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GRAPHICAL ABSTRACT 

 

 

Whole-body (WB) and total-body (TB) PET imaging systems, in particular, can serve as exploration tools 

for the scientific community. They allow the study of inter-organ interactions with their unique ability to 

visualise multiple organs simultaneously operating at different time scales. (Figure created by Dall-e 

(Open-AI) and LKSS).  
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“You don't understand anything until you learn it more than one way.” 

Marvin Minsky (1927-2016) 

Introduction 

Living organisms maintain “homeostasis” through dynamic multi-organ systemic interactions (1). A 

considerable amount of energy is needed to fuel these interactions to promptly orchestrate multiple 

organs to respond to perturbations (“allostatic load”) (2). For example, inflammation in response to 

infection or tissue damage is a critical survival mechanism to return to the original homeostatic state. In 

the case of ill-compensated systemic feedback loops (“allostatic overload”), persistent disruptions in 

baseline homeostasis may occur, which give rise to chronic diseases, such as arthritis, cancer, 

cardiovascular disease, or diabetes (3). These pathologies can, in theory, be characterised by deviations 

in parameters that describe a normative multi-organ network and that extend beyond their usual range.  

Molecular imaging modalities, such as Positron Emission Tomography (PET), can provide 

valuable insights into the underlying homeostasis of living subjects using target-specific radiotracer 

imaging (4). Following its commercial inception, most of the clinical PET investigations focused on single-

organ field-of-view (FOV) imaging (cardiology and neurology). With the introduction of a “whole-body” 

(WB) acquisition mode, that is the successive translation of the subject through the axial FOV of a PET 

system with slightly overlapping bed positions (5), the identification of hypermetabolic tumour lesions in 

oncology patients became the primary application of PET. Such a reductionist “lumpology” approach (6), 

however, caused a wealth of molecular information available from PET to be overlooked and discarded 

the concept of human physiology imaging. 

The recent extension of the WB-PET concept to imaging extended axial imaging ranges with 

larger FOV systems, colloquially referred to as a total-body PET (TB-PET) has sparked interest in the PET 
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community to conduct multi-organ systemic investigations. TB-PET systems cover axial scan ranges of 

1m (7,8) to 2m (9), which allows the synchronous measurement of signals from multiple organs. In 

addition, the richness of the multi-organ data derived from WB-PET notwithstanding (10,11), TB-PET is 

particularly unique as it satisfies two critical criteria for such causal investigations: the simultaneous 

acquisition of signals from multiple investigated distant organs and a high temporal resolution across 

the FOV (12). The combination of increased sensitivity and sub-second temporal sampling (13) provided 

by TB-PET could potentially aid in probing real-time multi-organ interactions (Fig. 1). 

Multi-organ analysis with standard WB-PET 

Traditional WB-PET with an axial FOV of ~20cm can already be used for multi-organ analysis. For 

example, simple inter-group comparisons of organ-based standardised uptake values (SUV) can provide 

crucial information regarding the underlying pathology. A recent study demonstrated that in a patient 

cohort with resected breast cancer, a high metabolic tumour volume and increased spleen glucose 

metabolism on baseline were associated with poor 5-y recurrence-free survival (14). The bespoke study 

hints toward a possible interaction between the tumour and the host immune system through the 

upregulation of hematopoiesis. Diseases formerly conceived as focal, such as myocardial infarction, have 

distributed effects throughout the body that are mediated through disease-specific networks (15). And 

finally, mental and societal stress triggers have been linked to various diseases associated with chronic 

inflammation that can be assessed already by WB-PET (16). 

 

Inter-organ networks through PET 

Current multi-organ network investigations using WB- or TB-PET are mostly fishing expeditions, aiming 

to pinpoint stable correlations between organs (10,11). In general, correlation analyses explore gross 

systemic effects between two groups without causal explanation. When performing correlation 

analyses, the chosen sample should represent the investigated population (e.g., healthy or pathological) 
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(17). Other factors, such as variability, linearity, and variance of the samples must also be considered. 

Since most multi-organ correlation network studies seek to pinpoint monotonic relationships between 

investigated organs, Spearman correlation should be chosen over Pearson correlation, as it is non-

parametric and insensitive to the linearity and homogeneity of the variance of observed data.  

The ultimate goal of inter-organ analysis is to identify causal relationships between organs that 

can facilitate the development of impactful interventions in medicine. Here, structure learning of 

Bayesian networks (18) in combination with graph models as visual representations of causal links in 

complex processes can be an attractive approach (19), which, however, still mandates the integration of 

a clinical expert to denounce spurious causal links.  

Both causal and correlation networks should be considered hypothesis-generating tools rather 

than tools that provide solid endpoints. Such hypotheses must be proven or disproven in rigorous 

validation studies (Fig. 2), whereby investigators should be conscious of the confounders affecting the 

accuracy of standardised uptake values (SUV) or kinetic parameters as part of a multi-organ analysis 

(20).  

 

The promise of TB-PET 

Despite the increasing installed base of TB-PET systems, the number of studies that explore TB-PET 

beyond dose reduction and higher throughput for the sake of assessing the human connectome studies 

is limited. Preliminary studies have demonstrated the potential of using the temporal domain, namely 

raw time-activity curves, to derive metabolic associations between different bone compartments (21), 

or to construct normative networks for healthy male and female controls (22). Although neither study 

explained causality, dynamic TB-PET has the potential to create personalised causal networks from a 

single subject. Such a paradigm requires, however, the subject to be challenged by a task, 

pharmacological intervention, or external stressor (e.g., pain, cold). By challenging (perturbing) the 
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system, simultaneous or delayed changes in signals from different organs can be measured and used to 

establish causality.  

For decades, such studies have been performed with functional MRI to derive effectivity 

connectivity by conducting baseline and task paradigms in a single imaging session (23). Recent 

innovative brain studies in functional PET have shown the possibility of using [18F]FDG PET to study 

dynamic changes in glucose metabolism within a single session with the aid of constant infusion 

protocols (24). However, conducting such challenge-based studies is non-trivial in a TB-PET setting, 

particularly in view of unknown response times and downstream interactions. Therefore, test studies on 

well-understood paradigms (25) should be performed before conducting exploratory connectome 

investigations using TB-PET.  

 

Roadmap to the future: Connect to the connectome  

To date, the PET imaging community is fragmented by vendor, geography and skillset. There needs to be 

more meaningful sharing of code, data and expertise to address the novel challenges and opportunities 

that arise with this technology. To fully leverage the potential of WB- and TB-PET alike for healthcare, 

new analysis methods are required, and new skills in the workforce are needed (Fig. 2). Automated data 

analytics pipelines, including automatic whole-body semantic segmentation (26) as well as WB- and TB-

PET motion correction and spatial normalisation are prerequisites to robust TB-PET connectome studies.  

The community needs to open up to repurpose existing solutions (e.g., SPM12 (27)) and to be 

prepared to fail in this high-risk-high-gain approach to using PET far away from the comfortable notion 

of a high-sensitivity lesion tracker. Fostering rigorous experiments to prove the validity of correlations 

and causalities while sharing also negative results must be encouraged. Also, rich data from healthy and 

pathological cohorts should be pooled to amass large sample sizes that help better understand the 

actual distribution of the data and, therefore, aid in arriving at logical conclusions. 
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Summary 

The introduction of TB-PET offers unique opportunities to investigate multi-organ interactions - the 

organ connectome for understanding human physiology and pathology. Novel study protocols and 

paradigms, and translational research pipelines, will be required to support causal interpretations of 

inter-organ relationships. As a community, we should unite to prioritise progress over our vanities. The 

same was said in the early days of PET/CT and PET/MR, and it still holds true. Novel and open-minded 

collaborative efforts beyond the nuclear medicine comfort zone are required to unlock the power of 

WB- and TB-PET imaging. Adopting this concept requires significant personal and infrastructural 

investments; the concept may fail, but if it does not, it will benefit our patients and medicine at large.  
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FIGURES 

 

FIGURE 1. Thanks to the markedly increased performance, TB-PET allows the assessment of multiple 

organs synchronously, giving way to the non-invasive exploration of systemic, inter-organ interactions.  

 

FIGURE 2. Categorical pathway to adopting whole-body/total-body PET for exploring the human 

connectome: several advanced and automated tools are required to extract robust data for hypothesis 

building and validation in a translational setting. 
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