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Abstract 

This paper proposes a novel method for the automatic quantification of amyloid positron emission 

tomography (PET) using the deep learning (DL)-based spatial normalization (SN) of PET images, which 

does not require magnetic resonance imaging (MRI) or computed tomography images of the same patient. 

The accuracy of the method was evaluated for three different amyloid PET radiotracers compared to MRI-

parcellation-based PET quantification using FreeSurfer. 

Methods: A deep neural network model used for the SN of amyloid PET images was trained using 994 

multicenter amyloid PET images (367 18F-Flutemetamol and 627 18F-Florbetaben) and the corresponding 

3D MRIs of patients with Alzheimer’s disease or mild cognitive impairment, and cognitively normal 

subjects. For comparison, PET SN was also conducted using the SPM12 program (SPM-based SN). The 

accuracy of DL- and SPM-based SN and standardized uptake value ratio (SUVR) quantification relative to 

the FreeSurfer-based estimation in individual brain spaces was evaluated using 148 other amyloid PET 

images (64 18F-Flutemetamol and 84 18F-Florbetaben). Additional external validation was performed using 

an unseen independent external dataset (30 18F-Flutemetamol, 67 18F-Florbetaben, and 39 18F-Florbetapir).  

Results: Quantification results using the proposed DL-based method showed stronger correlations with the 

FreeSurfer estimates than SPM-based SN using MRI did. For example, the slope, y-intercept and R2 values 

between SPM and FreeSurfer for the global cortex were 0.869, 0.113, and 0.946, respectively. In contrast, 

the slope, y-intercept, and R2 values between the proposed DL-based method and FreeSurfer were 1.019, -

0.016, and 0.986, respectively. The external validation study also demonstrated better performance of the 

proposed method without MR images than that of SPM with MRI. In most brain regions, the proposed 

method outperformed the SPM SN in terms of linear regression parameters and intraclass correlation 

coefficients. 

Conclusion: We evaluated a novel DL-based SN method, which allows quantitative analysis of amyloid 



4 

 

brain PET images without structural MRI. The quantification results using the proposed method showed a 

strong correlation with MRI-parcellation-based quantification using FreeSurfer for all clinical amyloid 

radiotracers. Therefore, the proposed method will be useful for investigating Alzheimer’s disease and 

related brain disorders using amyloid PET scans.  

Key words: amyloid PET, spatial normalization, deep learning, quantification 
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Introduction 

Owing to the nature of brain diseases, the pathological condition of the brain should be evaluated in a non-

invasive manner. Positron emission tomography (PET) is a useful imaging tool for assessing the functional 

and molecular status of the brain (1,2). The application of brain PET imaging in the diagnosis and treatment 

of degenerative brain diseases is widely increasing (3-5). In Alzheimer’s dementia (AD), the most common 

degenerative brain disease, brain deposition of fibrillar amyloid beta plaques is a neuropathological 

hallmark for diagnosis. Therefore, amyloid PET has significantly contributed to the diagnosis and treatment 

of AD. 

The visual assessment of PET images by nuclear medicine physicians or radiologists is the standard 

method for clinical neuroimaging interpretation. Nevertheless, quantitative and statistical analyses of PET 

images are widely used in brain disease research (1,2,6-9). This is because such analyses provide useful 

information for the objective interpretation of the PET images of individual patients. The most prevalent 

method of quantitative image analysis is evaluating the regional uptake of radiotracers by manually drawing 

the region-of-interest or volume-of-interest (VOI) on individual brain PET images. Another common 

method for brain PET image analysis is voxel-wise statistical analysis, which is based on the spatial 

normalization (SN) of images (10-12). Furthermore, brain PET SN allows the use of predefined VOIs, 

which is a suitable alternative to laborious and time-consuming manual VOI drawing (13-19).  

Monoclonal antibodies such as aducanumab and donanemab are emerging as treatment drugs for AD, 

which target aggregated amyloid beta to reduce its buildup in the brain (20,21). Therefore, the importance 

of quantification methods for amyloid brain PET images with high objectivity, accuracy, and reproducibility 

is increasing. Although voxel-wise statistical analysis and predefined-VOI-based automated anatomical 

labeling are objective and efficient methods for amyloid brain PET image analysis, their reliability primarily 

depends on the accuracy of the SN procedure. However, accurate amyloid PET SN without the 
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complementary use of anatomical images, such as magnetic resonance imaging (MRI) or computed 

tomography (CT), is technically challenging owing to the large discrepancy in amyloid deposit patterns 

between normal and abnormal cases (22-24). Additionally, severe cerebral atrophy and hydrocephalus, 

which are frequently observed in older patients, complicate SN. Previously, we proposed two deep-

learning-based amyloid PET SN methods that did not require matched MRI or CT data (25,26). In one of 

these approaches (25), we used a generative adversarial network (GAN) to generate pseudo-MRI data from 

amyloid PET and applied spatial transformation parameters, obtained by performing SNs of pseudo-MRIs 

on the MRI template, to amyloid PET images. In the second approach (26), we used deep neural networks 

to generate adaptive PET templates for individual amyloid PET images and performed SNs of amyloid PET 

images using individual adaptive templates. Both approaches showed a strong correlation of regional 

standardized uptake value ratio (SUVR) relative to cerebellar activity with the matched MRI-based PET 

SN and outperformed the MRI-less SN with the average amyloid PET template. However, these methods 

have the following limitations: First, the process of generating a pseudo-MRI or adaptive template using 

deep neural networks and the SN process are separated. Second, we used the SN algorithm provided by the 

Statistical Parametric Mapping (SPM; University of College London, UK) software, which iteratively 

applies image registration and segmentation algorithms (27). Therefore, the accuracy and speed of the entire 

SN pipeline depend on the SN performance and computation time of the SPM. These limitations undermine 

the advantage of not requiring matched MRI for amyloid PET SN in both approaches.  

Therefore, in this study, we developed a novel MRI-less amyloid PET SN method that allows the one-

step generation of spatially normalized PET images using cascaded deep neural networks that estimate 

linear and nonlinear SN parameters from individual amyloid PET images. Furthermore, we evaluated the 

accuracy of the proposed method for three different amyloid PET radiotracers compared to MRI 

parcellation-based PET quantification using FreeSurfer (28), which has shown a strong correlation with a 

manual-drawing method in cortical thickness and volume measurement (29-31) and regional amyloid load 
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estimation (32,33) but requires a significantly longer computation time (approximately 8 h). 

 

Materials and Methods 

Datasets 

To train and test the deep neural network (DNN) model for PET SN, we utilized an open-access dataset 

provided by the National Information Society Agency (NIA, https://aihub.or.kr/). This “internal dataset” 

comprised pairs of multicenter amyloid PET scans (18F-Florbetaben or 18F-Flutemetamol) and structural 

T1-weighted 3D MRI scans of patients with AD or mild cognitive impairment (MCI) and cognitively 

normal subjects. The image data were acquired from six university hospitals in South Korea. The 

demographic information and clinical diagnoses of the training and test sets are summarized in Table 1. 

Public Institutional Bioethics Committee designated by the Ministry of Health and Welfare of South Korea 

approved the retrospective use of the scan data and waiver of the need for informed consent. 

Furthermore, the trained network was evaluated using an “external dataset” obtained from the Global 

Alzheimer’s Association Interactive Network (GAAIN; http://www.gaain.org/centiloid-project). The 

trained network was tested for three different FDA-approved amyloid tracers: 18F-Florbetaben, 18F-

Flutemetamol, and 18F-Florbetapir. Originally, this dataset, comprising young controls and elderly subjects, 

was acquired for the Centiloid calibration of each tracer (34-36). The demographic information is 

summarized in Table 2. 

Network Model  

The proposed DNN model, comprising cascaded U-Nets (37) takes an affine-registered amyloid PET 

image as an input and generates local displacement fields for nonlinear registration (Supplemental Fig. 1). 

The generated displacement fields were then applied to the co-registered MRI in the training phase, and the 

http://www.gaain.org/centiloid-project
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cross-correlation loss between the spatially normalized MRI and the T1 template (individual MNI152) was 

minimized by error back propagation. Additionally, the gray matter (GM) segment of each MRI was utilized 

to improve the performance of the trained network and deformed using the same displacement fields as 

shown in Supplemental Fig. 1. Dice loss was calculated between the deformed GM segment and the GM 

of the MNI152 template, which was minimized along with the cross-correlation loss. On-the-fly data 

augmentation was applied when training the network model to prevent parameter overfitting. Spatially 

normalized PET images were not required in the training phase, and only PET images in individual spaces 

were used to create deformation fields. When the DNN model was trained, only PET images in an individual 

space were fed into the DNN model to generate SN images in the template space (Fig. 1A).  

Quantification of Amyloid Load 

SN was conducted using the SPM12 program (https://www.fil.ion.ucl.ac.uk/spm) for comparison (Fig. 

1B). Using the SPM12 program, PET and MRI pairs were co-registered, and the MRI images were spatially 

normalized. The MRI SN was performed using a unified segmentation method that utilizes tissue 

probability maps as deformable spatial priors for regularization of the non-linear deformations (27). The 

PET images were then spatially normalized using the deformation fields estimated from the paired MRI.  

Using the VOIs predefined in the template space, regional PET counts were extracted from spatially 

normalized images using DNN or SPM. The predefined VOIs were generated by applying automatic MRI 

parcellation using FreeSurfer 7.1.0 software (Martinos Center for Biomedical Imaging, Charlestown, 

Massachusetts, USA) to MNI template (38,39). The cortical and subcortical structures segmented and 

parcellated by FreeSurfer were grouped into six composite VOIs: global cerebral cortex, frontal lobe, 

posterior cingulate cortex and precuneus, lateral parietal, lateral temporal, and medial temporal. The counts 

of the VOIs were then divided by the counts of the cerebellar gray matter to calculate SUVR. 

As a reference, SUVR values in individual brain spaces were estimated using T1-weighted 3D MR 

https://www.fil.ion.ucl.ac.uk/spm
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images and FreeSurfer (Fig. 1C). The results of the FreeSurfer segmentation of MR images were visually 

inspected by a neuroscience expert to ensure quality assurance in all datasets. About 10% of the datasets 

were excluded due to incomplete cortex segmentation or cessation of FreeSurfer program. Failure cases 

were higher in elderly subjects (young controls: 8.7%, elderly: 10.5%). Finally, the six composite VOIs 

were applied to the co-registered amyloid brain PET images to calculate SUVR. FreeSurfer SUVR 

estimated in individual space was regarded as ground truth because FreeSurfer and manual-drawing 

approaches achieved nearly identical estimates of amyloid load (32).  

Statistical Analysis  

The correlation between SN-based approaches (DNN or SPM) and the FreeSurfer approach was 

evaluated using Pearson’s correlation. Furthermore, we performed a Bland–Altman analysis on the SUVR. 

Additionally, intraclass correlation coefficients (ICCs) were calculated to assess the consistency of the 

quantification results. 

 

Results 

After network training, the proposed DNN method successfully generated displacement fields for SN 

and achieved accurate spatially normalized PET images, as shown in Figure 2 and Supplemental Figure 

2. However, the SPM12 SN was not sufficiently accurate for patients with a severe ventricular enlargement 

(Fig. 2 and Supplemental Fig. 2); nonetheless, the ventricular enlargement did not degrade the 

performance of the proposed method. Figure 2 and Supplemental Figure 2 show a representative amyloid-

positive case and an amyloid-negative case with a global SUVR of 1.889 (73-year-old female; diagnosis: 

AD; tracer:18F-Florbetaben) and 1.318 (80-year-old female; diagnosis: cognitively normal; tracer:18F-

Florbetaben), respectively. 
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The proposed DNN method is also robust in the SN of lesioned brains. Figure 3 and Supplemental 

Figure 3 show the SN result of a patient (84-year-old female; tracer:18F-Florbetaben) with a chronic stroke 

lesion using the proposed method, thereby enabling accurate SN with no shrinkage in lesion volume. 

Additionally, the proposed DNN method showed a better correlation with the FreeSurfer approach 

compared to SPM12 SN in all three tested radiotracers and most of the tested VOIs (Figs. 4-7 and Tables 

3-6). Furthermore, the proposed method yielded higher ICC results than SPM12 in almost all comparisons 

(Tables 3-6). Moreover, the proposed method showed a lower bias in SUVR estimation in the Bland–

Altman analysis (Supplemental Figs. 4-7). No remarkable differences were observed between the internal 

and external validation results. Although the 18F-Florbetapir data was not used in the DNN training, the 

proposed method showed no performance degradation for the external 18F-Florbetapir dataset. The results 

of sperate analysis for amyloid positive and negative cases which were divided by global SUVR of 1.5 are 

summarized in Supplemental Tables 1-4. 

The computation time required for PET SN using the proposed method was approximately 1 s. 

Conversely, SPM required > 60 s for the batch operation that included the co-registration between PET and 

MRI, spatial normalization parameter estimation from MRI, and writing the spatially normalized PET 

image. FreeSurfer required approximately 8 h for automatic MRI parcellation. 

  



11 

 

Discussion 

In this study, we developed a fast amyloid brain PET SN method based on DNNs to overcome the 

limitations of existing approaches based on paired anatomical images or patient-specific templates 

(25,26,32). Furthermore, we assessed the correlation and measurement consistency between the proposed 

method and FreeSurfer-based SUVR quantification, which showed a strong correlation with the manual 

VOI approach (32). In terms of correlation and consistency with the FreeSurfer-based approach, the DNN-

based PET SN method outperformed MRI-based PET SN that was conducted using the co-registration and 

SN routines of SPM12, which is one of the most widely used pipelines for amyloid brain PET research. 

The DNN model trained in this study allowed a robust SN of amyloid PET images without MRI. The 

superiority of the SN performance of the proposed method compared to that of SPM SN using MRI was 

most pronounced in cases with hydrocephalus, as shown in Figure 2 and Supplemental Figure 2. The 

DNN model trained using nearly 1,000 datasets with on-the-fly data augmentation was able to generate SN 

PET images that were morphologically consistent with the standard MRI template. Although the DNN 

model was trained using a Korean dataset, no performance difference was observed when it was applied to 

external datasets obtained from other countries. Accurate spatial normalization of the lesioned brain was 

also possible, as shown in Figure 3, without shrinkage of the lesion volume, which is frequently observed 

in conventional SN approaches (40). However, despite the use of MRI, SPM SN could not compensate for 

the large morphological differences between the input images and the template. In the SN algorithm used 

in SPM, the images are deformed by the linear combination of thousand cosine transform bases, which 

allowed only a limited amount of image deformation.  

A potential alternative approach to the proposed method is generating spatially normalized amyloid PET 

images directly from individual PET inputs using DNNs. This method is faster compared to the proposed 

method considering it directly conducts SN without generating explicit deformation fields. However, direct 
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SN methods are more susceptible to the perturbation of input images owing to noise. Therefore, it is difficult 

to ensure the maintenance of regional count rate concentrations after the direct SN of brain PET images. 

However, the DNN model used in the proposed method does not directly provide the image intensity of SN 

images. The intensities were calculated by interpolating neighbor voxel values using DNN-generated 

deformation fields, which reduced the risk of erroneous intensity mapping by the SN. In addition, the DNN 

model trained for deformation field generation using amyloid PET images can be utilized for transfer 

learning on other radiotracers with small data sets available. Our preliminary (unpublished) study on 18F-

Flortaucipir shows that the transfer leaning allows for highly accurate quantification of 18F- Flortaucipir 

brain PET using the proposed method.  

The proposed fast and reliable deep-learning-based spatial normalization of amyloid PET images can be 

potentially used to improve the inter-reader agreement and the confidence of amyloid PET interpretation. 

In our previous study (41), when visual amyloid PET interpretation was supported by a deep learning model 

that directly estimated regional SUVR from input images (42), the inter-reader agreement (Fleiss kappa 

coefficient) and confidence score increased from 0.46 to 0.76 and from 1.27 to 1.66, respectively. The 

method proposed herein requires a longer computation time for regional SUVR calculation than the direct 

end-to-end SUVR estimation, mainly because of the voxel-by-voxel multiplication of SN results and the 

predefined brain atlas. However, the reliability of the amyloid burden estimation based on the proposed 

method is higher, considering the proposed method allows the visual confirmation of SN results and the 

exclusion of cases with erroneous SNs. Furthermore, accurate automatic quantification of amyloid burden 

can be used in longitudinal follow-up studies in patients with AD and MCI. Several dementia treatment 

drugs based on the amyloid hypothesis are now emerging, and amyloid PET scans are important for 

monitoring the efficacy of treatments. The proposed method will enable an objective measurement of drug-

induced amyloid clearance without requiring additional 3D structural MRI.  
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Conclusion 

We evaluated a novel deep learning-based SN method, which allows quantitative analysis of amyloid 

brain PET images without structural MRI. The quantification results using the proposed method showed a 

strong correlation with MRI-parcellation-based quantification using FreeSurfer for all clinical amyloid 

radiotracers. Therefore, the proposed method will be useful for investigating Alzheimer’s disease and 

related brain disorders using amyloid PET scans.  
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Key Points 

Question: Is the quantification of amyloid PET images without MRI feasible? 

Pertinent Findings: A method based on deep learning allowed fast and reliable amyloid PET spatial 

normalization and quantification without MRI.  

Implications for Patient Care: The proposed method will be useful for interpreting amyloid PET scans in 

Alzheimer’s disease and related brain disorders. 
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FIGURE 1. Three approaches used to estimate regional SUVR from amyloid PET images are compared in 

this study. (A) Deep neural network (DNN) based PET spatial normalization, (B) PET-MRI co-registration 

and MRI-based PET spatial normalization using SPM, and (C) PET-MRI co-registration and MRI 

parcellation using FreeSurfer. 
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FIGURE 2. Spatial normalization of 18F-Florbetaben PET in an amyloid positive case. (A) Input image in 

individual space, (B) MRI-based spatially normalization using SPM12, (C) PET spatial normalization using 

DNN, (D) T1 MRI template, and (E) estimated deformation fields using DNN (R: anteroposterior, G: 

longitudinal, B: mediolateral). 
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FIGURE 3. Spatial normalization result of a patient with chronic stroke lesion using the proposed method. 

(A) Patient’s original Flair MRI, 18F-Florbetaben and PET/MRI fusion. (B) SN PET overlaid on standard 

T1 MRI template. 



18 

 

 

FIGURE 4. Internal validation: SUVR comparison in 18F-Florbetaben and 18F-Flutemetamol (n=148). The 

X-axis represents the ground truth SUVR estimated in an individual space using FreeSurfer VOI, whereas 

the Y-axis represents the SUVR estimated in a template space using co-registered MRI and SPM12 (black 

symbols and lines) or the proposed DNN (sky blue symbols and lines). 
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FIGURE 5. External validation: SUVR comparison in 18F-Florbetaben (n=30). The X-axis represents the 

ground truth SUVR estimated in an individual space using FreeSurfer VOI, whereas the Y-axis represents 

the SUVR estimated in a template space using co-registered MRI and SPM12 (black symbols and lines) or 

the proposed DNN (sky blue symbols and lines). 
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FIGURE 6. External validation: SUVR comparison in 18F-Flutemetamol (n=67). The X-axis represents the 

ground truth SUVR estimated in an individual space using FreeSurfer VOI, whereas the Y-axis represents 

the SUVR estimated in a template space using co-registered MRI and SPM12 (black symbols and lines) or 

the proposed DNN (sky blue symbols and lines). 



21 

 

 

FIGURE 7. External validation: SUVR comparison in 18F-Florbetapir (n=39). The X-axis represents the 

ground truth SUVR estimated in an individual space using FreeSurfer VOI, whereas the Y-axis represents 

the SUVR estimated in a template space using co-registered MRI and SPM12 (black symbols and lines) or 

the proposed DNN (sky blue symbols and lines). 
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TABLE 1. Demographic and clinical diagnosis of the training and test datasets 

 n Age 
Sex 

(M/F) 

Diagnosis 

(NC/MCI/AD) 

Tracer 

(FMM/FBB) 

Training set 994 73.2±5.6 318/676 200/543/251 367/627 

Test set 148 74.8±6.6 75/73 26/85/37 64/84 

NC, normal control; MCI, mild cognitive impairment; AD, Alzheimer’s disease; FMM,18F-Flutemetamol; 

FBB, 18F-Florbetaben 
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TABLE 2. Demographic and clinical diagnosis of the external test dataset 

Tracer n Age 
Sex 

(M/F) 

Diagnosis 

(YC/Elderly) 

18F-Florbetaben 30   8/22 

18F-Flutemetamol 67 Anonymized Anonymized 22/45 

18F-Florbetapir 39   12/27 

YC: young control 
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TABLE 3. Internal validation: Pearson’s correlation and ICC analysis for SUVR of the internal 18F-Florbetaben and 18F-Flutemetamol dataset 

(n=148) relative to the FreeSurfer approach  

Internal dataset 

 SPM  Proposed 

 Slope y-intercept R2 ICC  Slope y-intercept R2 ICC 

Global  0.869 0.113 0.946 0.965  1.019 -0.016 0.986 0.992 

Frontal  0.956 0.183 0.947 0.946  0.983 0.019 0.987 0.992 

PCC-Precuneus  0.877 0.158 0.950 0.921  0.998 0.026 0.981 0.993 

Lateral parietal  0.734 0.267 0.910 0.970  0.936 0.092 0.977 0.988 

Lateral temporal  0.853 0.173 0.957 0.865  1.008 0.003 0.987 0.987 

Medial temporal  0.879 0.269 0.732 0.554  0.944 0.125 0.891 0.861 
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TABLE 4. External validation: Pearson’s correlation and ICC analysis for SUVR of the external 18F-Florbetaben dataset (n=30) relative to the 

FreeSurfer approach  

18F-FBB 

 SPM  Proposed 

 Slope y-intercept R2 ICC  Slope y-intercept R2 ICC 

Global  0.853 0.167 0.979 0.972   1.003 -0.006 0.995 0.998  

Frontal  0.836 0.181 0.983 0.966   0.970 0.010 0.995 0.994  

PCC-Precuneus  0.970 0.121 0.986 0.981   0.990 0.019 0.993 0.996  

Lateral parietal  0.821 0.209 0.965 0.961   0.994 0.016 0.996 0.998  

Lateral temporal  0.794 0.151 0.936 0.879   0.963 0.054 0.986 0.993  

Medial temporal  0.972 0.134 0.898 0.800  0.990 0.062 0.931 0.927 
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TABLE 5. External validation: Pearson’s correlation and ICC analysis for SUVR of the external 18F-Flutemetamol (n=67) relative to the 

FreeSurfer approach  

18F-FMM 

 SPM  Proposed 

 Slope y-intercept R2 ICC  Slope y-intercept R2 ICC 

Global  0.907 0.104 0.979 0.977   1.033 -0.020 0.990 0.989  

Frontal  0.893 0.117 0.976 0.975   1.025 -0.015 0.990 0.987  

PCC-Precuneus  0.978 0.150 0.978 0.945   1.024 -0.032 0.985 0.984  

Lateral parietal  0.919 0.103 0.975 0.969   1.001 0.036 0.987 0.979  

Lateral temporal  0.794 0.136 0.946 0.844   0.986 0.042 0.984 0.984  

Medial temporal  0.943 0.206 0.857 0.758  0.921 0.149 0.926 0.931 
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TABLE 6. External validation: Pearson’s correlation and ICC analysis for SUVR of the external 18F-Florbetapir dataset (n=39) relative to the 

FreeSurfer approach  

18F-FBP 

 SPM  Proposed 

 Slope y-intercept R2 ICC  Slope y-intercept R2 ICC 

Global  0.888 0.123 0.961 0.979   1.082 -0.071 0.982 0.985  

Frontal  0.851 0.166 0.940 0.974   1.022 -0.045 0.980 0.989  

PCC-Precuneus  0.973 0.119 0.948 0.940   0.975 0.001 0.980 0.982  

Lateral parietal  0.905 0.102 0.949 0.981   1.037 -0.039 0.958 0.978  

Lateral temporal  0.768 0.196 0.892 0.854   1.029 -0.034 0.970 0.990  

Medial temporal  0.977 0.128 0.798 0.742  0.855 0.199 0.864 0.936 
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SUPPLEMENTAL FIGURE 1. Schematic of deep neural network training (GM: gray matter, CC: cross-correlation).
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SUPPLEMENTAL FIGURE 2. Spatial normalization of 18F-Florbetaben PET in an amyloid-negative case. (A) Input 
image in individual space. (B) MRI-based spatial normalization using SPM12. (C) PET spatial normalization using a 
DNN. (D) T1 MRI template. (E) Deformation fields estimated using DNN (R: anteroposterior, G: longitudinal, B: 
mediolateral).
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SUPPLEMENTAL FIGURE 3. A patient with chronic stroke lesion. (A) T2 and (B) FLAIR MRI.
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SUPPLEMENTAL FIGURE 4. Internal validation: Bland-Altman analysis of SUVR values obtained using the 
FreeSurfer approach and spatial normalization techniques (SPM12 or DNN) from the internal 18F-Florbetaben and 18F-
Flutemetamol dataset (n=148). SPM12: Black symbols and lines. DNN: sky blue symbols and lines.
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SUPPLEMENTAL FIGURE 5. External validation: Bland-Altman analysis of SUVR values obtained using the 
FreeSurfer approach and spatial normalization techniques (SPM12 or DNN) from external 18F-Florbetaben (n=30). 
SPM12: Black symbols and lines. DNN: sky blue symbols and lines.



Frontal PCC-Precuneus

Global cortex

Lateral parietal

Lateral temporal Medial temporal

SUPPLEMENTAL FIGURE 6. External validation: Bland-Altman analysis of SUVR values obtained using the 
FreeSurfer approach and spatial normalization techniques (SPM12 or DNN) from the external 18F-Flutemetamol 
dataset (n=67). SPM12: Black symbols and lines. DNN: sky blue symbols and lines.
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SUPPLEMENTAL FIGURE 7. External validation: Bland-Altman analysis of SUVR values obtained using the 
FreeSurfer approach and spatial normalization techniques (SPM12 or DNN) from the external 18F-Florbetapir dataset 
(n=39). SPM12: Black symbols and lines. DNN: sky blue symbols and lines.



Supplementary TABLE 1. Internal validation: Pearson’s correlation and ICC analysis for SUVR of the internal 18F-Florbetaben and 18F-
Flutemetamol dataset (n=148) relative to the FreeSurfer approach  

Negative 

Internal negative  
(n=107) 

 SPM  Proposed 
 Slope y-intercept R2 ICC  Slope y-intercept R2 ICC 

Global  0.921 0.091 0.796 0.894  0.969 0.049 0.913 0.950 
Frontal  0.961 0.005 0.779 0.833  0.994 0.012 0.922 0.960 
PCC-Precuneus  0.951 0.191 0.790 0.583  0.901 0.119 0.941 0.967 
Lateral parietal  0.908 0.122 0.711 0.833  0.943 0.088 0.870 0.907 
Lateral temporal  0.840 0.141 0.724 0.771  0.88 0.156 0.902 0.943 
Medial temporal  1.005 0.135 0.550 0.007  0.801 0.273 0.662 0.527 

 

Positive 

Internal positive 
(n=41) 

 SPM  Proposed 
 Slope y-intercept R2 ICC  Slope y-intercept R2 ICC 

Global  0.809 0.251 0.820 0.777  0.946 0.119 0.940 0.962 
Frontal  0.880 0.086 0.841 0.731  0.965 0.090 0.940 0.964 
PCC-Precuneus  1.006 0.081 0.826 0.841  0.931 0.131 0.945 0.972 
Lateral parietal  0.842 0.220 0.837 0.875  0.958 0.101 0.924 0.954 
Lateral temporal  0.699 0.327 0.698 0.343  0.845 0.266 0.890 0.937 
Medial temporal  0.806 0.363 0.457 0.444  0.820 0.304 0.737 0.727 

  



Supplementary TABLE 2. External validation: Pearson’s correlation and ICC analysis for SUVR of the external 18F-Florbetaben dataset (n=30) 
relative to the FreeSurfer approach  

Negative 

18F-FBB negative  
(n=20) 

 SPM  Proposed 
 Slope y-intercept R2 ICC  Slope y-intercept R2 ICC 

Global  0.841 0.181 0.864 0.926  0.99 0.008 0.956 0.978 
Frontal  0.859 0.156 0.914 0.949  0.931 0.056 0.966 0.966 
PCC-Precuneus  0.941 0.153 0.818 0.757  0.986 0.024 0.923 0.961 
Lateral parietal  1.001 0.003 0.889 0.944  1.016 -0.010 0.967 0.981 
Lateral temporal  0.444 0.566 0.412 0.290  0.894 0.132 0.876 0.936 
Medial temporal  0.932 0.176 0.712 0.333  0.620 0.447 0.538 0.590 

 

Positive 

18F-FBB positive  
(n=10) 

 SPM  Proposed 
 Slope y-intercept R2 ICC  Slope y-intercept R2 ICC 

Global  0.860 0.154 0.873 0.771  0.975 0.049 0.973 0.988 
Frontal  0.942 -0.038 0.935 0.719  1.006 -0.062 0.976 0.960 
PCC-Precuneus  0.900 0.276 0.976 0.958  0.98 0.042 0.970 0.987 
Lateral parietal  0.724 0.393 0.721 0.638  0.964 0.074 0.967 0.984 
Lateral temporal  0.962 -0.179 0.785 0.437  0.845 0.296 0.903 0.948 
Medial temporal  0.999 0.098 0.721 0.636  1.013 0.044 0.970 0.869 

 

  



Supplementary TABLE 3. External validation: Pearson’s correlation and ICC analysis for SUVR of the external 18F-Flutemetamol (n=67) relative 
to the FreeSurfer approach  

Negative 

18F-FMM negative  
(n=43) 

 SPM  Proposed 
 Slope y-intercept R2 ICC  Slope y-intercept R2 ICC 

Global  1.196 -0.228 0.813 0.869  0.947 0.075 0.926 0.941 
Frontal  1.145 -0.171 0.774 0.853  0.832 0.203 0.902 0.936 
PCC-Precuneus  1.374 -0.343 0.772 0.364  1.065 -0.069 0.914 0.942 
Lateral parietal  1.167 -0.168 0.711 0.790  0.890 0.154 0.804 0.784 
Lateral temporal  1.023 -0.127 0.705 0.375  0.839 0.207 0.855 0.887 
Medial temporal  0.950 0.182 0.455 -0.073  0.724 0.325 0.643 0.687 

 

Positive 

18F-FMM positive  
(n=24) 

 SPM  Proposed 
 Slope y-intercept R2 ICC  Slope y-intercept R2 ICC 

Global  0.879 0.155 0.895 0.879  0.933 0.173 0.913 0.928 
Frontal  0.881 0.138 0.887 0.843  0.95 0.144 0.927 0.945 
PCC-Precuneus  0.913 0.294 0.910 0.877  0.876 0.323 0.859 0.909 
Lateral parietal  0.876 0.181 0.912 0.934  0.929 0.173 0.925 0.945 
Lateral temporal  0.806 0.108 0.765 0.365  0.879 0.253 0.895 0.940 
Medial temporal  1.023 0.091 0.845 0.735  0.827 0.278 0.895 0.919 

  



Supplementary TABLE 4. External validation: Pearson’s correlation and ICC analysis for SUVR of the external 18F-Florbetapir dataset (n=39) 
relative to the FreeSurfer approach  

Negative 

18F-FBP negative  
(n=27) 

 SPM  Proposed 
 Slope y-intercept R2 ICC  Slope y-intercept R2 ICC 

Global  1.027 -0.045 0.913 0.950  1.001 -0.009 0.911 0.953 
Frontal  0.963 0.027 0.936 0.960  0.957 0.035 0.92 0.952 
PCC-Precuneus  1.186 -0.153 0.795 0.731  0.999 -0.032 0.888 0.916 
Lateral parietal  0.975 0.021 0.785 0.884  0.923 0.091 0.757 0.873 
Lateral temporal  1.034 -0.126 0.874 0.743  0.949 0.059 0.911 0.956 
Medial temporal  0.810 0.311 0.375 0.214  0.705 0.355 0.503 0.609 

 

Positive 

18F-FBP positive  
(n=12) 

 SPM  Proposed 
 Slope y-intercept R2 ICC  Slope y-intercept R2 ICC 

Global  0.808 0.257 0.788 0.772  1.058 -0.078 0.937 0.957 
Frontal  0.755 0.339 0.693 0.723  1.031 -0.056 0.941 0.971 
PCC-Precuneus  0.928 0.197 0.887 0.903  0.852 0.249 0.923 0.927 
Lateral parietal  0.851 0.193 0.885 0.881  0.972 0.080 0.910 0.940 
Lateral temporal  0.673 0.353 0.498 0.128  0.885 0.231 0.798 0.887 
Medial temporal  1.306 -0.331 0.893 0.806  0.908 0.130 0.833 0.919 

 

 




