtual clinical trials in
the evaluation of AI-based approaches (50). This study highlighted
discrepancies between image-based and task-based evaluation out-
comes and stressed the significance of task-based objective evalua-
tion for denoising SPECT images.
Although most denoising studies focus on the reduction of the

radiotracer dose, several studies specifically focus on the reduction
of scan duration. One SPECT MPI study compared the denoising
performance of a CNN with residual learning for half-time versus
half-projection datasets (i.e., halving the scan duration vs. halving
the number of projection views) and reported stronger perfor-
mance for the former (51). Another study focused on scan-time
reduction for pediatric patients with kidney disease imaged using
99mTc-dimercaptosuccinic acid and showed that a 3D residual
U-Net for denoising led to good diagnostic performance for the
detectability of defects in the renal cortex despite a reduction in
the scan time (52). By using a U2Net, a novel 2-layer nested
U-shaped structure with a residual U-block that effectively cap-
tures contextual information on different scales, 1 study demon-
strated good lesion detectability performance for ultra-high-speed
(1/7 of standard scan time) SPECT bone imaging using 99mTc-
methyl diphosphonate (53). Notably, the model incorporated a
lesion attenuation loss function to enhance its accuracy at generat-
ing SUV measures for lesion regions.

TABLE 2
Summary of Deep-Learning Techniques for SPECT Image Enhancement

Paper Data details Architecture Loss function

Ramon et al. (46) 930 cardiac torso 99mTc-sestamibi 3D convolutional autoencoder MSE

Ramon et al. (47) 1,052 cardiac torso 99mTc-sestamibi Convolutional autoencoder, CNN MSE

Sun et al. (48) 100 simulated; 20 cardiac torso
clinical 99mTc-sestamibi

Pix2Pix GAN MAE; adversarial

Sohlberg et al. (49) 93 cardiac torso 99mTc-tetrososmin CNN, residual network, U-Net,
cGAN

MSE

Yu et al. (50) 4,800 simulated CNN MSE

Shiri et al. (51) 363 cardiac torso 99mTc-sestamibi Deep residual neural network MSE

Lin et al. (52) 112 cardiac torso 99mTc-DMSA 3D residual U-Net MSE

Pan et al. (53) 20 cardiac torso 99mTc-MDP
SPECT/CT

Lesion-attention weighted U2Net MAE; structural similarity index

Liu et al. (54) 895 cardiac torso 99mTc-sestamibi Noise2Noise (U-Net) MSE

Liu et al. (55) 1,050 cardiac torso 99mTc-sestamibi 3D-coupled UNet MSE

Xie et al. (56) 28 cardiac 99mTc-RBC Densely connected
multidimensional dynamic
U-Net

MAE; structural similarity
index; Sobel operator;
intramyocardial blood
volume

MSE 5 mean-squared error; MAE 5 mean absolute error; DMSA 5 pentavalent dimercaptosuccinic acid; MDP 5 methyl
diphosphonate; RBC 5 red blood cell.
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Some SPECT MPI image denoising efforts leverage recent
advances in unsupervised learning. One such effort uses Noise2-
Noise, a deep-learning framework for denoising that is trained with-
out clean images but requires 2 noisy realizations of a ground-truth
image, one used as the input and the other as the training target
(54). The study used a coupled U-Net architecture that incorporates
multiple U-Nets to reuse feature maps within the network. To evalu-
ate the detection performance for perfusion defects at multiple con-
trast levels, the authors used a bootstrap procedure to generate
multiple noise realizations from list-mode clinical acquisitions. Fur-
thermore, the study was extended to quantify perfusion defect detec-
tion accuracy using receiver operating characteristics on a large
training and validation dataset for SPECT MPI, which included
1,050 human subjects (55). Notably, the results revealed significant
discrepancies between image-based and task-based evaluation and
underscored the importance of task-based objective evaluation in
SPECT image denoising. They demonstrated that pretraining with
subsequent fine-tuning can meaningfully enhance the detectability
of perfusion defects.
Applications of AI for SPECT image enhancement tasks other

than denoising are still emerging. One paper proposed a
segmentation-free partial volume correction approach for SPECT
MPI, which uses a densely connected multidimensional dynamic
network that allows adaptive adjustment of convolutional kernels
after training (56). Importantly, the approach incorporated intra-
myocardial blood volume into the loss function to add clinical rel-
evance to the generated images.

DISCUSSION

We have presented here a summary of recent progress in
AI-based PET and SPECT image enhancement. AI-based techni-
ques have shown great promise in enhancing image quality by
reducing levels of noise and blur and have shown clinical promise
in many task-based evaluation studies. Importantly, many studies
have suggested that AI-based denoising approaches can reduce
radiotracer dose and scan times without sacrificing diagnostic
accuracy. AI-based models have also been more successful than
their predecessors at combining multimodal information (e.g.,
using CT or MRI for PET or SPECT image enhancement).
AI-based image enhancement is of great clinical significance.

Denoising approaches can lead to reductions in radiotracer dose or
scan duration. Whereas the former reduces patient radiation expo-
sure and addresses challenges arising from radionuclide shortages,
the latter enhances patient comfort, increases scanning throughput,
and reduces motion artifacts that could compromise diagnostic
accuracy. Several of the cited papers show that denoising could
improve both image quantitation and lesion detectability in addi-
tion to improving scan logistics. Deblurring approaches can miti-
gate partial volume effects that can compromise the accuracy of
quantitative image-based metrics such as SUV ratios computed
from small regions of interest. This is of particular importance in
the imaging of neurodegenerative diseases, where image-based
quantitative metrics from small anatomic targets could have diag-
nostic or prognostic value. The growing clinical relevance of
AI-based image enhancement is underscored by the availability of
U.S. Food and Drug Administration–approved vendor-neutral
commercial software such as SubtlePET (Subtle Medical) for
AI-based denoising, as exemplified in a study using SubtlePET’s
CNN to enhance low-count scans to diagnostic quality (57).

Despite the field’s initial focus on supervised learning techni-
ques that require paired clean and corrupt images for model train-
ing, an array of promising unsupervised or weakly supervised
alternatives has emerged in the PET and SPECT fields in recent
years. Most of these approaches either use only corrupt images for
training or use corrupt inputs with unpaired training targets. These
methods are attractive because of their easy applicability to most
clinical datasets when ground-truth images for training are not
available. However, they tend to produce inferior image quality
and are often slower than their supervised counterparts. Thus,
there is active research interest in further developing unsupervised
approaches.
Although AI-based methods have consistently outperformed tra-

ditional approaches in terms of image-based figures of merit,
whether the improved image quality leads to a tangible clinical
benefit remains a topic of continued research and investigation.
Accordingly, there is an increased focus in the current literature on
task-based objective clinical evaluation of these approaches. Inter-
estingly, several of the noted approaches for both PET and SPECT
have incorporated clinical metrics (such as amyloid positivity or
lesion detectability) into their loss functions to encourage clini-
cally meaningful solutions. Furthermore, the incorporation of mul-
timodal fusion, which integrates information from different
imaging modalities such as CT and MRI, holds promise for
improving diagnostic accuracy.
Although a sizable fraction of existing research is focused on 18F-

FDG PET and SPECT MPI, applications to other tracers are rapidly
expanding. Transfer-learning strategies are facilitating the applica-
tion of data-hungry AI models to smaller datasets for newer radio-
tracers, which can enable model fine-tuning with limited data using
cross-tracer pretraining (39,58,59). Unsupervised models have also
leveraged transfer-learning paradigms using a combination of
population-level pretraining and individual fine-tuning (36). Transfer
learning has also aided cross-scanner image-mapping strategies that
are enabling purely software-based generation of higher-resolution
images mimicking the image characteristics of state-of-the-art scan-
ner models (41).
Although most clinical applications of image enhancement tech-

niques are currently aimed at diagnostics, given the growing sig-
nificance of radiopharmaceutical therapy, clinical applications of
AI-based image enhancement could span beyond diagnostics, as
image-quality improvements due to AI could potentially lead to
more accurate image-based dosimetry. Given the privacy and
security concerns surrounding health care, there is also a growing
interest in federated learning approaches for image enhancement,
wherein code sharing can circumvent the many challenges associ-
ated with data sharing, thus enabling the creation of robust models
trained and validated over multiple sites and data sources.

CONCLUSION

AI methods have shown great promise in improving the quality
and utility of PET and SPECT images. From traditional CNNs to
more advanced GANs and transformer networks, deep-learning
architectures have been applied to a range of clinical applications.
Although encouraging results based on both image-domain and
task-based evaluations have been reported, several roadblocks lin-
ger for the clinical translation of AI tools. Accordingly, there is a
pressing need for large disease-specific datasets, standardized eval-
uation metrics, and integration of image enhancement tools with
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existing clinical workflows. The future of AI in PET and SPECT
imaging holds great potential to improve diagnostic accuracy,
enable novel clinical applications, and ultimately benefit patients.
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