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ABSTRACT 

Trustworthiness is a core tenet of medicine. The patient-physician relationship is evolving from a 

dyad to a broader ecosystem of healthcare. With the emergence of artificial intelligence (AI) in 

medicine, the elements of trust must be revisited. We envision a roadmap for the establishment 

of trustworthy AI ecosystems in nuclear medicine. In this report, AI is contextualized in the 

history of technological revolutions. Opportunities for AI applications in nuclear medicine related 

to diagnosis, therapy and workflow efficiency, as well as emerging challenges and critical 

responsibilities are discussed. Establishing and maintaining leadership in AI requires a 

concerted effort to promote the rational and safe deployment of this innovative technology by 

engaging patients, nuclear medicine physicians, scientists, technologists, referring providers, 

among other stakeholders, while protecting our patients and society. This strategic plan is 

prepared by the AI Task Force of the Society of Nuclear Medicine and Molecular Imaging 

(SNMMI). 

 

NOTEWORTHY 

• An appropriate AI ecosystem can contribute to enhancing the trustworthiness of AI tools 

throughout their life-cycle through close collaboration among stakeholders (page 8). 

• A “trustworthy medical AI system” depends upon the trustworthiness of the AI system 

itself, as well as the trustworthiness of all people and processes that are part of the 

system’s life-cycle (page 15). 

• By encouraging the establishment of trustworthy AI in nuclear medicine, SNMMI aims to 

decrease health disparity, increase health system efficiency, and contribute to the 

improved overall health of society using AI applications in the practice of nuclear 

medicine (page 22). 

 

INTRODUCTION 

Medicine utilizes science, practical wisdom, and the best available tools in the art of 

compassionate care. The necessity of dealing with maladies has motivated physicians to 

incorporate inventions into medical practice to decrease or eliminate patient suffering. During 

the past two centuries, along with technological revolutions, new medical devices have become 

the standard of care, from the stethoscope and electrocardiogram to cross-sectional imaging 

(Figure 1). The stethoscope, which arose out of the first industrial revolution, is so pervasive that 

it has become the symbol of healthcare professionals today. Compared to other medical 

equipment, it has the highest positive impact on the perceived trustworthiness of the practitioner 

seen with it (1).  

Nuclear medicine has always embraced the progress of technology. With the emergence 

of AI we will again be poised to experience a modern renaissance, similar to the one 

experienced following David Kuhl’s and Roy Edwards’ groundbreaking work in the 1960s. By 
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applying the concepts of Radon transform through newly available computing technology, they 

introduced volumetric cross-sectional medical imaging with single-photon emission computed 

tomography (SPECT), which was subsequently followed by the development of X-ray based 

computed tomography (CT) and positron emission tomography (PET) (2).  

The past decades have seen tremendous advances in information technology and in its 

integration into the practice of medicine. The application of artificial intelligence (AI) to medicine 

represents the actualization of a new era. Such transformative technologies can affect all facets 

of society, yielding advances in space exploration, defense, energy, industrial processes, 

finance, even cartography, transportation, and food service among others.  

The addition of AI into clinical practice in nuclear medicine poses opportunities and 

challenges. The full benefits of this new technology will continuously evolve. It is important to 

recognize that the nuclear medicine community must be actively involved to ensure safe and 

effective implementation. Establishing and maintaining AI leadership in the realm of nuclear 

medicine requires a comprehensive strategy to promote the application of innovative 

technology, while protecting our patients and society, executing our professional and ethical 

obligations, and promoting our values. A potential advantage of deploying AI techniques is that 

nuclear medicine methodologies may become more widely available, increasing access of 

patients to high quality nuclear medicine procedures. 

Nuclear medicine professional societies such as the Society of Nuclear Medicine and 

Molecular Imaging (SNMMI) and others provide leadership to ensure we recognize the benefits 

of technological advances in a manner consistent with our core values, medical ethics and 

society’s best interests. In July 2020, the SNMMI formed the AI Task Force by bringing together 

experts in nuclear medicine and AI, including physicists, computational imaging scientists, 

physicians, statisticians, and representatives from industry & regulatory agencies. This article 

serves as both a strategic plan and summary of the deliberations of the SNMMI AI Task Force 

over the past year in conjunction with other focused topics, including best practices for 

development (3) and evaluation (4) (Table 1). 
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OPPORTUNITIES 

Quantitative Imaging and Process Improvement 

Nuclear medicine is evolving toward even better image quality and more accurate and 

precise quantification in the precision medicine era, most recently in the paradigm of 

theranostics.  

Diagnostic Imaging 

 AI techniques in the “patient-to-image subdomain” improve acquisition and models in the 

“image-to-patient subdomain” enable improved decision making for interventions on patients 

(Figure 2) (3).  

Image generation considerations are elaborated in supplement opportunities part A, 

however examples include improved image reconstruction from raw data (list-mode, sinogram), 

data corrections including for attenuation, scatter and motion, and post-reconstruction image 

enhancement, among others (5–7). These enhancements could impact PET and SPECT in 

clinical use today. Multi-time-point acquisitions and PET/MR may see improved feasibility.  

Specific opportunities in image analysis are elaborated in the supplement (opportunities 

part B). A few examples include image registration, organ and lesion segmentation, biomarker 

measurements and multi-omics integration, and kinetic modeling (8). 

Opportunities for clinical utilization of AI in nuclear medicine practice were extensively 

reviewed recently, including brain imaging (9), head and neck imaging (10), lung imaging (11), 

cardiac imaging (12,13), vascular imaging (13,14), bone imaging (15), prostate imaging (16), 

and imaging of lymphoma (17). Neuroendocrine tumors, other cancers (including, 

gastrointestinal, pancreas, hepatobiliary, sarcoma, and hereditary cancers), infection and 

inflammation are some examples of additional areas requiring further consideration.  

Emerging Nuclear Imaging Approaches 

New developments are also emerging such as Total Body PET (TB-PET) (18) which 

presents unique data and computational challenges. Another potential use of AI is to separate 

multi-channel data from single session multi-isotope dynamic PET imaging. This pragmatic 

advancement could be valuable to extract greater phenotyping information in evaluation of 

tumor heterogeneity (19). 

Radiopharmaceutical Therapies (RPTs) 

There are several areas where AI is expected to significantly impact RPTs: 

 

     AI-Driven Theranostic Drug Discovery and Labeling. The use of AI for molecular discovery 

has been explored to select the most promising leads to design suitable theranostics for the 

target in question. For example, machine learning models could be trained using parameters 
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from past theranostic successes and failures (e.g. logP, Kd, BP) to establish which best predict a 

given outcome (e.g. specific binding, blood-brain-barrier penetration, tumor to muscle ratio). 

New AI approaches are revolutionizing our understanding of protein-ligand interactions (20). 

New hit molecules (e.g. from the literature or high throughput screens) can then serve as the 

test set in such AI models to speed up hit-to-lead optimization. Subsequently, with lead 

molecules identified, AI could also predict optimal labeling precursors and synthesis routes to 

facilitate fast and efficient development of theranostic agents (21,22). By defining parameters 

from existing synthetic datasets (e.g. solvents, additives, functional groups, NMR shifts) models 

can be trained to predict radiochemical yield for a given substrate using different precursors and 

radiosynthetic methods. Subjecting new lead candidates as test sets in the models will enable 

rapid identification of appropriate precursors and labeling strategies for new theranostics 

minimizing resource intensive manual synthetic development. 

 

     Precision Dosimetry. The field of radiopharmaceutical dosimetry is progressing rapidly. After 

administration of radiopharmaceuticals, dynamical and complex pharmacokinetics results in 

time-variable biodistribution. Interaction of ionizing particles arising from the injected agent with 

the target and normal tissue results in energy deposition. Quantification of this deposited energy 

and its biological effect is the essence of dosimetry with opportunities to link the deposited 

energy to its biological effect on diseased and normal tissues (Figure 3). 

In dosimetry, SPECT serves as a post-treatment quantitative measuring device. One 

challenge is the difficulty for patients to remain flat and motionless on the scanning table for the 

required time. AI-based image reconstruction/enhancement methods can: reduce required 

SPECT scan time for patients while maintaining or enhancing accuracy of quantification (23), 

and enable attenuation correction in SPECT (24).  

Multiple steps in dosimetry potentially can be enhanced by AI methods, including multi-

modality and multi-time point image registration, segmentation of organs and tumors, time 

activity curve (TAC) fitting, time-integrated activity (TIA) estimation, conversion of TIA into 

absorbed dose, linking macro-scale dosimetry to micro-scale dosimetry and arriving at 

comprehensive patient dose profiling (25). 

 

     Predictive Dosimetry and Digital Twins. Existing models can perform dosimetry before (e.g., 

I-131 MIBG) or following treatment. Personalized RPTs require predictive dosimetry for optimal 

dose prescription where AI can play a role. Pre-therapy (static or dynamic) PET scans could 

model radiopharmaceutical pharmacokinetics and absorbed doses in tumors and normal 

organs. Furthermore, it is possible to additionally utilize intra-therapy scans (e.g. single-time-

point SPECT in the first cycle of RPTs) to better anticipate and adjust doses in subsequent 

cycles.  

Overall, a vision of the future involves accurate and rapid evaluation of different RPT 

approaches (e.g. varying injected radioactivity dose and rate, site of injection, injection intervals, 

coupling with other therapies, etc.) utilizing the concept of the theranostic digital twin (TDT). The 

theranostic digital twin can aid nuclear medicine physicians in complex decision-making 

processes. It enables experimentation (in the digital world) with different treatment scenarios, 

thus optimizing delivered therapies. 

The opportunities discussed in the radiopharmaceutical therapy section above are 
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further described in supplement opportunities part C. 

Clinical Workflow: Increase Throughput While Maintaining 

Excellence  

AI may impact operations in nuclear medicine, such as patient scheduling and resource 

utilization (26), predictive maintenance of devices to minimize unexpected downtimes, 

monitoring quality control measurement results to discover hidden patterns and indicate the 

potential for improvement, and monitoring performance of devices in real-time to capture errors 

and detect aberrancies (26,27). These processes will make the practice of nuclear medicine 

safer, more reliable, and more valuable. 

Triage of urgent findings and augmentation of time-consuming tasks could improve 

report turn-around-time of the most critical cases and increase the efficiency of nuclear 

medicine physicians allowing them to more effectively care for patients. It is important to assure 

AI systems in nuclear medicine are sustainable through new current procedural terminology 

(CPT) code development and appropriate relative value unit (RVU) assignment for the technical 

and professional components. It is also possible that increased efficiencies in interpretation 

(more cases read accurately per unit time) may allow AI to be deployed into clinical workflows in 

an overall cost-effective manner. 
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AI ECOSYSTEM 

Actualization of Opportunities and Contextualization of 

Challenges  

While early nuclear medicine AI systems are already emerging, many opportunities 

remain in which the continuous propagation of AI technology could augment our precision 

patient care and practice efficiencies. The environment where AI development, evaluation, 

implementation, and dissemination occurs needs a sustainable ecosystem to enable progress, 

while appropriately mitigating concerns of stakeholders.  

The total life-cycle of AI systems, from concept to appropriation of training-data, model 

development and prototyping, production testing, validation and evaluation, 

implementation/deployment, and post-deployment surveillance, occurs within a framework 

which we call the “AI Ecosystem” (Figure 4). An appropriate AI ecosystem can contribute to 

enhancing the trustworthiness of AI tools throughout their life-cycle through close collaboration 

among stakeholders.  

 

  



CHALLENGES FOR DEVELOPMENT, 

VALIDATION, DEPLOYMENT, AND 

IMPLEMENTATION 

Development of AI Applications/Medical Devices 

 Five challenges that should be addressed include data, optimal network architecture, 

measurement and communication of uncertainty, identification of clinically impactful use cases, 

and improvements in team science approaches (supp Development Challenges). 

Evaluation (Verification of Performance) 

Theories on appropriate evaluation of AI software are a broad and active area of current 

investigation. Establishing clear and consistent guidelines for performance profiling remains 

challenging. Most current verification studies evaluate AI methods based on metrics that are 

agnostic to performance in clinical tasks (28). While such evaluation may help demonstrate 

promise, there is an important need for further testing on specific clinical tasks before the 

algorithms can be implemented. Failure mode profiling is among the most important challenges 

(supp Evaluation Challenges). 

 

Ethical, Regulatory, and Legal Ambiguities 

Major ethical concerns include informed consent for data usage, replication of historical 

bias and unfairness embedded in training data, unintended consequences of AI device agency, 

inherent opaqueness of some algorithms, concerns about the impact of AI on healthcare 

disparities, and trustworthiness (supp Ethical Challenges). AI in nuclear medicine has limited 

legal precedent (29).  

 

Implementation of Clinical AI Solutions & Post-Deployment 

Monitoring 

The lack of an AI-Platform integrating AI applications in nuclear medicine workflow in 

among the most critical challenges of implementation (30). Barriers of dissemination can be 

categorized at individual level (healthcare providers), at the institutional level (organization 

culture), and at the societal level (31). Deployment is not the end of the implementation process. 

(supp Implementation Challenges). 
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TRUST AND TRUSTWORTHINESS 

In medicine, trust is the essence, not a pleasance.  

 Successful solutions to the above-mentioned challenges are necessary but not sufficient 

for the sustainability of AI ecosystems in medicine. Well-developed and validated AI devices 

with supportive regulatory context, appropriate reimbursement and successful primary 

implementation may still fail if physicians, patients, and society lose trust due to lack of 

transparency and other critical elements of trustworthiness such as perceived inattention to 

health disparity or racial injustice. In a recent survey, Martinho et al. (32) found significant 

perceived mistrust among healthcare providers in regard to AI systems and the AI industry while 

realizing the importance and benefits of this new technology. Responders also emphasized the 

importance of ethical utilization, and the need for physician-in-the-loop interactions with AI 

systems, among the other factors. There is a need for a comprehensive analysis of the AI 

ecosystem to define and clarify the core elements of trustworthiness in order to realize the 

benefits of AI in clinical practice. 
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RESPONSIBILITIES - TOWARD TRUSTWORTHY 

AI 

When the safety, wellbeing, and rights of our patients are at stake, SNMMI should be 

committed to support principles that are future-proof and innovation-friendly.  

  The willingness of physicians and patients to depend on a specific tool in a risky 

situation is the measure of “trustworthiness” of that tool (33). In the case of AI systems, that 

willingness is based on a set of specific beliefs about reliability, predictability, and robustness of 

the tool as well as integrity, competency and benevolence of the people/processes involved in 

the AI system’s life-cycle (development, evaluation/validation, deployment/implementation, and 

use). 

 A “trustworthy medical AI system” depends upon the trustworthiness of the AI system 

itself, as well as the trustworthiness of all people and processes that are part of the system’s 

life-cycle (Figure 5).  

 Trustworthy medical AI systems require a societal and professional commitment to the 

ethical AI framework which includes four principles rooted in the fundamentals of medical ethics. 

These principles should be observed in various phases of the AI system life-cycle: respect for 

patients’ and physicians’ autonomy, prevention of harm, beneficence to maximize the wellbeing 

of patients and society, fairness. 

 In what follows, we outline twelve key elements that need to be consistently present in AI 

systems. 

12 Key Elements of Trustworthy AI Systems  

     Human Agency. AI systems should empower physicians and patients, allowing them to make 

better informed decisions and foster their autonomy (34). Effects of the AI algorithms on human 

independence should be considered. It should be clear to patients and physicians the extent to 

which AI is involved in patient care and the extent of physician oversight. There must be checks 

to avoid automation bias, which is the propensity of humans to value and overly rely on 

observations and analyses from computers over those of human beings (35). 

 

     Oversight. There must be sufficient oversight of AI decision-making, which can be achieved 

through human-in-the-loop, and human-in-command approaches (36). AI systems that are 

involved in higher-risk tasks (e.g. drives clinical management, diagnose, or treat disease) must 

be closely monitored through post-market surveillance by independent professional 

credentialing organizations analogous to certification and recertification of medical 

professionals. Peer review processes in practices can be adapted to consider the combined 

physician/AI decision making process. 

 

     Technical Robustness. AI systems must perform in a dependable manner (sufficient 

accuracy, reliability, and reproducibility) (37). This performance should be resilient to the 

breadth of clinical circumstances related to their prescribed use (generalizability). The AI tool 

should explicitly convey a degree of certainty about its output (confidence score) and have a 
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mechanism in place to monitor the accuracy of outputs as part of a continuous quality 

assurance program. Failure modes of the algorithm should be well characterized, documented, 

and understood by users.  

 

     Safety & Accountability. According to the concepts of safety-critical systems (38), AI systems 

should prioritize safety above other design considerations (e.g. potential gains in efficiency, 

economics, or performance). When adverse events occur, mechanisms should be in place for 

ensuring accountability and redress. Vendors must be accountable for the claims made of their 

AI systems. Physicians must be accountable for the way in which AI systems are implemented 

and used in the care of their patients. The ability to independently audit the root cause of a 

failure in an AI system is important. Protection must be provided for individuals or groups 

reporting legitimate concerns in accordance with the principles of risk management.  

 

     Security and Data Governance. AI systems must include mechanisms to minimize harm as 

well as to prevent it wherever possible. They must comply with all required cybersecurity 

standards. There should be an assessment of vulnerabilities such as data poisoning, model 

evasion, and model inversion. Assurances should be made to mitigate potential vulnerabilities 

and avoid misuse, inappropriate use, or malicious use (such as a deep fake) (39).  

 

     Predetermined Change Control Plan. AI tools can be highly iterative and adaptive in nature 

which may lead to rapid continual product improvement. The plan should include types of 

anticipated modifications (Software as a Medical Device Pre-Specifications). There must be a 

clear and well-documented methodology (algorithm change protocol) to evaluate the robustness 

and safety of the updated AI system. The algorithm change protocol should include guidelines 

for data management, re-training, performance evaluation, and update procedures. Vendors 

should maintain a culture of quality and organizational excellence. 

 

     Diversity, Bias-awareness, Non-discrimination, and Fairness. AI systems can be affected by 

input data maladies (incomplete data, inadvertent historically biased data), algorithm design 

insufficiencies, or suboptimal performance assessment/monitoring strategies. These issues may 

result in biases leading to unintended prejudice and cause harm to patients. Discriminatory bias 

should be removed from AI systems in the development phase where possible (31).  

 AI system performance should be evaluated in a wide spectrum of diseases and in 

patients suffering from a particular condition regardless of extraneous personal characteristics. 

No particular group of patients should be systematically excluded from AI device development. 

Patients who are underrepresented or suffer from rare diseases should not be excluded from AI 

systems development or evaluation—though such datasets will be sparse and most likely could 

only be used in the evaluation of AI methods developed in larger populations (for 

generalizability). Appropriate validation testing on standardized sets that incorporate patient 

diversity, including rare or unusual presentation of disease, are critical to evaluate the presence 

of bias in results regardless of the training data used (40).  

 AI systems should be user-centric and developed with an awareness of the practical 

limitations of the physician work environment in mind. Accessibility features should be provided 

to those individuals with disabilities to the extent necessary according to universal design 
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principles.  

 

     Stakeholder Participation. Throughout the life-cycle of an AI system, all the stakeholders that 

may directly or indirectly be affected should actively participate to help, advise and oversee the 

developers and industry. Participation of patients, physicians and all the relevant providers, 

healthcare systems, payors, regulatory agencies, and professional societies is imperative. This 

inclusive and transparent engagement is essential for a Trustworthy AI ecosystem. Regular 

clinical feedback is needed to establish longer term mechanisms for active engagement. 

 

     Transparency & Explainability. Vendors should provide open communication of how an AI 

system is validated for the labeled claim (purpose, criteria, and limitations) by describing the 

clinical task for which the algorithm was evaluated, composition of the patient population used 

for validation, the image acquisition, reconstruction and analysis protocols, and the figure of 

merit used for the evaluation (4,37). There must be appropriate training material and disclaimers 

for healthcare professionals on how to adequately use the system. It should be clear which 

information is communicated from the AI system and which information is communicated by a 

healthcare professional. AI systems should incorporate mechanisms to log and review which 

data, AI model, or rules were used to generate certain outputs (auditability and traceability). The 

effect of the input data on the AI system’s output should be conveyed in a manner whereby their 

relationship can be understood by physicians and ideally patients (explainability) in order to 

allow a mechanism to critically evaluate and contest the AI system outputs. For diagnostic 

applications, the AI system should communicate a degree of confidence (uncertainty) together 

with its decision. To the extent possible, in high stakes tasks the use of ‘black box’ AI systems 

without proper emphasis on transparency should be avoided (41). 

 

     Sustainability of Societal Wellbeing. It is important to acknowledge that exposure to AI could 

negatively impact social relationships and attachment within the healthcare system (social 

agency) (42). AI systems should be implemented in a manner that enhances the physician-

patient relationship. AI systems should not interfere with human deliberation or deteriorate 

social interactions. The societal and environmental impact of an AI tool should be carefully 

considered to ensure sustainability. Healthcare workers who are impacted by the 

implementation of AI systems should be given an opportunity to provide feedback and 

contribute to its implementation plan. Steps should be taken by professional societies and 

training programs to assure AI systems do not result in de-skilling of professionals, such as 

providing opportunities for re- and up-skilling. Rather, a new set of skills including physician 

oversight and interaction with AI tools, will evolve and must be refined. 

 

     Privacy. AI systems should have appropriate processes in place to maintain security and 

privacy of patient data. A minimal amount of personal data required should be utilized (data 

minimization). There should be a statement on measures employed to achieve privacy-by-

design such as encryption, pseudoanonymization, aggregation, and anonymization. Systems 

should be aligned with standards and protocols for data management and governance. 

 

     Fairness and Supportive Context of Implementation. Early development efforts can pose 
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more risk to developers and consumers. In order to address the concerns related to liability, 

there have been successful programs in other industries to encourage adoption of new 

technology and support consumer protection such as for vaccines and autonomous vehicles 

(29).   
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STRATEGIES FOR SUCCESS 

Part 1: SNMMI Initiatives 

In July 2022 SNMMI created the AI Task Force to strategically assess the emergence of 

AI in nuclear medicine (supp SNMMI initiatives). Areas of important focus were designated 

working groups, such as the AI & Dosimetry working group for predictive dosimetry and 

treatment planning. 

PART 2: SNMMI Action Plan 

The Task Force recommends the establishment of the AI Center of Excellence (AICE) to 

facilitate a sustainable AI ecosystem (supp SNMMI action plan). A Nuclear Medicine Imaging 

Archive (NMIA) will address the need for meaningful data access. The Trustworthy AI in 

Medicine and Society Coalition (TAIMS coalition) will address the need for an AI Bill of Rights 

(43). 

Part 3: SNMMI Recommendations  

Recommendations for the future are also provided in the supplement (supp SNMMI 

Recommendations).  
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CONCLUSION 

There are immense and exciting opportunities for AI to benefit the practice of nuclear 

medicine. Meanwhile, there are challenges that must and can be addressed head-on. As 

current challenges are addressed and new AI solutions emerge, SNMMI and the nuclear 

medicine community have the responsibility to ensure trustworthiness of these tools in the care 

of patients.  

We can all benefit from efforts to ensure fairness, inclusion, and lack of bias in the entire 

lifecycle of AI algorithms in different settings.  

There are three levels of facilitation that can support and enable the appropriate 

environment for trustworthy AI. First, our community must establish guidelines, such as those 

referenced in this article, to promote the natural development of trustworthy AI. Second, we can 

faciliate trustworthy AI through an AI Center of Excellence (AICE). Third, we can make 

trustworthy AI occur through active engagement and communicative actions.  

By encouraging establishment of trustworthy AI in nuclear medicine, SNMMI aims to 

decrease health disparity, increase health system efficiency, and contribute to the improved 

overall health of society using AI applications in the practice of nuclear medicine. 
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Figure 1 

New technologies in Medicine have coincided with each phase of the industrial revolution. The 

first industrial revolution was mechanization with the mechanical loom invented in 1784. The 

stethoscope was invented by René Laennec in 1816 and improved upon by Arthur Leared 

(1851) and George Philip Cammann (1852). The second industrial revolution was driven by the 

advent of electricity with the commercial light bulb patented by Thomas Edison in 1879, the 

telegram, and the modern factory production line. The electrocardiogram was invented by 

Augustus Waller in 1887 by projecting the heartbeat captured by a lippmann capillary 

electrometer onto a photographic plate allowing the heartbeat to be recorded in real-time. 

Willem Einthoven (1895) assigned the letters P, Q, R, S, and T to the theoretical waveform. The 

third industrial revolution, known as the digital revolution, brought computing technology and 

refined it to the personal computer. In the 1960’s, Kuhl and Edwards developed cross-sectional 

computed tomography and implemented this in the SPECT scanner, which was later applied to 

the CT scanner by Sir Godfrey Hounsfield and Allan Cormack in 1972. The fourth industrial 

revolution is the modern day with Big Data, hyperconnectivity, and neural networks (NN) 

resulting in the ability to propel self-driving cars and the development of AI in nuclear medicine.  

https://en.wikipedia.org/wiki/Ren%C3%A9_Laennec


Table 1 

Opportunities and Challenges Ahead of Nuclear Medicine Toward Achieving Trustworthy AI: an 

Outline for Discussion 

 

Category Domain Sub-domain 

Opportunities   

 1. Diagnostic Imaging  

  A. Emerging Nuclear Imaging Approaches 

 2. Radiopharmaceutical Therapies (RPTs)  

  A. AI-Driven Theranostic Drug Discovery 
and Labeling 

  B. Precision Dosimetry 

  C. Predictive Dosimetry and Digital Twins 

 3. Clinical Workflow: Increase Throughput 
While Maintaining Excellence 

 

Challenges   

 1. Development of AI 
Applications/Medical Devices 

 

  A. Data 

  B. Optimal Network Architecture 

  C. Measurement and Communication of 
Uncertainty 

  D. Clinically Impactful Use Cases 

  E. Team Science 

 2. Evaluation (Verification of 
Performance) 

 

  A. Performance Profiling Through Task-
Based Evaluations 

  B. Guidelines for Validation 

  C. Multi-Center Clinical Trial Network 

 3. Ethical, Regulatory, and Legal 
Ambiguities 

 

  A. Ethical Aspects 

  B. Regulatory and Legal Aspects 

 4. Implementation of Clinical AI Solutions 
& Post-Implementation Monitoring 

 

  A. AI-Platform 

  B. Barriers of Dissemination and 
Implementation of AI Technology in 
Medicine 

  C. Post-Deployment: Change Management 
& Performance 

 5. Trust and Trustworthiness  

  



 

 

Figure 2 

From patient to image creation and back to the physician, there are opportunities for AI systems 

to act at nearly any step in the medical imaging pipeline to improve our ability to care for 

patients and understand disease. (3) 
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Figure 3 

Dosimetry as a major frontier supported by AI towards personalization of therapy: Various 

contributions by AI to image acquisition, image generation and processing, followed by 

automated dose calculations can enable routine deployment and clinical decision support.  

 

  



 

Figure 4 

The AI Ecosystem is a complex system that represents the environment in which AI system 

development occurs. The Ecosystem connects stakeholders from industry to regulatory 

agencies, to physicians, to patients, to health systems and payers. The proposed SNMMI AI 

Center of Excellence (AICE) can serve as an honest broker to empower the AI Ecosystem from 

a neutral standpoint with a focus on solutions.  

 

 

 

 

  



 

Figure 5 

Twelve core concepts critical to Trustworthy AI Ecosystems 
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SUPPLEMENTAL INFORMATION 

 

OPPORTUNITIES 
In what follows, we discuss a number of opportunities for AI towards improved image 

generation (part A), image analysis (part B), and radiopharmaceutical therapies (RPTs) (part C). 

We also refer the reader to a special AI issue of PET clinics (44,45) edited by and with 

contributions from a number of SNMMI AI Task force members, with different chapters 

elaborating a number of the below-mentioned dimensions. 

Part A: Opportunities For AI Toward Improved Image Generation 

    Image Reconstruction. Deep learning models, either standalone or as part of a 

traditional reconstruction framework, can lead to significant improvements in image 

quality while achieving reductions of injected activities and/or scan durations. Recent 

review papers present detailed discussions of different deep learning approaches for 

image reconstruction (5,46). Standalone AI-based image reconstruction models may 

also learn the imaging physics of mapping projection data to images. These models are 

expected to require large volumes of training data comprising paired sets of perfect 

“ground truth” reconstructed images and raw data, and their development is an 

opportunity ripe for exploration.  

Hybrid approaches may be a practical area of concerted effort, combining neural 

networks with traditional approaches. In ‘unrolled iterative’ reconstruction methods, a traditional 

reconstruction framework may be combined with a neural network--for instance an artifact noise 

reduction model run inside the iterative reconstruction loop. These methods are able to take 

advantage of known imaging physics, statistics, and data corrections to optimize the 

reconstruction. AI models can also be utilized to learn the best regularization parameters that 

have been traditionally challenging to optimize in Bayesian (regularized) image reconstruction 

methods. 

 

    Data Corrections (Attenuation, Scatter, Motion, Denoising). A number of AI-based attenuation 

and scatter correction methods have been reviewed elsewhere (6). Attenuation correction (AC) 

in SPECT and PET is a prerequisite for quantification and has been shown to be beneficial for 

visual interpretation tasks. However, AC requires an attenuation map, typically obtained from a 

CT scan. AI-based methods are promising for AC without requiring CT scans (28,47) and are 

demonstrating promise in both detection (48) and quantification (49) applications. AI based 

methods have shown significant potential to discover patterns in sinogram data or images that 

enable compensation for attenuation and scatter. For example, CNNs can learn quantitative and 

spatial associations between features in uncorrected PET images and features in paired CT 

images, allowing algorithms to predict CT images directly from uncorrected PET images (50). 

Or, data corrections can be directly applied without an intermediate step of CT generation (51). 
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AI-based AC can help avoid the increased radiation dose associated with CT-based AC and 

quantitation errors due to misalignment between the CT image and the PET or SPECT image. 

This is of particular relevance in multi-time-point acquisitions. AI-based AC is particularly 

advantageous for PET/MR systems, which lack in-built CT scanning capabilities as well as 

standalone PET or SPECT systems (52).  

Deep learning models could be used for generating total scatter profiles (including single 

and multiple scatters) directly from emission and attenuation sinograms (53). The problems of 

scatter correction and attenuation correction can even be tackled jointly using AI by training 

end-to-end models that map uncorrected input emission data to attenuation and scatter 

corrected outputs, early results for which have been shown to be promising in PET (54). Yet 

another promising emerging area of research involves AI models for generating displacement 

fields required to perform motion-compensated image reconstruction for organs affected by 

respiratory or cardiac motion.  

AI methods are also promising for improving the resolution and noise characteristics of 

raw sinogram datasets. In particular, AI models have been used towards sinogram denoising 

(55). 

    Post-Reconstruction Image Enhancement. Recent review papers have discussed the 

significant opportunities to use AI for further enhancing reconstructed nuclear medicine images 

(7). Typically, most AI models for post-reconstruction enhancement of images seek to achieve 

noise reduction or resolution recovery. Unlike image reconstruction approaches, which require 

access to raw sinogram or list-mode data, post-reconstruction enhancement only uses images 

for training and validation. Images are more readily available to most users than raw data. 

Additionally, there are growing public repositories that store medical image data but access to 

raw data is limited. As a result, AI models for post-reconstruction enhancement are more 

practical to implement for a larger base of users than AI-based image reconstruction models. 

Initial attempts for AI-based image denoising and deblurring in this field employed supervised 

learning models, that rely on matched pairs of corrupt (i.e., noisy and/or low-resolution) and 

clean (i.e., low-noise/noiseless for the denoising problem and high-resolution for the deblurring 

problem) images for model training. Paired clinical datasets are not readily available thereby 

limiting the overall utility of supervised image enhancement techniques, despite their high best-

case performance. As a result, a majority of recent efforts in this area have focused on 

developing unsupervised techniques that use only corrupt images for training and weakly 

supervised techniques that use unpaired cleaned/corrupt images from separate cohorts. While 

these image-enhancement methods present strong promise, a key requirement for clinical 

application will be evaluation on clinical tasks. Current evaluation strategies often use fidelity-

based metrics (such as structural similarity index), but studies are showing that this may not 

correlate with performance on clinical tasks (56). Thus, observer-based studies that focus on 

task performance are recommended.  

Part B: Opportunities For AI Towards Improved Image Analysis 

      

    Multiple-Study Image Alignment. It is expected that temporal analysis of imaging changes 

over time will become increasingly important in the era of enhanced image analysis. In order to 
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compare information from multiple types of imaging examinations (both structural and 

functional) and multiple time points, a first critical step is appropriate alignment of the images 

with each other. During different exams the patient may be positioned slightly differently on the 

examination table. Physiological motion and changes in position of the internal organs 

particularly the heart, diaphragm, and bowel also occur. Improving the efficiency and reliability 

of registration is an area of opportunity for AI. Specifically, multiple region-of-interest registration 

and mass preserving deformable registration are areas that have proved challenging with 

existing methods. Neural networks have also shown promise in rapidly evaluating registration 

performance, which may be helpful in quality control in the clinic, even with more traditional and 

existing registration methods (57). 

 

    Organ and Lesion Delineations. Rapid and accurate selection of a specific lesion or organ 

within an imaging volume will be increasingly important to clinicians at the point of care in order 

to perform more advanced quantifications or to better follow a patient’s disease over time. There 

is an opportunity for AI to make the process of organ and lesion selection faster and more 

accurate. Neural networks may provide more flexibility and accuracy compared to threshold 

approaches, for instance through incorporating user input on accuracy of the selection over 

time. It is expected that numerous AI solutions will emerge that aim to make routine organ and 

lesion delineation more readily available in the clinic in order to empower more advanced image 

analytics (58). As an example, routine quantification of metabolic tumor volume (MTV) from 

FDG PET/CT images, known to be superior to SUV quantification for a number of 

predictive/prognostic tasks for certain cancers, is expected to be routinely enabled by such 

methods (e.g. for lymphoma patients). These methods can also be extended to quantification of 

molecular tumor volume from other radiopharmaceuticals.  

 

    Imaging Biomarkers and Beyond. Over the last two decades, the extraction of image 

biomarkers from nuclear medicine images has been the focus of numerous studies. One of the 

simplest metrics has been the SUV or change in SUV with treatment as formalized by the 

PERCIST 1.0 metrics. The imaging biomarker field, is broadly a part of the domain known today 

as “radiomics”, and relied until recently on several sequential steps once images are 

reconstructed and collected for analysis: lesions, tumours or organs detection and segmentation 

(the contours in 2D or volumes in 3D are determined), followed by characterization (a number of 

handcrafted features are calculated to describe the segmented volume), in order to finally be 

exploited in a modeling step. This modeling step consists of selecting a subset of features for 

their relevance regarding the task at hand (e.g. predicting outcome or differentiating between 

benign and malignant lesions) and combining them into a multiparametric model. Despite 

numerous studies and promising results, advanced radiomics has not been widely translated to 

clinical practice due to several intrinsic limitations: (i) lack of automation (especially for the 

detection and segmentation of lesions), (ii) lack of standardization (which now has been 

significantly addressed by the Image Biomarker Standardization Initiative, IBSI, with further 

ongoing efforts), (iii) harmonization issues (some handcrafted features are notoriously sensitive 

to numerous factors including scanner device characteristics and performance, reconstruction 

algorithms and settings and acquisition protocols, which makes radiomic models perform poorly 

in a real heterogenous setting such as for example multicenter studies), and (iv) explainability 



and interpretability issues (radiomic features are often quite unintelligible for end users, so 

models combining several of them can be seen as an untrustworthy “black box”).  

Over the last few years, there have been several developments that have addressed 

these issues. The efforts by the IBSI to standardize both features and the workflow have made 

published studies more comparable. The rise of techniques based on deep neural networks has 

already provided solutions for the lack of automation (e.g. methods based on the U-Net 

architecture are now providing more effective, automated detection and delineation of lesions in 

PET images) and may also improve modeling and harmonization issues, provided appropriate 

training strategies are implemented and large enough datasets for training are made available. 

Given their impressive performance obtained in various computer vision applications, it is 

expected that the usual radiomics workflow currently implemented as sequential steps and the 

extraction of handcrafted features from delineated lesions might end up being replaced by end-

to-end approaches relying on deep neural networks using as input not the delineated tumor 

volume but simply the entire PET image to learn relevant features contained in the images and 

derive its output. Though it is possible that these networks may be expanded to additionally 

incorporate certain handcrafted features (e.g. shape features) that may not be easily captured 

by neural networks with limited training. Overall, “handcrafted” and “deep” radiomics are areas 

of significant ongoing activity. 

      

    Kinetic Modeling. Quantitative and qualitative improvements in reconstructed dynamic images 

directly translate to enhanced accuracy in the spatial maps of kinetic micro- and macro-

parameters (59). Particularly, because of the characteristics of tracer dynamics, there are 

commonly some short static frames in a dynamic PET scan. These short frames lead to noisy 

PET images which pose a critical challenge to robust kinetic modeling and parametric image 

computation. With the superior performance of deep learning-based image reconstruction, 

particularly for low count rates (i.e. short frames), the resulting parametric images can have 

enhanced accuracy. In addition, with the flexibility of deep neural networks to map complex 

functions, one can synthesize high quality parametric images from low quality parametric 

images (60), or directly reconstruct parametric images from raw data (61) leading to even better 

image quality. Application of AI in the context of kinetic modeling as applied to large-axial-FOV 

or total-body PET is another exciting frontier (18). 

Part C: Opportunities For AI Toward Improved Radiopharmaceutical Therapies 

    Personalized Dosimetry. There are multiple steps within dosimetry as applied to RPTs that 

will be readily enabled and enhanced for routine deployment via AI methods. To integrate 

multiple time-point imaging data, registration of images, as well as segmentation of organs and 

tumors is required. These processes can be time-consuming, cumbersome, and pose a 

practical-limitation to routine dosimetry. AI might improve the accuracy of whole-body multiple 

time-point image registration (57), and has been shown to be capable of automatically 

segmenting organs at risk and target tumors (62). 

Following multi time-point SPECT acquisition, activity concentrations of various organs 

and tissues are plotted over time to obtain time activity curves (TAC). Due to the limited number 

of time-points available, these TACs are fit to a curve, extrapolating beyond the final time-point, 

and then integrated to yield the cumulated activity, or time integrated activity (TIA). AI based 
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curve fitting could eventually reduce the number of time points needed (25). 

Converting the TIA map (macro-level radiopharmaceutical gamma signature) to tissue-

level effective dose of the particles (electron or alpha particle) can involve complex modeling of 

particle trajectory, its interaction with matter, and micro-level sensitivity of the biological tissue. 

This could be an opportunity for AI because it is currently extremely cumbersome and 

computationally intensive (63). 

The cumulative effect of each treatment session is a function of dose deposition in each 

session, time-interval between the sessions, and other biological conditions of the patient 

(tissue sensitivity, repair capacity, immune system response, etc). There is an important 

potential role for AI in the creation of this comprehensive patient dose profile and making it 

practically and ubiquitously available. This profile could aid the nuclear medicine physician in 

improved adaptive treatment planning, through optimal time-interval determination and dose 

prescription, as well as utilization of adjunct measures such as chemotherapy and 

immunotherapy. Specifically, post-treatment dose deposition quantification in target lesions will 

ensure sufficient therapy and identify the under-treated subsections for “proactive mitigations”, 

such as locoregional therapies (interventional oncology and radiation oncology) as well as 

augmented therapy (adjuvant RPT or chemotherapy). Post-treatment dose deposition 

quantification in organs at risk (OAR) could guide optimal treatment planning while minimizing 

normal organ damage. Such approaches can be especially enhanced through utilizing digital 

twins, as described next. 

 

    Digital Twins. A digital twin is the numeric representation of a patient spanning his or her 

entire life. The patient’s digital twin can be (i) updated with real-time data (e.g. cumulative 

radiation dose) reflecting history and current condition of the patient, and (ii) can be used for 

simulations to aid physicians in complex treatment planning scenarios. This concept, first coined 

by Michael Grieves, has a proven track record of success in modeling complex industrial 

engineering applications. Radiopharmaceutical therapies (RPTs) have key factors that 

distinguish their planning from external radiation therapy and increase their complexity. 

Examples include distinct pharmacokinetics, dose rates, temporal scales (including temporal 

heterogeneity), spatial scales (including spatial heterogeneity), and linear energy transfer (LET) 

rates. 

The theranostic digital twin (TDT) incorporates a combination of structural imaging and 

dynamic molecular imaging to produce a pharmacokinetic biodistribution model that is specific 

to a particular patient—quantifying normal organ systems biology and tumor biology modeling. 

The result is the ability to model normal tissue complication probability and tumor control 

probability (TCP) based on the modeled biological effective dose. TCP computation is a 

dynamic interplay between dose rate pharmacokinetics, cell type, genomics, DNA repair 

pathways and other factors such as hypoxia. The TDT coupled with appropriate computational 

tools can be used for predictive dose modeling; e.g. a model can be personalized based on pre- 

and/or intra-therapy molecular imaging. Different injection strategies and intervals can be 

explored. Mitigation strategies for suboptimal dose delivery can also be pursued such as 

adaptive dose planning, augmentation with locoregional therapy (e.g. ablative therapy or 

external radiation therapy), or adjuvant systemic strategies such as chemotherapy, 

immunotherapy, and CAR-T therapy. 
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 Each time a patient receives an RPT, the TDT can be updated to record the acquired 

information related to his or her healthy and diseased tissues. This data could be stored locally, 

on a patient’s personal device, or in a cloud resource such as a healthcare exchange platform 

so that it could be dynamically updated as the patient receives subsequent procedures. In 

addition to practical considerations such as nuclear medicine treatment and re-treatment 

planning, the TDT could be used over time to improve subsequent image reconstructions. Prior 

image labeling tasks can also be catalogued by the digital twin to optimize subsequent follow up 

exam evaluation and interpretation efficiency by nuclear medicine physicians. 

The TDT may greatly improve the reliability of quantification measures compared to the 

current standard of practice, particularly radiation dose over time. The digital twin is a next 

evolution in personalizing medical imaging and will be aided by AI: as outlined earlier, AI can 

significantly assist in enabling rapid and reliable dosimetry calculations; further the complex 

biological models can be replicated (with sufficient training) using appropriate neural networks.  

CHALLENGES FOR DEVELOPMENT, 

VALIDATION, DEPLOYMENT, AND 

IMPLEMENTATION 

 

On balance with the potential opportunities for AI to impact the field of nuclear medicine, 

there are also obstacles. In this section, we review current challenges effecting development, 

validation, regulation, dissemination/implementation, and public trust. 

Development Challenges 

     Data. One of the greatest impediments to AI research and development in medical imaging 

is the availability of data, which should be findable, accessible, interoperable, and reusable 

(FAIR) (64). Current publicly available data is of limited volume, from relatively few institutions, 

with a relatively narrow range of disease representations. At the time of this article, there are 

only 2346 publicly available PET imaging subjects in the cancer imaging archive (TCIA), which 

cover predominantly head and neck, lung, and breast cancer. There is also a need for an 

increased ability for patients to easily and securely share their medical data and to assure 

appropriate patient privacy protections. However, having access to imaging and clinical data is 

not enough. There is no readily available process of converting big data (data lakes) into more 

organized datasets (data warehouses) in medicine (65). In order to be useful for the 

development of AI applications, clinical and imaging data must be curated to include 

standardized descriptors (metadata—including highly clinically-relevant data such as survival), 

labels, and must be appropriately deidentified (AI readiness).  

Data should be able to be compared and evaluated across patient populations, diseases 

institutions, and among various vendors. Raw imaging data, which is richer than reconstructed 

data, is almost always purged on a regular basis due to its sheer size requirements and 

proprietary nature, even in modern clinical and research archives. There is no universal format 
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for list-mode data (66). Quality and variability of input data are critically important and may affect 

outcomes, so data sets of reasonably uniform quality are likely of great value, though it can be 

argued that the most robust AI methods would function well on a diverse range of data inputs of 

differing qualities. 

 

     Optimal Network Architecture. Many published works on artificial intelligence in medical 

imaging employ transfer learning from CNNs trained on non-medical 2-dimensional imaging 

data(67). Dedicated medical imaging datasets are potentially preferable, although current 

available sets remain small in comparison to the non-medical imaging datasets. This limitation 

was highlighted as a key challenge in the 2018 National Institutes of Health roadmap (64).  

 Much of nuclear medicine data have 3 dimensions or more (e.g. x, y, z and sometimes 

time). AI architecture designed to incorporate additional dimensions (such as those designed for 

video recognition tasks has shown promise toward incorporating contextual information in other 

areas. However, there is limited literature available and video CNN training can be orders of 

magnitude more computationally challenging (68). Analyses including registered CT and MRI 

data with nuclear medicine may also prove informative.  

More complex architectures will also need to be considered. Fusion architecture may 

also be needed, such as paired data to incorporate deep natural language processing CNNs 

with computer vision CNNs for certain tasks (69). Federated and swarm learning approaches in 

medical imaging that are privacy-preserving and secure while addressing issues of network 

latencies will be needed to train large-scale task-specific datasets (70,71). 

 

     Measurement and Communication of Uncertainty. There is a need for estimation and 

reporting of uncertainty with each AI system output in medicine. Classifications often provide an 

output category without conveying the uncertainty of that assignment. In cases where the 

estimation of uncertainty is conveyed, there are minimal assurances that the estimation itself is 

accurate. Without these metrics, automation bias risk is left unchecked (35). AI applications in 

nuclear medicine must embrace these principles, which have proved helpful to other areas (72). 

 

     Clinically Impactful Use Cases. Developers of AI need help to understand the most clinically 

important needs where AI could provide added utility. There is currently a mismatch between 

the use cases explored by many researchers or vendors and the clinical needs. This is, to a 

large degree, related to the limited availability of public datasets. A forum for improved direction 

including the most viable areas to expend development resources informed by expert 

professionals in the field of nuclear medicine does not yet exist. 

 

     Team Science. There is limited awareness of the potential for AI in nuclear medicine by 

much of the computer science development community. Nuclear medicine AI developers need 

engagement opportunities (37). Collaboration among scientists in many domains is needed in 

order to realize the scope of potential. An environment of competition to serve as a launchpad 

for attracting talent and stimulating interdisciplinary approaches is yet to be established in the 

field of nuclear medicine AI. 
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Evaluation Challenges 

 

     Performance Profiling Through Task-Based Evaluations. We need to understand when, and 

if possible, why AI software fails (failure mode profiling). Although AI models may help clinicians 

to identify novel features of clinical importance (73), AI models can also make decisions based 

on irrelevant or non-specific features. While in some instances failure mode profiling could be 

aided by AI explainability, tackling the explainability hurdle alone is not sufficient (74). 

Controversy remains in the literature for saliency maps (popular methods highlighting ‘relevant’ 

portions of images for specific tasks) as to how effective and beneficial they are (75) or even 

whether understanding CNN failure modes is practical in high stakes decisions (41). One 

approach to address this issue is rigorous evaluation on populations of patients and on clinical 

tasks. The task-based evaluation paradigm (population-based or personalized) provides for an 

approach to address these challenges; however strategies to conduct such evaluation are still 

being explored (4,37). Population-based evaluation must be further augmented by investigating 

incidents when failure occurs specific to an individual patient (personalized evaluation). 

 Bias and discrimination are also important issues difficult to evaluate. Approaches to 

evaluate AI software for known or unknown biases are important (76). 

 

     Guidelines for Validation. There are few guidelines for appropriate initial and continuous 

validation of AI software in medicine. There is a need for a framework for the evaluation of AI 

software designed for use in nuclear medicine in the real world. A proof-of-concept should be 

provided including an objective, rationale, study design, and output measures. Well-defined 

testing procedures and reference standards must be available for the tasks at hand. It must be 

realized that a balance exists between moving AI approaches forward in a timely manner and 

their perfection in broad populations and a wide range of clinical use cases. 

 

     Multi-Center Clinical Trial Network. There is a need for a clinical trial network composed of 

multiple institutions to cross-validate AI software among different clinical environments. 

Ethical, Regulatory, and Legal Ambiguities 

     Ethical Aspects. Ethical issues related to AI systems in nuclear medicine are only beginning 

to be defined. 

Although the classic principles of medical ethics (autonomy, non-maleficence, 

beneficence, and justice) are well established, the complexity of modern clinical decision-

making requires reconciliation of conflicting principles. Ethical dilemmas could be more 

challenging in the presence of AI devices in healthcare. One reason for this is due to the role of 

patient data in the genesis of new AI software and the complexities of informed consent. 

Another issue is that insinuated replication of historical biases and unfairness embedded in 

training data could be imparted in the produced AI device. There are also issues related to the 

appropriate agency of the AI device, potential unintended consequences it presents, and the 

inherent opaqueness of some of the useful algorithms.  
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Furthermore, the scope of ethical dilemmas is broader than the traditional dyadic relation 

between physician and patients. There are more stakeholders sharing in both the benefits and 

the burdens. There is a need for inclusion and active participation of all stakeholders in order to 

understand how to best resolve ethical questions.  

Finally, there are legitimate concerns about the impact of these technologies on 

healthcare disparities on one hand and their trustworthiness on the other. There are no 

established guidelines for the appropriate inclusivity of AI systems in terms of how to address 

bias, discrimination, or other issues that may arise. Although limitations may be unavoidable in 

certain approaches, we must better understand what are acceptable limitations and what are 

appropriate compensatory mitigations when necessary. In reality, access to high level nuclear 

medicine patient care varies across geographic areas with rural and some central urban areas 

underserved medically. The availability of AI tools may help these populations to a greater 

extent than the benefits accrued to populations more richly served with specialists. Thus, 

delaying deployment of AI tools until they are “perfected” may limit benefits generated by such 

algorithms. 

The intricacies of ethical AI in medicine leaves many questions that remain to be solved. 

We should recognize the necessity of more comprehensive ethical discourse, such as 

collectively deliberated contracts to respect equal basic rights, ensure fair sharing of benefits 

and burdens, and emphasize the importance of fair deliberative processes. 

 

     Regulatory and Legal Aspects. There is limited awareness by the public and stakeholders 

about the level of evidence required to validate safety, security (39) and each specific clinical 

claim by AI software solutions, as well as the evidential requirements to verify the added-value 

for appropriate reimbursement. 

There is limited legal precedent for the use or misuse of AI in healthcare and it is even 

unclear whether product liability law would apply to AI software in medicine, particularly if the 

software changes over time after regulatory approval (29). At present, we believe that all AI in 

nuclear medicine must be supervised by a physician and that patient care choices can be 

informed by AI, but ultimately are made by the physician based on all data and the 

doctor/patient relationship. Thus, we are not currently proposing that “autonomous AI” would 

eliminate the physician from patient care, but rather that the AI would augment physician 

decision making. 

Implementation of Clinical AI Solutions & Post-Deployment 

Monitoring 

     AI-Platform. Current platforms for the integration of AI software applications into the clinical 

workflow are cumbersome. AI software must be able to work within the clinical context. 

Appropriate platforms are needed that allow nuclear medicine physicians to select and utilize 

various AI tools independent of a particular vendor—e.g. to have the AI modules as “plug-ins” or 

apps complementing PACS or NM specific display systems (30). 

 

     Barriers of Dissemination and Implementation of AI Technology in Medicine. Normalization of 

health interventions is the collective action to incorporate new changes into everyday practice 
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so they become institutionalized and disappear from view (thus normalized) (77). According to 

Normalization Process Theory, the process of implementation involves various interconnected 

steps at the individual, institutional and societal levels. Adoption of any new evidence in the 

healthcare system takes considerable time, on average 17 years (78). With regards to the 

specific adoption of AI technology, the process of dissemination and implementation might be 

even more complicated (31). 

At the individual level, one of the major challenges is how healthcare providers perceive 

the utility of AI software. Is it helpful or another ‘hype’? Does AI save time or decrease 

throughput and overall efficiency? This perception could be held regardless of evidence-based 

performance metrics. In addition, healthcare providers must possess the skills to use it or be 

willing and able to attain these skills. The system needs workability within the context of the 

clinical workflow (79). There must be an incentive to change practice patterns to incorporate the 

new solution. The AI system as a new agent in the ecosystem could be perceived as a rival or a 

partner. 

At the institutional level, the adoption of AI can pose new challenges which must be 

weighed against other institutional needs. Institutional culture can be in favor or against the 

change. The commitment to incorporate new change (cognitive participation) is very important 

and challenging. This is essential for sustainable group coherence to collectively engage in the 

act of implementing (collective action), and continuous evaluation and revision (reflexive 

monitoring). 

At the societal level, there are multiple factors including norms, social roles, regulations 

and oversights, reimbursement policies, legal frameworks, and public material and informational 

resources that impact dissemination and implementation. 

 

     Post-Deployment: Change Management & Performance Monitoring. AI software may change 

over time as new data are integrated into a model. The total product life cycle approach must 

therefore be considered. Change control methodology must be established in a way that 

supports improvement and protects patient safety. There is a need for methods to be able to 

conduct post-market surveillance for AI software in medicine by regulatory bodies, much as 

there is for current medical software.  

STRATEGIES FOR SUCCESS 

SNMMI Initiatives 

TO ADDRESS the need for guidance toward best AI system practice, SNMMI created 

the AI Task Force, aiming to monitor and explore emerging issues in the field of AI, to identify 

opportunities and challenges, and to recommend appropriate actions, policies, and programs to 

the society’s governing bodies and members. The task force comprises 4 teams, focusing on (i) 

strategic planning, partnership, and outreach (SPO), (ii) algorithm development, (iii) evaluation, 

and (iv) ethical considerations. This paper is the report of those deliberations. 

TO ADDRESS the need for inter-disciplinary creative collaboration for AI development, 

SNMMI AI Task Force designated the “SPO working group” to plan, organize and host the 
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SNMMI AI Summit to bring together subject matter experts from academia, industry, non-

governmental organizations, and government agencies, as well as physicians, physicists, 

scientists, technologists, and other stakeholders toward the continuous improvement of the AI 

and Informatics Ecosystem for nuclear medicine. 

 TO ADDRESS the need for best practices for algorithm development, SNMMI AI Task 

Force designated the “Development working group” to prepare recommendations and 

guidelines. Challenges and pitfalls to AI algorithm development were identified, and appropriate 

methods for study design, data collection and curation, algorithm development and testing, and 

reporting/dissemination were proposed. Additional recommendations specific to various 

subspecialties within nuclear medicine were also provided (3). 

 TO ADDRESS the need for appropriate evaluation of AI systems, SNMMI AI Task Force 

designated the “Evaluation working group” to prepare recommendations and guidelines. The 

key factors to consider in an evaluation study were envisioned, including the need to assess 

generalizability and performance on clinical tasks. The working group put forth the view that an 

evaluation study should result in a claim (4). A comprehensive four-class evaluation framework 

was established consisting of proof-of-concept, technical efficacy, clinical evaluation, and post-

market deployment studies. For each class of evaluation, recommendations for data collection, 

curation, sample-size determination, quantitative metrics to ascertain success, and example 

claims were provided.  

 TO ADDRESS the ethical aspects of AI development and implementation, SNMMI AI 

Task Force designated the “Ethics working group” to contemplate on the topic through the 

engagement of all of the stakeholders (communicative action). 

 TO ADDRESS the emerging needs in the realm of precision radiopharmaceutical 

therapy, SNMMI AI Task Force designated the “AI & Dosimetry working group” to investigate 

the role of AI in multi-scale dosimetry, predictive dosimetry (treatment planning) and post-

treatment dosimetry (treatment verification). 

 TO ADDRESS the educational needs of the nuclear medicine community, SNMMI AI 

Task Force designated the “Data Science & AI Curriculum working group” to prepare relevant 

educational material for four distinct audiences including practicing attending physicians, 

practicing nuclear medicine physicists, practicing nuclear medicine technologists, and in-training 

nuclear medicine professionals. 

SNMMI Action Plan 

Is AI a fundamental element of all aspects of nuclear medicine or an entity of its own? 

 It can be argued that the current structure of the SNMMI should absorb AI into all of its 

activities. For example, AI will be an increasing component of the Physics Data and 

Instrumentation space. Similarly the performance of AI could easily be a part of the quality and 

evidence committee while regulatory aspects of AI can be part of the governmental affairs 

committee. However, an alternative approach is to treat AI as a “separate” entity for a period of 

time. This could be done in the following ways: 

TO ADDRESS the perpetual needs for trustworthy AI, SNMMI AI Task Force has 

recommended the establishment of the AI Center of Excellence (AICE). Each of the working 

groups formed under the AI task force could become lasting committees of AICE including SPO 
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Committee, Development Committee, Evaluation Committee, Ethics Committee, and Data 

Science & AI Curriculum Committee. In addition, AICE is recommended to consider construction 

of three new entities, as detailed below. 

 TO ADDRESS the nuances of AI Development, SNMMI AI Task Force recommends 

AICE Development Committee to consider task specific guidelines such as best practices for 

development of AI-based image reconstruction or AI-based image segmentation. 

 TO ADDRESS the intricacies of AI Performance Evaluation, SNMMI AI Task Force 

recommends that the AICE Evaluation Committee further detail the Task-Based Assessment 

Framework (4). An outline for conducting such evaluation was recently proposed, including 

strategies to conduct such an evaluation (37).  

TO ADDRESS the need for an impartial performance evaluation of AI systems available 

for clinical use pertaining to the practice of nuclear medicine, SNMMI AI Task Force 

recommends AICE to establish an AI Clinical Trials Network (AI-CTN). AI-CTN will seek to 

collaborate with other professional society counterparts and work toward interfacing with 

industry to design and implement a sustainable-development-ecosystem. 

TO ADDRESS the need for nuclear medicine data for the development and evaluation of 

AI tools, SNMMI AI Task Force recommends AICE to consider identifying resources to allow 

formation and sustainability of the Nuclear Medicine Imaging Archive (NMIA). NMIA will serve 

as a resource for the AICE SPO Committee to host competitive AI challenges to address clinical 

needs through novel solutions. NMIA will serve to assist in converting nuclear medicine data 

lakes into organized data warehouses. These AI-ready resources will aid in research and 

development of AI solutions in nuclear medicine. In addition, NMIA will allow curation of 

datasets for evaluation of performance. 

TO ADDRESS the need for multi-disciplinary and inclusive discourse to actualize the 

ethical and trustworthy implementation of AI in medicine and society, SNMMI AI Task Force 

recommends AICE to spearhead formation of the Trustworthy AI in Medicine and Society 

Coalition (TAIMS coalition to ‘tame’ AI) with the help of the AICE SPO Committee. This coalition 

shall include medical imaging societies and non-imaging medical groups as well as non-medical 

societal institutions (toward The AI Bill of Rights (43)). 

The above needs are important, yet one has to be cognizant of the needs versus the 

number of volunteers and resources available to best address the important tasks. Establishing 

a new SNMMI task force on AI implementation may be an appropriate intermediate structure. 

SNMMI Recommendations  

     Integration of AI Algorithms into Clinical Workflow (AI Orchestrator for Interoperability). To 

facilitate dissemination and implementation of AI-based algorithms in the clinical setting, 

workflow integration is needed. Integration of these applications into the clinical image viewer 

(PACS) must be seamless and ‘vendor neutral’ in order to be widely adopted. An ‘AI 

Orchestrator’ could interface with functionality currently available in a PACS both locally and 

through cloud applications. The AI Orchestrator would enable physicians and medical providers 

to select the best-of-breed AI applications without being tied to a particular PACS vendor 

platform. To actualize this goal, there should be a collaborative effort among AI developers, 
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enterprise imaging archive vendors, interoperability standardization organizations, and 

professional medical societies.  

 This recommendation is essential for realization of clinical image interpretation and 

quantification of tomorrow in which physicians will be able to choose the best and most cost-

effective AI technologies for specific clinical indications and will be freer to custom tailor their 

own workflow as new, better, or more cost-effective solutions become available. With modular 

components that scale with needs, smaller institutions and individual physicians will more easily 

incorporate technologies currently only available at much larger healthcare systems.  

     Harmonized List-Mode Data Format. As demonstrated in other research fields driven by 

open science, a common data standard, ethical principles and public datasets are the keys to 

initiate a successful new wave of productive research and growth. In nuclear medicine and 

molecular imaging, the major vendors have different list mode formats, particularly for time-of-

flight information. This is one of the biggest roadblocks for the development of both traditional 

image formation and analysis algorithms, and becomes a more salient problem in the era of 

artificial intelligence and open science. To address this point, a vendor neutral list mode format 

is urgently needed to move the field forward. It is technically not difficult, but needs 

communication and endorsement among all the shareholders.  

     Regulatory Process. Regulation of AI software is in the early stages and will continue to 

evolve. SNMMI recommends professional societies actively engage with each other to share 

clinical experience of experts practicing in the affected clinical areas, which could be informative 

to regulatory agencies.  

     Certification and Accreditation Pathways. Subspecialized tracks should be conceptualized to 

demonstrate added competency in the clinical aspects of nuclear medicine informatics (26). For 

board certified nuclear medicine physicians, an ACGME accredited Clinical Informatics 

fellowship with focus on the nuances of advanced molecular imaging and therapy should be 

established for subspecialty board certification by American Board of Preventive Medicine 

(ABPM) in Clinical Informatics. 
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