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ABSTRACT  

Background 

Low-dose ungated CT attenuation correction (CTAC) scans are commonly obtained with 

SPECT/CT myocardial perfusion imaging. Despite characteristically low image quality of CTAC, 

deep learning (DL) can potentially quantify coronary artery calcium (CAC) from these scans in an 

automatic manner. We evaluated CAC quantification derived with a DL model including 

correlation with expert annotations and associations with major adverse cardiovascular events 

(MACE). 

Methods 

We trained a convolutional long short-term memory DL model to automatically quantify CAC on 

CTAC scans using 6608 studies (2 centers) and evaluated the model in an external cohort of 

patients without known coronary artery disease (n=2271) obtained in a separate center. We 

assessed agreement between DL and expert annotated CAC scores. We also assessed associations 

between MACE (death, revascularization, myocardial infarction, or unstable angina) and CAC 

categories (0; 1-100; 101-400; >400) for scores manually derived by experienced readers and 

scores obtained fully automatically by DL using multivariable Cox models (adjusted for age, sex, 

past medical history, perfusion, and ejection fraction) and net reclassification index (NRI). 

Results 

In the external testing population, DL CAC was 0 in 908(40.0%), 1-100 in 596(26.2%), 100-400 

in 354(15.6%), and >400 in 413(18.2%) patients. Agreement in CAC category by DL CTAC and 

expert annotation was excellent (linear weighted Kappa 0.80), but DL CAC was obtained 

automatically in <2 seconds compared to ~2.5-minutes for expert CAC. DL CAC category was an 

independent risk for MACE with hazard ratios in comparison to CAC of zero: CAC 1-100 (2.20, 

95% CI 1.54 – 3.14, p<0.001), CAC 101-400 (4.58, 95% CI 3.23– 6.48, p<0.001), and CAC > 400 

(5.92, 95% CI 4.27 – 8.22, p<0.001). Overall NRI was 0.494 for DL CAC, which was similar to 

expert annotated CAC (0.503). 

Conclusion 

DL CAC from SPECT/CT attenuation maps has good agreement with expert CAC annotations and 

provides similar risk stratification but can be obtained automatically. DL CAC scores improved 

classification of a significant proportion of patients as compared to SPECT myocardial perfusion 

alone.  
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INTRODUCTION  

SPECT myocardial perfusion imaging (MPI) is a well-established and widely utilized non-

invasive imaging modality for the diagnosis and prognostication of coronary artery 

disease(CAD)(1,2). SPECT MPI is frequently obtained with an ungated, non-contrast computed 

tomography(CT) for attenuation correction(CTAC). SPECT/CT scanners use a common bed to 

move the patient sequentially through both scanners(3), with some models incorporating solid-

state detector arrays. CTAC allows correction for soft-tissue attenuation artifacts, leading to 

improved diagnostic accuracy of SPECT MPI(4). 

However, CTAC scans can also potentially be used to provide an anatomic assessment 

including evaluation of coronary artery calcium(CAC)(5). CAC scores are a well-established 

marker of the extent of coronary atherosclerosis(6-8). Integrating CAC scores from dedicated, 

gated CT scans with assessments of myocardial perfusion can be used to improve the diagnostic 

accuracy of SPECT(7) and PET MPI(9). Additionally, CAC from dedicated ECG-gated scans can 

provide incremental risk stratification when combined with SPECT MPI perfusion(10,11). 

However, CTAC scans are typically acquired with lower radiation doses and without cardiac 

gating, leading to worse image quality and often thicker slices compared to dedicated CAC scans, 

which may influence CAC scores(12). While it is possible to quantify CAC manually from CTAC 

scans, this can be time consuming and is not commonly performed. It is also possible to visually 

estimate CAC(13,14), but visual estimation is inherently subjective and requires experience to be 

performed accurately. Deep learning(DL) has been applied to image segmentation, including 

models for automated measures of CAC primarily from dedicated CAC scans. We developed a 

novel convolutional long short-term(ConvLSTM) DL model which integrates adjacent image 

slices, mimicking the clinical approach of scrolling between slices, to quantify CAC more 
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efficiently. We evaluated the correlation between DL and expert annotated CAC scores in patients 

undergoing SPECT/CT MPI. We then evaluated the prognostic significance of DL and expert 

annotated CAC scores for major adverse cardiovascular events (MACE), including incremental 

risk stratification over traditional SPECT MPI parameters, in an external population imaged with 

solid-state SPECT/CT MPI.  

 

METHODS 

Study Population 

Patients who underwent SPECT/CT MPI with CTAC at one of two centers (Yale and 

Cardiovascular Imaging Technologies) were used to train the ConvLSTM model. Patients who 

underwent SPECT/CT MPI from a third center (University of Calgary) were used as an external 

testing cohort. Patients without CTAC were excluded. For external testing, patients with a history 

of CAD (n=673), defined as previous myocardial infarction or revascularization with either 

percutaneous coronary intervention or coronary artery bypass grafting (15), were excluded. Details 

of clinical data acquisition are available in the supplement. The study protocol complied with the 

Declaration of Helsinki. The study was approved by the institutional review board at all sites. To 

the extent allowed by data sharing agreements and institutional review board protocols, data and 

codes used in this manuscript will be shared upon written request. 

Image Acquisition and Interpretation  

Details of MPI and CTAC image acquisition and interpretation are available in the 

supplement(16). Additional details of the training population are in Supplemental Table 1.  
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Annotation of datasets for training, internal testing, and external testing 

Two separate cohorts (each comprising of 10% of the total number available scans, n=661) 

were sampled out of the initial training cohort with equal number of cases in each CAC score 

category. One of those cohorts was held out as a validation set during training, and the model 

parameters were tuned to this set, while the second was held out for internal testing. 

All the training, internal validation, internal testing, and external testing cases have been 

annotated on-site by two expert readers with at least 5 years of experience in CAC scoring using 

dedicated quantitative software (QPS Suite, Cedars Sinai Medical Center). DL annotations were 

processed using a custom-developed pipeline and both expert and DL annotated CAC scores were 

calculated according to the standard clinical algorithm(6), with additional details in the 

supplement.   

The DL and expert annotated cases were categorized based on the CAC score (category 1: 

CAC score = 0, category 2: CAC score 1-100, category 3: CAC score 101-400, category 4: CAC 

score >400).  

Model Architecture 

The model architecture is outlined in Figure 1. The model was built using PyTorch version 

3.7.4. We automatically segmented CAC from CTAC using a cascaded system of convLSTM(17). 

This system consists of two networks, first of which is trained for segmentation of the heart 

silhouette and the second network was trained to segment the CAC. The heart convLSTM was 

trained on a subset of training data with expert reader annotations from QFAT software(18). A 

supervised learning regime was used for both segmentation networks. The heart mask was applied 

to final CAC prediction to reduce any spurious bone overcalling or calcification in non-cardiac 

regions. To imitate physician approach of aggregating information from adjacent slices, three 
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slices were provided to both networks as input(19). This network architecture was shown 

previously to have significantly reduced memory consumption and almost 2x faster inference 

times, with similar accuracy, compared to U-Net on a typical CPU (17). Case examples with expert 

and DL annotations are shown in Figure 2. 

Statistical Analysis 

Details in supplement (20,21). The Proposed Requirements for Cardiovascular Imaging-

Related Machine Learning Evaluation (PRIME)(22) checklist is shown in Supplemental Table 2. 

Improvement in likelihood ratio chi-square and area under the receiver operating characteristic 

curve were also assessed. 

 

RESULTS 

Population Characteristics 

In total, 6608 patients were included in the training population. The external testing 

population included 2271 patients, with population characteristics by DL CAC category shown in 

Table 1. Based on the DL model results, CAC was 0 in 908 (40.0%) patients, CAC 1-100 in 596 

(26.2%) patients, CAC 100-400 in 354 (15.6%) patients, and >400 in 413 (18.2%) patients.  

DL vs Expert Annotated CAC 

DL-CTAC were obtained fully automatically in less than 2 seconds per scan (time required 

to load the study, select slices, and annotate lesions for the entire CTAC volume). This compares 

to approximately 5 minutes for expert annotations which includes time required to load the study, 

review all slices, and annotate lesions on selected slices. Figure 3 outlines concordance between 

DL CAC and expert annotation CAC categories. The category-wise agreement (Figure 3) between 

DL CAC and expert CAC was excellent (linear weighted Kappa 0.80). There was also good pair-
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wise correlation between DL CAC and expert annotated CAC as continuous measures (r2 = 0.693, 

p<0.001, Supplemental Figure 1). Summary of categorization by visual CAC estimation compared 

to DL and expert annotated CAC is shown in Supplemental Table 3. Review of discrepant cases 

are shown in the supplemental results and Supplemental Figure 2.  

Associations with MACE 

  During median follow-up of 2.8 (IQR 1.7 – 4.1) years, 320 patients experienced at least 

one MACE. Supplemental Table 4 outlines patient characteristics in patients who experienced 

MACE compared to those who did not. Patients who experienced MACE had higher median CAC 

(178 vs. 11, p<0.001) and were more likely to have CAC > 400 (35.9% vs. 15.3%, p<0.001). 

Patients who experienced MACE were also older (median 70.7 vs 66.1, p<0.001) and more likely 

to have a history of diabetes (31.6% vs 22.1%, p<0.001) in addition to higher rates of other 

cardiovascular risk factors. 

Increasing DL CAC and expert CAC category were associated with an increased risk of 

MACE (Figure 4). Compared to patients with DL CAC of 0, patients with scores 1-100 (unadjusted 

hazard ratio [HR] 2.20, 95% CI 1.54 – 3.14), CAC 101-400 (unadjusted HR 4.58, 95% CI 3.23 – 

6.48), and CAC > 400 (5.92, 95% CI 4.27 – 8.22) were at significantly increased risk of MACE. 

The risk was similar across categories of expert annotated CAC categories. Kaplan-Meier survival 

curves stratified by visually estimated CAC are shown in Supplemental Figure 3. 

Associations with MACE in the multivariable model are outlined in Table 2. DL CAC 

category continued to be associated with increased risk of MACE in adjusted analyses for patients 

with CAC 1-100 (adjusted HR 1.90, 95% CI 1.32 – 2.73, p<0.001), CAC 101-400 (adjusted HR 

3.32, 95% CI 2.29 – 4.81, p<0.001), and CAC > 400 (adjusted HR 3.58, 95% CI 2.47 – 5.19, 

p<0.001) compared to CAC 0. This risk stratification was similar to the risk associated with mild 
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stress perfusion abnormalities (stress total perfusion deficit [TPD] 5-10%, adjusted HR 1.70, 95% 

CI 1.19 – 2.44, p=0.004) and moderate to severe stress perfusion abnormalities (stress TPD > 10%, 

adjusted HR 4.73, 95% CI 3.02 – 7.46, p<0.001). The risk associated with expert annotated CAC 

categories was similar to DL categories (CAC 1-100 adjusted HR 2.20, 95% CI 1.52 – 3.19, 

p<0.001; CAC 101-400 adjusted HR 3.57, 95% CI 2.45 – 5.20, p<0.001; and CAC > 400 adjusted 

HR 4.05, 95% CI 2.78 – 5.90, p<0.001).  

Associations with primary outcome were similar if patients who underwent early 

revascularization were excluded (DL CAC 1-100: adjusted HR 2.00, 95% CI 1.34 – 2.94, p=0.001; 

DL CAC 101-400: adjusted HR 2.98, 95% CI 1.97 – 4.49, p<0.001; DL CAC > 400: adjusted HR 

3.07, 95% CI 2.03 – 4.66, p<0.001). Results were also similar for associations with death or 

myocardial infarction as well as associations with death (Supplemental Table 5). 

Net Reclassification 

We assessed patient reclassification with the addition of CAC categories to all other 

components of the multivariable model outlined in Table 2. The results of the NRI analysis are 

shown in Figure 5. Both DL CAC and expert annotated CAC significantly improved model fit and 

AUC (all p<0.01), with additional details in Supplemental Table 6. DL CAC categories improved 

risk-classification of patients with events (event NRI 0.230, 95% CI 0.142 to 0.314), patients 

without events (non-event NRI 0.264, 95% CI 0.204 to 0.309), and overall patient classification 

(overall NRI 0.494, 95% CI 0.363 to 0.607). Event, non-event, and overall NRI was similar for 

both measures as shown in Supplemental Table 6. Additionally, overall NRI was lower for visually 

estimated CAC (overall NRI 0.409, 95% CI 0.278 to 0.537). 
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DISCUSSION 

We demonstrated that DL derived CAC scores from CTAC imaging could be used to 

stratify risk of MACE, with scores derived rapidly (~2 seconds) in a completely automated 

manner. There was good agreement between CAC score categorization by DL and expert 

annotations as evaluated in a large external population with different characteristics. Lastly, we 

demonstrated that DL CAC categories provided additional prognostic information over clinical 

information and quantitative assessment of perfusion and ventricular function, with improved 

classification of a quarter of patients who experienced MACE and a quarter of patients who did 

not experience MACE. DL CAC scores from CTAC could be utilized clinically to significantly 

improve risk stratification in patients undergoing SPECT/CT MPI without the need for physician 

or technician time for manual annotation.  

We demonstrated that the convLSTM model was able to quantify CAC from CTAC 

imaging, with excellent agreement with and similar risk stratification to expert annotated CAC. 

Importantly, the model was trained with data from two sites which have different CTAC imaging 

protocols compared to the external testing site. This has not been commonly performed in the 

existing literature and provides evidence that the convLSTM and associated DL CAC scores 

should be generalizable to a variety of acquisition protocols. We also previously demonstrated 

that this approach has faster inference times compared to a U-net model, and therefore should not 

negatively impact clinical workflow. Another major strength of the current study is the large 

number of expert annotations performed on CTAC scans, which are not typically performed 

clinically. This allowed us to evaluate agreement with expert CAC scores more precisely and 

robustly compare the risk stratification provided by the two measures, including their 

improvements for risk prediction of traditional SPECT/CT variables.  
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Several other approaches to CAC scoring with artificial intelligence have been applied 

previously (23-27). The agreement between CAC categories in our study (Cohen’s kappa 0.80) is 

similar to agreement demonstrated using dedicated ECG-gated scans with other DL 

approaches(25). Isgum et al. developed a convolutional neural network which quantified CAC 

from low-dose CT scans obtained for lung cancer screening(26). When the same model was 

applied in patients undergoing PET MPI, the agreement between manual and automated scoring 

in CTAC was lower compared to the present study (linear weighted kappa 0.70 to 0.74) and was 

tested in a much smaller patient population (n=133)(28). Sartoretti et al. also demonstrated good 

agreement between expert annotated and DL CAC scores in a cohort of 56 patients undergoing 

SPECT/CT MPI(29). Importantly, these methods demonstrate similar rates of agreement as 

would be expected between two expert readers scoring CAC from low-dose CT scans(30). High 

noise levels and partial volume effects impact the appearance of CAC lesions(12), leading to 

frequent false negative physician interpretations as evidenced by our finding that physician 

interpretation of the presence or absence of calcium was discrepant in ~10% of patients. 

Additionally, we identified cases where DL annotations differed with expert annotations for 

calcium in coronary ostia vs. adjacent aorta and for valvular calcification vs. adjacent coronary 

arteries.  

While agreement between DL and expert CAC categories is important by itself, we 

demonstrated that significant improvements in risk stratification are possible with DL annotated 

CAC scores. We demonstrated that increasing DL CAC category was associated with an 

increased risk of MACE, similar to recent findings from Zeleznik et al. in both symptomatic and 

asymptomatic populations(27). However, in the present study we demonstrated that the risk 

associated with each category was similar to the corresponding category of expert annotated 
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CAC. Additionally, both DL and expert reader CAC categories were significantly associated 

with MACE after correcting for relevant confounders including age, sex, medical history, and 

SPECT MPI results. Lastly, we demonstrated that improvement in patient risk classification with 

DL CAC was similar to that achieved by expert annotated categories of CAC, with both being 

higher than is possible with subjective expert visual estimates. Importantly, visually estimated 

CAC was performed at the time of clinical reporting and was informed by clinical history and 

perfusion findings. Improved classification compared to expert visual estimate is particularly 

relevant since nuclear cardiology laboratories more frequently rely on this method for CAC 

classification given the time required for expert annotation. While Dekker et al. found that DL 

CAC scores had a NRI of 0.13 in patients undergoing PET MPI (31), in our study ~1 in 4 

patients who experienced MACE would have their risk correctly reclassified, with a similar 

proportion of patients who did not experience MACE correctly re-classified. Therefore, this 

approach could be applied to automatically improve risk classification in a substantial proportion 

of patients.  

Our work adds to a growing body of literature supporting integration of CAC scores 

when interpreting MPI. Chang et al. demonstrated that quantitative CAC combined with SPECT-

MPI findings provided independent and complementary prognostic information among a cohort 

of 1,126 patients without prior CAD(11). Engbers et al. evaluated combined Agatston CAC score 

and SPECT-MPI in 4,897 symptomatic patients without prior CAD(10), demonstrating a 

stepwise increase in MACE with increasing CAC score among patients with both normal and 

abnormal perfusion. Visually estimated CAC(13) can also provide risk stratification in patients 

undergoing SPECT/CT MPI (14). However, in the present work we demonstrate that the 
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improvement in risk classification is higher with DL CAC, which are rapidly and automatically 

derived from SPECT/CT attenuation maps.  

Our study has a few important limitations. CT attenuation imaging was utilized clinically 

to visually assess coronary calcification, and knowledge of CAC can influence patient 

management(32). However, results were similar for associations with hard outcomes, and this 

would be expected to, if anything, decrease the associations between CAC and hard outcomes. 

Additionally, it is unknown whether associations with outcomes would differ significantly 

between CAC from dedicated gated studies compared to CAC; however, previous studies have 

demonstrated close agreement between the measures(33). We trained the ConvLSTM model using 

scans with different acquisition parameters compared to the external testing population. More 

precise quantification of CAC may be possible if the model was trained with similar data, but this 

also suggests that the model should be broadly generalizable. The model was trained to 

differentiate coronary from non-coronary calcifications using expert annotations.  However, some 

lesions are challenging for expert readers to annotate (such as ostial calcium compared to adjacent 

aortic calcifications) and the DL model would also be expected to have difficulties with these 

areas. While the DL method provides fully automated results, they will still need to be verified by 

a physician. The training population included patients with previous revascularization; however, 

we excluded patients with known CAD from the external testing population and dedicated studies 

are needed to evaluate the model’s ability to differentiate CAC from coronary stents. Lastly, we 

are not able to ascertain cardiovascular mortality in this large, retrospective population. 
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CONCLUSION 

DL CAC derived from SPECT/CT attenuation maps has good agreement with expert CAC 

annotations. DL and expert annotated CAC are associated with MACE, but DL scores can be 

obtained automatically in a few seconds. DL CAC scores can be quantified automatically 

following SPECT/CT MPI, without impeding clinical workflow, in order to improve classification 

of a significant proportion of patients. 
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KEY POINTS 

QUESTION: Do coronary artery calcium scores quantified automatically with a deep learning 

model provide similar risk stratification to expert annotated scores?  

PERTINENT FINDINGS: In this retrospective multicenter study, with dedicated training and 

external testing populations, DL CAC scores good agreement with expert annotated scores. DL 

and expert annotated CAC are associated with MACE, but DL scores can be obtained 

automatically in a few seconds. 

IMPLICATIONS FOR PATIENT CARE: DL CAC scores could be used to improve risk 

prediction of a significant proportion of patients, without impeding clinical workflow. 
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FIGURES 

Figure 1: Outline of model architecture. The convolutional long short-term memory 

(ConvLSTM) includes a network trained to segment coronary artery calcium (CAC) and a 

second network for segmentation of the heart which limits CAC scoring. The softmax argmax 

function normalizes output of the network to expected probabilities. The model identifies 

coronary calcium (red) and non-coronary calcium (green) within the heart mask.   
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Figure 2: Examples of expert compared to deep learning (DL) coronary artery calcium (CAC) 

scores. The model identifies coronary calcium (red) as well as non-coronary calcium.  In case 1, 

expert and DL annotations identified similar left circumflex CAC (red) as well as ascending 

aorta calcium (green). No CAC was identified by either expert or DL scoring in case 2. In case 3, 

expert and DL annotations identified similar right coronary artery CAC (red) as well as mitral 

annular calcification (green).  BMI – body mass index, MACE – major adverse cardiovascular 

events.  
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Figure 3: Concordance matrix between deep learning (DL) and expert coronary artery calcium 

(CAC) categories in the external testing population.  CI - confidence interval.
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Figure 4. Kaplan-Meier survival curves for major adverse cardiovascular events (MACE). Increasing coronary artery calcium (CAC) 

category was associated with increasing risk of MACE for deep learning and expert annotated CAC scores on SPECT/CT attenuation 

maps. 



22 
 

Figure 5: Results of the net-reclassification analysis.  We assessed the addition of coronary artery calcium (CAC) categories to the full 

multivariable model outlined in Table 2.  
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TABLES 

 

 

CAC < 1 

n = 908, 40.0% 

CAC 1-100 

n = 596, 26.2% 

CAC 100 – 400 

n = 354, 15.6% 

CAC > 400 

n = 413, 18.2% p-value 

Age, median (IQR) 
61.9(55.1, 69.3) 66.4(57.3, 74.2) 70.8(65.3, 77.3) 72.3(66.3, 77.9) <0.001 

Male, n(%) 
368(40.5%) 293(49.2%) 200(56.5%) 286(69.2%) <0.001 

BMI, median (IQR) 
29.3(25.1, 32.6) 30(25.8, 34.4) 29.3(25.4, 32.9) 29.4(25.2, 32.4) 0.048 

Past Medical History, n(%)      

 Hypertension 
423(46.6%) 355(59.6%) 240(67.8%) 268(64.9%) <0.001 

 Diabetes 
136(15.0%) 146(24.5%) 111(31.4%) 140(33.9%) <0.001 

Dyslipidemia 
334(36.8%) 246(41.3%) 187(52.8%) 236(57.1%) <0.001 

Family history 
453(49.9%) 305(51.2%) 155(43.8%) 205(49.6%) 0.20 

Smoking 
67(7.4%) 35(5.9%) 21(5.9%) 27(6.5%) 0.67 

 

Table 1. Patient characteristics according to coronary artery calcification (CAC) category determined by the deep-learning model. 

BMI – body mass index, IQR – interquartile range.  
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 Unadjusted HR 

(95% CI) p-value 

Adjusted HR 

(95% CI) p-value 

DL CAC Categories     

CAC <1  Reference -- Reference -- 

CAC 1 – 100 2.20(1.54–3.14) <0.001 1.90(1.32–2.73) <0.001 

CAC 101 – 400 4.58(3.23–6.48) <0.001 3.32(2.29–4.81) <0.001 

CAC > 400 5.92(4.27–8.22) <0.001 3.58(2.47–5.19) <0.001 

Age (per 10 years) 1.37(1.24-1.52) <0.001 1.12(1.00–1.26) 0.046 

Male 1.75(1.39-2.19) <0.001 1.11(0.86–1.43) 0.418 

BMI (per kg/m2) 0.98(0.96–1.00) 0.021 0.99(0.97–1.01) 0.157 

Hypertension 1.22(0.98-1.53) 0.079 0.98(0.77–1.25) 0.862 

Diabetes 1.60(1.26-2.02) <0.001 1.28(0.99–1.64) 0.060 

Dyslipidemia 1.34(1.08-1.67) 0.008 1.00(0.78–1.27) 0.997 

Family history 0.82(0.65-1.02) 0.071 0.90(0.72–1.13) 0.353 

Smoking 1.18(0.81-1.72) 0.389 1.18(0.80–1.74) 0.415 

Stress AC TPD Category     

TPD < 1% Reference -- Reference -- 

TPD 1 - < 5% 1.28(0.96–1.71) 0.097 1.22(0.90–1.65) 0.200 

TPD 5 - <10% 2.06(1.46–2.90) <0.001 1.70(1.19–2.44) 0.004 

TPD ≥ 10% 7.52(5.43–10.4) <0.001 4.73(3.02–7.46) <0.001 

Rest AC TPD 1.07(1.05–1.08) <0.001 1.00(0.97–1.03) 0.836 

Stress LVEF 0.97(0.97–0.98) <0.001 0.99(0.98–1.00) 0.293 

Table 2: Associations with major adverse cardiovascular events.  AC – attenuation correction, BMI 

– body mass index, CAC- coronary artery calcium, DL – deep learning, HR – hazard ratio, LVEF 

– left ventricular ejection fraction, TPD – total perfusion deficit. 
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Graphical Abstract 

 



SUPPLEMENTAL MATERIAL 

Supplemental Methods: 

Clinical Data: 

Past medical history and family history were prospectively collected in the Alberta Provincial 

Project for Outcome Assessment in Coronary Heart Disease (APPROACH) database. Follow up 

for MACE in the external testing population was obtained through the Discharge 

Abstracts/National Ambulatory Care Reporting system and Alberta Vital Statistics. MACE was 

defined as revascularization, non-fatal MI, admission for unstable angina, or all-cause mortality.  

Myocardial Perfusion Image Analysis  

Quality control for MPI was performed by experienced core laboratory technologists without 

knowledge of the clinical data. Stress and rest images were analyzed by Quantitative Perfusion 

SPECT (QPS) software (Cedars-Sinai Medical Center, Los Angeles, CA) as previously 

described to quantify total perfusion deficit (TPD) (16). TPD is a continuous measure which 

incorporates both the extent and severity of perfusion defects (16). Attenuation-corrected (AC) 

TPD was used for all analyses. Left ventricular ejection fraction (LVEF) was calculated from post-

stress gated images. 

CTAC Image Acquisition and Interpretation  

At the University of Calgary, CTAC was performed using a built in CT scanner (Lightspeed VCT 

64, GE, Boston, USA). CTAC imaging was performed after the rest acquisition during end-

expiratory breath hold with no ECG-gating, in helical mode with a slice thickness of 5-mm, tube 

voltage of 120 kVp and 20 mA, using a 512x512 matrix. CTAC images were reviewed at the time 

of SPECT/CT MPI reporting and coronary calcium was graded visually as: absent, equivocal, 

present or extensive. Extensive calcification was defined as visually estimated CAC greater than 

400. For comparisons with expert and DL annotated CAC scores, equivocal was combined with 



present due to the low number of patients with equivocal visual CAC (n=28). Importantly, the 

expert visual estimates were informed by clinical information and perfusion findings. Details for 

the training population are available in Supplemental Table 1.  

Expert CAC Annotations 

The Expert reader annotation process included pixel by pixel calcification assignment into 

coronary calcification or non-coronary calcification using Cardiac Suite (Cedars Sinai Medical 

Center, Los Angeles, CA).  Coronary calcium was annotated according to the involved vessel as 

LAD, LCX, LM and RCA. Non coronary calcification included calcification in the mitral valve, 

ascending aorta, descending aorta, aortic arch, aortic valve, tricuspid valve, pulmonary valve and 

pericardium. The DL model used these 2 categories to distinguish between coronary and non-

coronary calcifications. CAC was quantified as previously described using the weighted sum of 

lesions with a density above 130 Hounsfield units, and multiplying the area of calcium by a factor 

related attenuation(6). 

Model architecture 

The model was built using PyTorch. We automatically segmented CAC from CTAC using a 

cascaded system of convLSTM(17). This system consists of two networks, first of which is trained 

for segmentation of the heart silhouette and the second network was trained to segment the CAC. 

The heart convLSTM was trained on a subset of training data with expert reader annotations for 

QFAT software(18). A supervised learning regime was used for both segmentation networks.  

The input to the network consists of a CT slice(single slice input) along with the previous and next 

slices (Sequential input). This process was completely automated and there were no exclusions. 

The convolutional LSTM block takes in the sequential input to imitate the radiologist approach of 

sliding across various slices after looking at a single slice of interest. The output of the network 



consists of an attention weighted combination of the results from the sequential input and the single 

slice of interest (17). Softmax function is applied on the output to classify each pixel as 

background, coronary calcification or non-coronary calcification.   

The heart mask was applied to the final CAC prediction to reduce any spurious bone overcalling 

or calcification in non-cardiac regions. In order to imitate the radiologist approach of aggregating 

information from adjacent slices, multiple slices were provided to both the networks as input and 

an attention map was generated by the convLSTM. The segmentation uses the attention weighted 

combination of the results from the sequential input and the single slice of interest which is later 

passed on to the softmax layer for final lesion mask creation. To counter the large class imbalance 

between CAC and background, we used subset sampling of the majority class as well as focal 

loss(19) as cost function between the ground truth expert reader annotation and network generated 

mask. The network was shown previously to have significantly reduced memory consumption for 

training and almost 2x faster inference times on a typical CPU(17). 

Statistical Analysis 

Continuous variables were summarized as mean (standard deviation [SD]) if normally distributed 

and compared using a Student’s t-test. Continuous variables that were not normally distributed 

were summarized as median (interquartile range [IQR]) and compared using a Mann-Whitney U-

test. Associations with MACE were assessed with univariable and multivariable Cox proportional 

hazards analyses. Net reclassification index (NRI) was used to assess the additive prognostic utility 

of DL and expert annotated CAC. NRI was calculated when added to all other components of the 

multivariable model including: age, sex, past medical history, stress and rest AC TPD, and LVEF. 

Improvement in likelihood ratio chi-square (as a measure of model fit) and improvement in area 

under the receiver operating characteristic curve were also assessed. We also performed a 



sensitivity analysis evaluating associations with hard adverse outcomes (death or MI) as well as 

an analysis in which patients who underwent early revascularization (revascularization within 90 

days of SPECT/CT MPI) were excluded (n=52) since this may alter long-term outcomes (20,21). 

All analyses were performed using Stata/IC version 13.1 (StataCorp, College Station, Texas, USA) 

and R (version 4.1.2). 

 

 

SUPPLEMENTAL RESULTS 

Review of Discrepant Cases 

There were 142 cases with DL CAC of 0 with expert annotated CAC >0, which were reviewed 

manually to determine the most likely cause. This review identified image noise (n=125, 88%), 

confusion with valve-related calcium (n=13, 9%) or confusion with aortic calcification (n=10, 7%) 

as contributing to these cases. There were 196 cases with DL CAC >0 with expert annotated CAC 

of 0, which were reviewed manually to determine the most likely cause. This review identified 

image noise (n=159, 81%), confusion from pacing devices (n=19, 10%), confusion with valve-

related calcium (n=9, 5%), confusion with aortic calcification (n=9, 5%), one case of calcified 

pericardium and one case of calcified lymph nodes as contributing to these cases. 

 

  



SUPPLEMENTAL FIGURES 

Supplemental Figure 1: 

 

Supplemental Figure 1: Pair-wise correlation between DL CTAC and expert annotations. 

 

  



Supplemental Figure 2 

Supplemental Figure 2: Case examples of discrepant expert and deep learning (DL) annotations.  

In panel A, there is a small area of calcification identified by the expert in the right coronary artery 

(red) which was not identified by DL. In panel B, there is calcification that was annotated as 

belonging to the left circumflex by the expert reader (red) but attributed to mitral annular 

calcification by DL (green). In Panel C, there is aortic valve calcification noted by expert reader 

and DL (green), but also a small area of calcification noted in the RCA (red) which was annotated 

only by DL. In panel D, there is an area of calcification attributed to the left main artery by the 

expert reader (red) and the ascending aorta by DL (light blue). 

 

  



Supplemental Figure 3 

 

Supplemental Figure 3. Kaplan-Meier survival curves for major adverse cardiovascular events 
(MACE).  Increasing visual coronary artery calcium estimate was associated with increasing risk 
of MACE. Equivocal and present were considered as a single category due to the low number of 
patients with equivocal visually estimated coronary artery calcium (n=28). 

 

  



Supplemental Table 1: 

 
Training 

Population 
N = 6608 

Site 1 
n = 1827 

Site 2 
n = 4781 p-value 

External 
Population 

N=2271 

Age, Median (IQR) 63 (55, 72) 61 (53, 69) 64 (56, 73) <0.001 69 (58, 74) 

Male 3447 (52%) 796 (44%) 2651 (55%) <0.001 1147 (51%) 

Hypertension 4397 (68%) 1266 (70%) 3131 (67%) 0.038 1286 (57%) 

Diabetes 1757 (27%) 487 (27%) 1270 (27%) 0.7 533 (23%) 

Previous PCI 550 (8.5%) 4 (0.2%) 546 (12%) <0.001 0 (0%) 

Previous CABG 273 (4.2%) 0 (0%) 273 (5.8%) <0.001 0 (0%) 

Expert CAC, median (IQR) 52 (0, 480) 13 (0, 179) 88 (0, 602) <0.001 15 (0, 208) 

Expert CAC Category    <0.001  

CAC = 0 2196 (33%) 666 (36%) 1530 (32%)  962 (42%) 

CAC 1-100 1508 (23%) 585 (32%) 923 (19%)  548 (24%) 

CAC 101-400 1096 (17%) 281 (15%) 815 (17%)  362 (16%) 

CAC >400 1808 (27%) 295 (16%) 1513 (32%)  399 (18%) 

Slice Thickness (mm)    <0.001  

2.5 4511 (68%) 0 (0%) 4511 (94%)  0 (0%) 

3 1827 (28%) 1827 (100%) 0 (0%)  0 (0%) 

5 270 (4.1%) 0 (0%) 270 (5.6%)  2271 (100%) 

Kilovolt potential    <0.001  

110 1 (<0.1%) 1 (<0.1%) 0 (0%)  0 (0%) 

120 6401 (97%) 1620 (89%) 4781 (100%)  2271 (100%) 

130 201 (3.0%) 201 (11%) 0 (0%)  0 (0%) 

Unknown 5 5 0   

Tube current, median (IQR) 60 (60, 246) 416 (331, 568) 60 (60, 60) <0.001 20 (20, 20) 
Supplemental Table 1: Population characteristics for the training populations. CABG – coronary 

artery bypass grafting, CAC – coronary artery calcium, IQR – interquartile range, PCI – 

percutaneous coronary intervention.  



Supplementary Table 2.  
 

Section  Checklist item  Location in the manuscript  

1  Designing the study plan    

1.1  Describe the need for the application of machine learning to the 
dataset   

Page 3, par 2  

1.2  Describe the objectives of the machine learning analysis  Page 4, par 1  

1.3  Define the study plan   Pages 6 and 7 

1.4  Describe the summary statistics of baseline data   Page 7 and 8, Table 1  

1.5  Describe the overall steps of machine learning workflow   Figure 1 and page 6 and 7  

2  Data standardization, feature engineering, and learning    

2.1  Describe how the data were processed in order to make it clean, 
uniform, and consistent  

Figure 1 and page 6 and 7  

2.2  Describe whether variables were normalized and if so, how this was 
done  

N/A  

2.3  Provide details on the fraction of missing values (if any) and imputation 
methods  

No missing values  

2.4  Perform and describe feature selection process  N/A 

2.5  Identify and describe the process to handle outliers if any  N/A 

2.6  Describe whether class imbalance existed, and which method was 
applied to deal with it  

Page 6 and 7  

3  Selection of Machine Learning Model    

3.1  Explicitly define the goal of the analysis e.g., regression, classification, 
clustering  

Page 6 and 7 

3.2  Identify the proper learning method used (e.g., supervised, 
reinforcement learning etc.) to address the problem  

Page 6 and 7 

3.3  Provide explicit details on the use of simpler, complex, or ensemble 
models  

N/A 

3.4  Provide the comparison of complex models against simpler models if 
possible  

N/A 

3.5  Define ensemble methods, if used  N/A 

3.6  Provide details on whether the model is interpretable  Page 6 and 7 



4  Model Assessment    

4.1  Provide a clear description of data used for training, validation, and 
testing  

Figure 1, page 6   

4.2  Describe how the model parameters were optimized (e.g., optimization 
technique, number of model parameters etc.)  

N/A  

5  Model Evaluation    

5.1  Provide the metric(s) used to evaluate the performance of the model  Pages 10-12  

5.2  Define the prevalence of disease and the choice of the scoring rule 
used   

Page 6 and 8 

5.3  Report any methods used to balance the numbers of subjects in each 
class  

Page 6 and 7  

5.4  Discuss the risk associated to misclassification  Page 9 and 10  

6  Best Practices for Model Replicability     

6.1  Consider sharing code or scripts on public repository with appropriate 
copyright protection steps for further development and non-commercial 
use  

Page 4  

6.2  Release data dictionary with appropriate explanation of the variables  N/A  

6.3  Document version of all software and external libraries  Page 7  

7  Reporting limitations, biases and alternatives    

7.1  Identify and report the relevant model assumptions and findings  Page 12 

7.2  If well-performing models were tested on a hold-out validation dataset, 
detail the data of that validation set with the same rigor as that of the 
training dataset (see section 2 above)  

N/A  

Supplementary Table 2. Proposed Requirements for Cardiovascular Imaging-Related Machine 
Learning Evaluation (PRIME) Checklist  
 

  



Supplemental Table 3: 

 Deep Learning Coronary Artery Calcium Score 

Visual Estimate 0 1-100 101-400 >400 

Absent 623 (27.4%) 145 (6.4%) 17 (0.7%) 14 (0.6%) 

Equivocal/Present 281 (12.4%) 429 (18.9%) 260 (11.4%) 123 (5.4%) 

Extensive 4 (0.2%) 22 (1%) 77 (3.4%) 276 (12.2%) 

 Expert Coronary Artery Calcium Score 

Visual Estimate 0 1-100 101-400 >400 

Absent 740 (32.6%) 53 (2.3%) 2 (0.1%) 4 (0.2%) 

Equivocal/Present 219 (9.6%) 478 (21%) 279 (12.3%) 117 (5.2%) 

Extensive 3 (0.1%) 17 (0.7%) 81 (3.6%) 278 (12.2%) 

 

Supplemental Table 3: Classification by visually estimated coronary artery calcification compared 

to deep-learning or expert annotated coronary artery calcium score. Equivocal and present were 

considered as a single category due to the low number of patients with equivocal visually estimated 

coronary artery calcium (n=28). 

  



Supplemental Table 4 

 No MACE 
n=1951 

MACE 
n=320 

p-value 

DL CAC, median (IQR) 11.1 (0, 151.0) 178.0 (25.4, 851.9) <0.001 

DL CAC Categories    

   CAC <1  856 (43.9%) 52 (16.3%) <0.001 

   CAC 1 – 100 524 (26.9%) 72 (22.5%) <0.001 

CAC 101 – 400 273 (14.0%) 81 (25.3%) <0.001 

CAC > 400 298 (15.3%) 115 (35.9%) <0.001 

Age, median (IQR) 66.1 (58.1, 73.6) 70.7 (61.4, 77.2) <0.001 

Male, n(%) 946 (48.5%) 201 (62.8%) <0.001 

BMI, median (IQR) 29.8 (25.5, 33.1) 29.1 (24.9, 32.5) 0.069 

Past Medical History, n(%)    

   Hypertension 1092 (56.0%) 194 (60.6%) 0.12 

   Diabetes 432 (22.1%) 101 (31.6%) <0.001 

Dyslipidemia 844 (43.3%) 161 (50.3%) 0.019 

Family history 978 (50.1%) 140 (43.8%) 0.029 

Smoking 120 (6.2%) 30 (9.4%) 0.025 

Stress AC TPD, median (IQR) 2.4 (0.8, 5.2) 6.2 (2.5, 13.9) <0.001 

Stress AC TPD Category    

Stress AC TPD < 1% 555 (28.4%) 36 (11.3%) <0.001 

Stress AC TPD 1 - < 5% 889 (45.6%) 109 (34.1%) <0.001 

Stress AC TPD 5 - <10% 337 (17.3%) 65 (20.3%) <0.001 

Stress AC TPD ≥ 10% 170 (8.7%) 110 (34.4%) <0.001 

Rest AC TPD, median (IQR) 0 (0, 0.6) 0.4 (0, 3.0) <0.001 

Stress LVEF, median (IQR) 67 (59, 74) 61 (51, 71) <0.001 

Supplemental Table 4. Patient characteristics in patients who experienced major adverse 

cardiovascular events (MACE) compared to those who did not. AC – attenuation correction, BMI 

– body mass index, CAC – coronary artery calcium, DL – deep learning, IQR – interquartile range, 

LVEF – left ventricular ejection fraction, TPD – total perfusion deficit. 

  



Supplemental Table 5: 

 Death or myocardial infarction Death 

 Adjusted HR 
 (95% CI) 

p-value Adjusted HR 
 (95% CI) 

p-value 

DL Categories     

CAC <1  Reference Reference Reference Reference 

CAC 1 – 100 1.67 (1.09 – 2.55) 0.018 1.53 (0.95 – 2.45) 0.078 

CAC 101 – 400 2.38 (1.53 – 3.71) <0.001 2.22 (1.37 – 3.60) 0.001 

CAC > 400 2.55 (1.64 – 3.97) <0.001 2.30 (1.42 – 3.74) 0.001 

Expert Categories     

CAC <1  Reference Reference Reference Reference 

CAC 1 – 100 1.52 (0.98 – 2.35) 0.059 1.43 (0.88 – 2.31) 0.147 

CAC 101 – 400 2.19 (1.42 – 3.39) <0.001 2.06 (1.28 – 3.30) 0.003 

CAC > 400 2.55 (1.64 – 3.92) <0.001 2.15 (1.33 – 3.47) 0.002 

 

Supplemental Table 5: Associations between coronary artery calcium (CAC) categories and 

secondary clinical outcomes. CI – confidence interval, HR – hazard ratio. 

 

  



Supplemental Table 6: 

Deep Learning CAC Increase in LR chi-square 50.4 

 Increase in AUC 0.028 (0.010 to 0.046) 

 Event NRI (95% CI) 0.230 (0.142 to 0.314) 

 Non-event NRI (95% CI) 0.264 (0.204 to 0.309) 

 Overall NRI (95% CI) 0.494 (0.363 to 0.607) 

Expert Reader CAC Increase in LR chi-square 55.6 

 Increase in AUC 0.033 (0.014 to 0.052) 

 Event NRI (95% CI) 0.205 (0.120 to 0.294) 

 Non-event NRI (95% CI) 0.298 (0.239 to 0.346) 

 Overall NRI (95% CI) 0.503 (0.376 to 0.623) 

Visually Estimated CAC Increase in LR chi-square 32.0 

 Increase in AUC 0.020 (0.007 to 0.033) 

   Event NRI (95% CI) 0.174 (0.083 to 0.264) 

 Non-event NRI (95% CI) 0.236 (0.177 to 0.298) 

 Overall NRI (95% CI) 0.409 (0.278 to 0.537) 

 

Supplemental Table 6: Net-reclassification analysis for the addition of coronary artery calcium 

(CAC) category. The reference model included all other components of the multivariable 

analysis outlined in Table 3. CI – confidence interval, NRI – net reclassification index.   
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