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Abbreviations 

18F-FDG 18F-Fluorodeoxyglucose 

NPV   Negative predictive value  

PET   Positron emission tomography 

PPV  Positive predictive value 

RADS   Reporting and Data System 

ROC   Receiver operating characteristic 

SUVmax Standardized uptake value 
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ABSTRACT 
 
Background: In addition to its high prognostic value, the involvement of axillary lymph nodes in breast 

cancer patients also plays an important role in therapy planning. Therefore, an imaging modality that 

can determine nodal status with high accuracy in primary breast cancer patients is desirable. 

Purpose: To investigate if machine-learning prediction models based on simple assessable imaging 

features in MRI (magnetic resonance imaging) or PET (positron emission tomography)/MRI are able 

to determine nodal status in newly diagnosed breast cancer patients with comparable performance as 

experienced radiologists, if such models can be adjusted to achieve low rates of false negatives such 

that invasive procedures could potentially be omitted, and if a clinical framework for decision-support 

based on simple imaging features can be derived from these models.  

Methods: 303 participants from three centres prospectively underwent dedicated whole-body 18F-FDG 

(18F-fluorodeoxyglucose) PET/MRI between August 2017 and September 2020. Imaging datasets 

were evaluated regarding axillary lymph node metastases based on morphologic and metabolic 

features. Predictive models were developed for MRI and PET/MRI separately using random forest 

classifiers on data of two centers and were tested on data of the third center.  

Results: The diagnostic accuracy for MRI features was 87.5% both for radiologists and for machine 

learning algorithm. For PET/MRI the diagnostic accuracy was 89.3% for the radiologists and 91.2% for 

the machine learning algorithm with no significant differences in diagnostic performance of radiologists 

and the machine learning algorithm in MRI (p=0.671) and PET/MRI (p=0.683). Most important lymph 

node feature was tracer uptake, followed by lymph node size. With an adjusted threshold, a sensitivity 

of 96.2% was achieved by the random forest classifier, whereas specificity, positive predictive value, 

negative predictive value and accuracy were 68.2%, 78.1%, 93.8% and 83.3%. A decision tree based 

on three simple imaging features could be established for MRI and PET/MRI.  

Conclusion: Applying a high sensitivity threshold to the random forest results could potentially avoid 

invasive procedures such as sentinel lymph node biopsy in 68.2% of the patients.  

Key words: breast cancer, lymph node metastases, machine learning, PET/MRI 
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INTRODUCTION 

With more than 2.3 million cases in 2020, breast cancer represents the world's most prevalent 

cancer (1). In primary breast cancer axillary lymph node involvement is the most important 

predictor for overall survival and recurrence in breast cancer patients (2) and has a decisive 

influence on the therapy regime. Whereas a few years ago mastectomy and extensive axillary 

dissection were performed in most clinical nodal positive patients, advances in imaging, among 

other factors, have helped to make therapeutic options for local control much less invasive (3,4). 

If imaging procedures like sonography and mammography do not reveal affected axillary lymph 

nodes, sentinel lymph node biopsy is now the gold standard for clinical node negative patients (5). 

With regard to the planned therapy, this is decisive, because depending on these findings, axillary 

dissection and axillary radiation are further therapy options (6). Nearly 60 % of breast carcinoma 

patients do not have lymph node metastases at the time of initial diagnosis (7). Particularly these 

patients would benefit from de-escalating invasive procedures. Although the recently introduced 

node-RADS (Reporting and Data System) classification tries to standardize reporting of possible 

lymph node metastases (8), no universal consensus exists regarding objective criteria for the 

evaluation of metastatic disease of axillary lymph nodes in breast cancer patients, and N-staging 

by imaging remains a challenge (7,9,10).  

In recent years artificial intelligence and machine-learning have emerged strongly into the 

medical imaging field (11). Thus, incorporating machine-learning models into imaging-based 

decision-support tools has great potential to enhance diagnostic workup in breast cancer patients. 

Therefore, the aim of this study was to investigate (1.) if machine-learning prediction 

models based on simple and easy assessable imaging features in MRI (magnetic resonance 

imaging) or PET (positron emission tomography)/MRI are able to detect lymph node metastases 

in newly diagnosed breast cancer patients with comparable performance as experienced 

radiologists, (2.) if such models can be adjusted to achieve low rates of false negatives such that 
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invasive procedures could potentially be omitted, and (3.) if a clinical framework for decision 

support based on simple imaging features can be derived from these models.  

 

MATERIAL AND METHODS 

Due to the multifold aims of this study, the workflow of the study is structured in three 

consecutive steps involving different methods. All calculations are based on the assessment of 

predefined imaging features of axillary lymph nodes by radiologists. First, machine-learning based 

prediction models applying random forest classifiers were developed using the imaging features 

derived from the radiologist readers assessments and their predictive performance on an 

independent test sample was compared to that of radiologists. Secondly, an adjustment of the 

random forest classifiers was applied to minimize false negative results by ROC (receiver 

operating characteristic) -curve optimization. Third, in order to facilitate a simple decision 

framework for everyday clinical routine, a simple decision tree classifier was trained on the imaging 

features independent of the optimized random forest classifiers trained beforehand. 

 
 

Participant Population, Inclusion Criteria and Imaging Protocol 

The study sample consisted of two samples, i.e. a training sample that was derived from 

two centers (University Hospital Düsseldorf and University Hospital Essen) and a testing sample 

from a third center (Medical University of Vienna, General Hospital). 

For the training sample, 255 participants were prospectively included (Fig. 1). All included 

patients had newly diagnosed, therapy-naive breast cancer with at least one of the following 

criteria for a worse prognosis: 1) newly diagnosed, therapy-naive T2 tumor or higher T-stage or 2) 

newly diagnosed, therapy-naive triple-negative tumor of any size or 3) newly diagnosed, therapy-

naive tumor with a high-risk molecular profile (Ki67 > 14%, G3 or Her2neu-overexpression).  All 

included participants underwent whole-body 18F-FDG PET (18F-fluorodeoxyglucose positron 

emission tomography)/MRI. Some participants have been reported before (7,12,13). This study 
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was approved by the local ethics committees (study number: 6040R, 17-7396-BO + 510-2009). 

The test sample consisted of 48 participants. All PET/MRI examinations were performed on 

integrated hybrid 3.0 Tesla PET/MRI system (Biograph mMR, Siemens Healthcare, Erlangen, 

Germany) (14).  

Image Analysis 

Imaging data of the training and test samples were analyzed by one reader (J.M.), while 

data of the test sample was additionally rated by a second reader (B.S.). (PET/)MRI datasets were 

analyzed in random order utilizing an Osirix Workstation (Pixmeo SARL, Bernex, Switzerland). 

Readers were blinded to participants identity and all clinical information except for the diagnosis 

of breast cancer. For every participant, the presence or absence of axillary lymph node metastasis 

was evaluated in MRI and and subsequently PET/MRI separately. For this, predefined imaging 

features of axillary lymph nodes were assessed for the most suspicious lymph node in each 

participant. Morphologic features for the assessment of lymph node metastases were (Fig. 2): (a) 

short-axis diameter in mm, (b) irregular margin (yes/no), (c) inhomogeneous cortex (yes/no), (d) 

intact nodal border (yes/no), (e) perifocal edema (yes/no), (f) absent fatty hilum (yes/no) and (g) 

contrast media enhancement (yes/no). In PET/MRI, tracer-uptake in terms of SUVmax 

(Standardized uptake value) of the selected lymph node was assessed. For this, a manually drawn 

region of interest was placed around the respective lymph node. A lymph node SUVmax ratio was 

calculated with the bloodpool SUVmax of the ascending Aorta as the denominator. When all 

criteria were considered together, each reader then made a final evaluation of the lymph node 

status, although an absolute number of positive findings did not have to be present to evaluate 

the lymph node as benign or malignant. 

 
 

Reference Standard 

In all participants, histopathology of axillary lymph nodes served as reference standard. If 

available, sentinel lymph node biopsy or axillary dissection were used. Otherwise, histopathologic 
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results were derived from pretherapeutic ultrasound-guided core needle biopsy of the suspicious 

lymph node. If no sufficient pretherapeutic sampling of lymph nodes was available, sentinel lymph 

node excision or axilla dissection after neoadjuvant systemic therapy were used as the reference 

standard. In these cases, additional histopathological preparations were evaluated, using focal 

fibrosis or focal necrosis as retrospective indicators for previously viable lymph node metastasis 

(15,16) 

 

Model Development 

Predictive models were developed for MRI and PET/MRI separately using random forest 

classifiers. For each modality, a random forest classifier was trained using the imaging features 

derived from the readers assessment as input features and the dichotomous reference standard 

(“benign” or “malignant”) as output.  

To further optimize the classification of the models for sensitivity and minimize false 

negatives (to identify a rule-out criterion), an adjusted random forest model was developed by 

applying adjustment of the classification threshold of a trained random forest model on an 

independent validation set that was split from the training sample beforehand (80:20 stratified split) 

so that sensitivities of >0.95 were achieved on this validation set. 

To additionally create more clinically interpretable classifiers, simple decision tree classifiers with 

a maximum depth of 3 were additionally built using Gini impurity as optimization criterion. 

Model development was conducted using the scikit-learn library (version 0.24.2) in python 3.9. 

 

 
Statistics 
 

For statistical analyses IBM SPSS Statistics (Version 21, IBM Deutschland GmbH) was 

used. Demographic participant data were reported using descriptive statistics.  Cohen’s Kappa 

was used to calculate interrater reliability between the two readers regarding prediction of lymph 
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node status (metastatic vs. non-metastatic) in MRI and PET/MRI. Diagnostic performance of 

radiologists and machine-learning models for lymph node status in MRI and PET/MRI was 

assessed by determining sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV), accuracy and ROC-AUC (area under the curve). A McNemar test was 

used to compare the diagnostic performance of the radiologists with that of the machine-learning 

models. A Pearson’s Chi-squared test was used to compare the tumor characteristics between 

training sample and validation sample. Statistical significance was defined as a p-value < 0.05.  

 

 

RESULTS 

Participant Demographics and Reference Standard 

In this study a total of 255 female participants (mean age 51.2±11.9 years) from two centers 

were included for the training sample (Fig. 1). According to the reference standard 101/255 

participants (39.6%) were nodal positive and 154/255 participants (60.4%) were nodal negative.  

For the testing sample 48 participants (mean age 52.2±12.2 years) from a third center were 

evaluated. According to the reference standard 26/48 (45.8%) participants were nodal negative 

and 22/48 (54.2%) participants were nodal positive. For demographics and tumor characteristics 

of all participants see Table 1. 

 
 

Radiologists’ Performance  
 

Based on MRI data, the radiologist was able to determine the correct lymph node status in 

218/255 participants (85.5%) in the training set. This yielded a diagnostic performance indicated 

by sensitivity, specificity, PPV, NPV and accuracy of 74.3%, 92.9%, 87.2%, 84.6% and 85.5% for 

the training sample (Supplemental Table 1). Corresponding results for the radiologists 
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performance (identical results for both readers) based on MRI in the testing sample were 84.6%, 

90.9%, 91.7%, 83.3% and 87.5% (Table 2).   

When taking PET/MRI into account, the radiologist was able to determine the correct lymph 

node status in 221/255 participants (86.7%) and sensitivity, specificity, PPV, NPV and accuracy 

were 84.0%, 88.4%, 82.4%, 89.5% and 86.7% for the training sample (Supplemental Table 1). In 

the testing sample radiologists performance on PET/MRI data were 92.3%, 86.4%, 88.9%, 90.5% 

and 89.6% (Table 2).   

With regard to the individual features, there were isolated differences in the subjective 

evaluation of the lymph nodes by the raters (irregular margin κ=0.919, inhomogeneous cortex 

κ=0.879, perifocal edema κ=0.776, absent fatty hilum κ=0.865, contrast media enhancement 

κ=0.947, absent intact nodal border 0.957, all p<0.001), but together these lead to an equal 

evaluation of the lymph node status, so that the interrater reliability with regard to the lymph node 

status was excellent (κ=1.0, p<0.001). 

 

Random Forest Algorithm Performance  
 

The trained random forest classifiers yielded an accuracy of 88.3% for MRI and of 99.2% 

for PET/MRI on the training data, which is indicative for a very good model fit to the training data 

(Supplemental Table 1). When applied to the independent datasets of the testing sample, the 

respective random forest classifier was able to determine the correct lymph node status in 42/48 

participants (87.5%) (23 true positive and 19 true negative) for MRI features, while 3 participants 

were rated false positive and 3 participants false negative (both readers, Table 2). The 

performance was unchanged when applying the PET/MRI-based random forest classifier to the 

testing sample, with 42/48 correct classifications (87.5%) (23 true positive and 19 true negative), 

while 3 participants were rated false positive and 3 participants false negative based on lymph 

node assessment of reader 1. Based on lymph node assessment of reader 2, there were 41/48 

correct classifications (85.4%) (23 true positive and 18 true negative), while 4 participants were 
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rated false positive and 3 participants false negative.  Sensitivity, specificity, PPV and NPV for 

both classifiers were 88.5%, 86.4%, 88.5% and 86.4% (reader 1), and 88.5%, 81.8%, 85.2%, 

85.7%, 85.4% for PET/MRI respectively (reader 2) (Table 2). 

 

Comparison of Radiologist Performance and Random Forest Algorithm  

In the testing sample highest ROC-AUC was achieved by the random forest classifier 

based on PET/MRI data with a value of 91.2% (95%-CI (confidence interval): 82.8-99.6%), 

followed by a ROC-AUC of 89.5% (95%-CI: 80.4–98.7%) by the random forest classifier based on 

MRI data (Fig. 3). 

There were no significant differences in the assessment of lymph node status between the 

radiologists and random forest classifier, nor for MRI features (p=0.67) neither for PET/MRI 

features (p=0.68). 

 
 
Feature Importance 

The most important feature in MRI is size, followed by intact nodal border and irregular 

margin, whereas most important features for predicting the nodal status in PET/MRI were tracer 

uptake indicated by the ratio of SUVmax of the lymph node/SUVmax of the ascending Aorta, 

followed by size and intact nodal border (Fig. 4). 

 
 
Decision Threshold Adjustment 
 

To minimize the classifier’s false negatives with regard to clinical need, we adjusted the 

decision threshold of the random forest classifier on PET/MRI data as a trade-off between 

precision (=PPV) and recall (=sensitivity). The default decision threshold in random forest was 0.5. 

Fig. 5 shows precision and recall as a function of decision values in the internal validation sample. 

The optimal decision threshold for this purpose was obtained at 0.19. A sensitivity (recall) of 96.2% 

was achieved with only one false negative in the test sample, whereas specificity, PPV, NPV and 
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accuracy were 68.2%, 78.1%, 93.8% and 83.3% at this threshold. Applying these results to 

everyday routines in our cohort would mean that it would be possible to save 68.2% (15/22) of the 

women from an unnecessary biopsy, even though it has to be accepted that 3.8% (1/26) of the 

affected woman would be missed (Table 3). 

 

Decision Tree For Clinical Decision Support 

The decision tree classifier for distinguishing benign from malignant lymph nodes achieved 

an accuracy of 89.6% and a ROC-AUC of 87.6% (95%-CI: 77.6–97.5%) for MRI in the testing 

sample; for PET/MRI and an accuracy of 89.6% and ROC-AUC of 89.0% (95%-CI: 79.7-98.4%) 

for PET/MRI data in the testing sample. 

These decision trees can support clinical decision making based on three simple imaging 

features, each (Fig. 6A). For MRI the root node indicative for the most important feature is “size”, 

which is consistent with the feature importances from random forests. Here, a short-axis diameter 

of ≥7.5mm serves as a cut-off value for highly suspicious lymph nodes. ROC-AUC evaluation of 

this feature alone shows a sensitivity of 71.6% and specificity of 86.4% (J=0.580) for this cut-off. 

A cut-off value of 12.5 mm led to a specificity of 100%, but a sensitivity of 34.3% (J=0.343) (Fig. 

6B). The decision tree as well as these cut-off values were determined on the training data. The 

combination of an FDG-uptake above the 1.3-fold of the lymph node compared to the uptake of 

Aorta ascendens and a short axis diameter of 7.5mm is sufficient to characterize a lymph node as 

malignant. 

The confusion matrices for the decision trees are shown in Table 4. For the performance 

of the decision trees on the training data see Supplemental Table 2. Supplemental Table 3 shows 

the detection rates of lymph nodes in 18F-FDG PET/MRI per nodal stage (cN0 – cN3c). 
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DISCUSSION 
 

In this study, we demonstrate that diagnosis of lymph node metastases in newly diagnosed 

breast cancer patients can be achieved by simple imaging features from MRI and PET/MRI, both, 

by radiologists and machine-learning-based prediction models with comparably high accuracies. 

However, our results indicate that a machine-learning-based prediction model can be 

advantageous in a clinical setting due to its opportunity to allow decision threshold adjustments. 

Based on the implemented random forest classifier on PET/MRI data, it would be possible - 

compared with the current gold standard, where every clinically node-negative patient would 

receive sentinel lymph node biopsy - to save 68.2 % of the women from an unnecessary biopsy, 

even though it has to be accepted that 3.8% of the affected woman would be missed.  The latter 

is important for such model to be suitable for a clinical setting, where diagnostic imaging could 

potentially omit invasive diagnostic procedures such as lymph node biopsy when false negatives 

can reliably be reduced. Furthermore, we derived a decision tree for clinical decision support 

based on simple imaging features from MRI and PET/MRI, which can assist clinicians in the 

diagnostic workup in regard to lymph node involvement in breast cancer. Although the application 

of the model evaluated here does not result in time savings in the evaluation of lymph node criteria 

per se, the clear cascade of the three easily assessable imaging features can be helpful for the 

radiologist in classification of axillary lymph nodes in daily routine. 

Different machine learning algorithms for the detection of axillary lymph node metastases 

have previously been shown to provide diagnostic performance comparable to or better than that 

of experienced physicians in other specialties (17), but only a few applications have been 

introduced into the everyday routine.  

This study further rates the relevance of different imaging features of lymph nodes. While 

the size of a lymph node characterized by the short-axis diameter is a generally accepted criterion 

for assessing the metastatic status of a lymph node (8), it has been discussed in the past that 

diagnostic accuracy can be increased by adding factors such as contour and signal intensity. 
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Nevertheless, the feature importances of the random forest classifiers and the good performance 

of the simple decision tree classifier indicate that only a few features are necessary to predict 

lymph node malignancy with high accuracy. Our study is in line with a study by Ramirez-Galvan 

et al. (18), demonstrating lymph node size as the most important morphological feature. However, 

according to our investigation, a short axis diameter of ≥7.5mm seems to be most suitable for 

prediction of axillary lymph node involvement of breast cancer, while a diameter of ≥12.5 mm can 

even be seen as evidence for malignancy (Fig. 6B). 

As with other cancer entities, there is no consensus about thresholds for tracer uptake in 

breast cancer to define a lymph node as benign or malignant (19), but a threshold of a SUVmax 

of 1.8-2.0 has reported to be a helpful criterion to diagnose malignancy (20,21). In our study, we 

demonstrated that a tracer uptake of the lymph node below the uptake of the mediastinal blood 

pool is a reliable feature of benignity, while tracer uptakes ≥ 1.3 times the uptake of the mediastinal 

blood pool should be considered malignant.  

Using the adjusted threshold of the random forest classifier, the rate of false negatives 

could be substantially decreased to a range that would be acceptable for clinical purposes. The 

single participant missed by our machine learning algorithm after adjusting the threshold had a 

histopathologically proven micrometastasis (1 mm). The clinical impact of micrometastases does 

not appear to be comparable to that of macrometastases with an outcome of patients with 

micrometastases comparable to that of node-negative patients (22). Thus, machine learning 

algorithms may be expected to play a crucial role in reducing invasive procedures in the future. 

This study has some limitations. Only therapy-naive patients were examined at baseline 

staging, so no general statements can be made regarding regressively altered lymph nodes after 

therapy or with regard to response to therapy. The reference standard is in part based on post-

therapeutic specimens from axillary nodes and different ways of sample acquisition including 

axillary dissection and ultrasound-guided biopsy. This may have had an impact on definition of the 
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reference standard. The imaging features used as input for the machine-learning-based prediction 

models still rely on subjective assessments of radiologists. Nevertheless, we could show that 

these imaging features are easy assessable and with a high interrater reliability. In addition, the 

size of the validation cohort is only moderate, so further studies with a larger study population are 

needed. 

In conclusion, this study shows that 1. a random forest classifier based on simple imaging 

features provides comparable diagnostic performance compared with an experienced radiologist, 

2. that 18F-FDG-PET uptake and lymph node size assessed on MRI are the most informative 

features in determining the metastatic status of an axillary lymph node, 3. that a combination of 

three features can be helpful for the differentiation between malignant and benign axillary lymph 

nodes in newly diagnosed breast cancer in daily routine, and 4. that - accepting a low specificity - 

a sensitivity of >95% can be achieved with an adjusted random forest classifier on 18F-FDG 

PET/MRI data, which can exclude lymph node involvement with high confidence and could play a 

central role in reducing invasive procedures in the future. Thus, especially the combination of the 

three imaging features may be used for daily use by the radiologist, as these can be determined 

and evaluated quickly and reliably, although the decision tree should not be taken as the only 

basis for therapy planning. For therapy decision making the adjusted random forest model is more 

reliable for the diffentiation between malignant and benign lymph nodes because of its higher 

sensitivity. Nevertheless, the adjusted random forest models need to be confirmed in large 

prospective studies to minimize the number of unnecessary invasive procedures and will then 

have great impact. 
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KEY POINTS 

Question: Can machine learning prediction models determine nodal status in PET/MRI 

examinations from patients with newly diagnosed breast cancer with comparable performance as 

experienced radiologists?  

Pertinent findings: Machine learning shows comparable diagnostic performane as experienced 

radiologists in identifying axillary lymph node metastases in PET/MRI in primary breast cancer 

patients. The most important lymph node feature is tracer uptake, followed by lymph node size. A 

combination of three features is helpful for the differentiation between malignant and benign 

axillary lymph nodes in newly diagnosed breast cancer, leading to an easlily applicable decision-

tree in everyday clinical routine. 

Implications for patient care: With the help of machine learning, axillary lymph node metastases 

can be reliably excluded in PET/MRI, sparing 68.2% of the patients an invasive procedure like a 

sentinel lymph node biopsy. 



 17 

REFERENCES 
 

1. Organization WH. WHO [Internet]. 2016. Available from: https://www.who.int/news-room/fact-
sheets/detail/breast-cancer, Accessed on 16.10.2021 

2. Chang JM, Leung JWT, Moy L, Ha SM, Moon WK. Axillary nodal evaluation in breast cancer: 
State of the Art. Radiology. 2020;295:500-515. 

3. Giuliano AE, Ballman KV, McCall L, et al. Effect of axillary dissection vs no axillary dissection 
on 10-year overall survival among women with invasive breast cancer and sentinel node 
metastasis: The ACOSOG Z0011 (Alliance) randomized clinical trial. Jama. 2017;318:918–26. 

4. Giuliano AE, Hunt KK, Ballman KV, et al. Axillary dissection vs no axillary dissection in women 
with invasive breast cancer and sentinel node metastasis: A randomized clinical trial. Jama. 
2011;305:569–75. 

5. Duraes M, Guillot E, Seror J, Pouget N, Rouzier R. [Sentinel lymph node biopsy and 
neoadjuvant treatment in breast cancer]. B Cancer. 2017;104:892–901. 

6. Yan M, Abdi MA, Falkson C. Axillary management in breast cancer patients: A comprehensive 
review of the key trials. Clin Breast Cancer. 2018;18:e1251–9. 

7. Morawitz J, Bruckmann N-M, Dietzel F, et al. Determining the axillary nodal status with four 
current imaging modalities including 18 F-FDG PET/MRI in newly diagnosed breast cancer: A 
comparative study using histopathology as reference standard. J Nucl Med. 2021;62:1677-1683. 

8. Elsholtz FHJ, Asbach P, Haas M, et al. Introducing the node reporting and data system 1.0 
(Node-RADS): a concept for standardized assessment of lymph nodes in cancer. Eur Radiol. 
2021;31:6116–24. 

9. Zhao M, Wu Q, Guo L, Zhou L, Fu K. Magnetic resonance imaging features for predicting 
axillary lymph node metastasis in patients with breast cancer. Eur J Radiol. 2020;129:109093. 

10. Atallah D, Moubarak M, Arab W, Kassis NE, Chahine G, Salem C. MRI‐based predictive 
factors of axillary lymph node status in breast cancer. Breast J. 2020;26:2177–82. 

11. Bejnordi BE, Veta M, Diest PJ van, et al. Diagnostic assessment of deep learning algorithms 
for detection of lymph node metastases in women with breast cancer. Jama. 2017;318:2199–
210. 

12. Bruckmann NM, Kirchner J, Umutlu L, et al. Prospective comparison of the diagnostic 
accuracy of 18F-FDG PET/MRI, MRI, CT, and bone scintigraphy for the detection of bone 
metastases in the initial staging of primary breast cancer patients. Eur Radiol. 2021;31:8714–24. 

13. Morawitz J, Kirchner J, Martin O, et al. Prospective correlation of prognostic 
immunohistochemical markers with SUV and ADC derived from dedicated hybrid breast 18F-
FDG PET/MRI in women with newly diagnosed breast cancer. Clin Nucl Med. 2020;46:201–5. 



 18 

14. Kirchner J, Grueneisen J, Martin O, et al. Local and whole-body staging in patients with 
primary breast cancer: a comparison of one-step to two-step staging utilizing 18F-FDG-
PET/MRI. Eur J Nucl Med Mol I. 2018;45:2328–37. 

15. Newman LA, Pernick NL, Adsay V, et al. Histopathologic evidence of tumor regression in the 
axillary lymph nodes of patients treated with preoperative chemotherapy correlates with breast 
cancer outcome. Ann Surg Oncol. 2003;10:734–9. 

16. Takashi Y, Soh J, Shien K, et al. Fibrosis or necrosis in resected lymph node indicate 
metastasis before chemoradiotherapy in lung cancer patients. Anticancer Res. 2020;40:4419–
23. 

17. Golden JA. Deep learning algorithms for detection of lymph node metastases from breast 
cancer: Helping Artificial Intelligence Be Seen. Jama. 2017;318:2184–6. 

18. Ramírez-Galván YA, Cardona-Huerta S, Elizondo-Riojas G, Álvarez-Villalobos NA, Campos-
Coy MA, Ferrara-Chapa CM. Does axillary lymph node size predict better metastatic 
involvement than apparent diffusion coefficient (ADC) value in women with newly diagnosed 
breast cancer? Acta Radiol. 2020;61:1494–504. 

19. Yu C, Xia X, Qin C, Sun X, Zhang Y, Lan X. Is SUVmax helpful in the differential diagnosis of 
enlarged mediastinal lymph nodes? A Pilot Study. Contrast Media Mol I. 2018;2018:1–9. 

20. Rosen EL, Eubank WB, Mankoff DA. FDG PET, PET/CT, and breast cancer imaging. 
Radiographics. 2007;27(suppl_1):S215–29. 

21. Carkaci S, Adrada BE, Rohren E, et al. Semiquantitative analysis of maximum standardized 
uptake values of regional lymph nodes in inflammatory breast cancer is there a reliable threshold 
for differentiating benign from malignant? Acad Radiol. 2012;19:535–41. 

22. Wada N, Imoto S. Clinical evidence of breast cancer micrometastasis in the era of sentinel 
node biopsy. Int J Clin Oncol. 2008;13:24–32. 

 



 19 

 

FIGURE LEDGENDS 

Fig. 1. Flow chart diagram of included and excluded participants. 
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Fig. 2. Lymph node features. Example of morphologic and metabolic features for the assessment of 
axillary lymph nodes in axial T1vibe fat sat contrast enhanced images: unsuspicious lymph node with no 
feature of malignancy (left), enlarged lymph node with a short-axis diameter of 31 mm, lymph node with 
irregular margin, lymph node with an inhomogeneous cortex, lymph node with perifocal edema, lymph node 
with absense of fatty hilum, lymph node with contrast media enhancement, lymph node without intact nodal 
border, and lymph node with increased 18F-FDG uptake (SUVmax 13.1).  
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Fig. 3. ROC (receiver operating characteristic)-AUC (area under the curve) for Random Forest 
Model Performance on the testing Data and for prediction of lymph node status by radiologists in 
MRI and PET/MRI. 
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Fig. 4. Importance of different morphological and metabolical features of lymph nodes. 
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Fig. 5. Precision and Recall scores as a function of the decision threshold on the internal 
validation sample. X represents threshold values and y is the score of precision or recall. The adjusted 
decision threshold for optimized sensitivity is indicated by a dashed line. 
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Fig. 6. Decision tree for predicting lymph node status in MRI and PET/MRI (A) and ROC (receiver 
operating characteristic)-AUC (area under the curve) for size and ratio of SUVmax of lymph node to 
mediastinal bloodpool for prediction of lymph node status (B) 
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TABLES 

Table 1. Participant demographics and tumor characteristics 

 Training Sample Testing Sample p-value 

Total participants 255 48  

Mean age (± Standard deviation) 51.2 ± 11.9 years 52.2 ± 12.2 years 0.689 

    

Lymph node status (reference standard) 

 negative 154 (60.4 %) 26 (54.2 %) 
0.420 

 positive 101 (39.6 %) 22 (45.8 %) 

Menopause status 

 pre 111 (43.5 %) 18 (37.5 %) 

0.737  peri 25 (9.8 %) 5 (10.4 %) 

 post 119 (46.7 %) 25 (52.1 %) 

Ki67 

 positive >14 % 226 (88.6 %) 41 (85.4 %) 
0.528 

 negative <14 % 29 (11.4 %) 7 (14.6 %) 

Progesterone status 

 positive 169 (66.3 %) 29 (60.4 %) 
0.433 

 negative 86 (33.7 %) 19 (39.6 %) 

Estrogen status 

 positive 187 (73.3 %) 28 (58.3 %) 
<0.01 

 negative 68 (26.7 %) 20 (41.7 %) 

HER2neu-expression 

 0 97 (38.0 %) 23 (47.9 %) 

0.479 
 1+ 73 (28.6 %) 14 (29.2 %) 

 2+ 34 (13.3 %) 5 (10.4 %) 

 3+ 51 (20.0 %) 6 (12.5 %) 

Tumor grade 

 G1 10 (3.9 %) 4 (8.3 %) 

0.025  G2 137 (53.7 %) 16 (33.3 %) 

 G3 108 (42.4 %) 28 (58.3 %) 

Histology 

 NST 222 (87.1 %) 42 (87.5 %) 

<0.01  Lobular invasive 25 (9.8 %) 0 (0 %) 

 other 8 (3.1 %) 6 (12.5 %) 
NST =  No Special Type
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Table 2. Diagnostic performance of MRI and PET/MRI in assessment of lymph node status of 
radiologists and random forest classifier within the testing sample (values given in %). 
 

Radiologists 

 MRI* PET/MRI* 

Sensitivity 

95 % - CI 

84.6 

65.1 - 95.6 

92.3 

74.9 - 99.1 

Specificity 

95 % - CI 

90.9 

70.8 - 98.9 

86.4 

65.1 - 97.1 

PPV 

95 % - CI 

91.7 

74.4 - 97.7 

88.9 

73.5 - 96.8 

NPV 

95 % - CI 

83.3 

66.8 - 92.6 

90.5 

71.3 - 97.3 

Accuracy 

95 % - CI 

87.5 

74.8 - 95.3 

89.6 

77.3 - 96.5 

Random Forest Algorithm 

 MRI* PET/MRI 

  Reader 1 Reader 2 

Sensitivity 

95 % - CI 

88.5 

69.9 – 97.6 

88.5 

69.9 – 97.6 

88.5 

69.9 – 97.6 

Specificity 

95 % - CI 

86.4 

65.1 – 97.1 

86.4 

65.1 – 97.1 

81.8 

59.7 – 94.8 

PPV 

95 % - CI 

88.5 

72.6 – 95.7 

88.5 

72.6 – 95.7 

85.2 

70.1 – 93.4 

NPV 

95 % - CI 

86.4 

68.3 – 94.9 

86.4 

68.3 – 94.9 

85.7 

67.0 – 94.7 

Accuracy 

95 % - CI 

87.5 

74.8 – 96.3 

87.5 

74.8 – 96.3 

85.4 

72.2 – 93.9 

PPV = positive predictive value; NPV = negative predictive value 
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Table 3. Confusion Matrix and performance metrices for adjusted threshold. 
 

 Predicted 

negative positive 

actual 
negative 15 7 

positive 1 25 

 

Sensitivity 96.2 % (80.4 - 99.9 %) 

Specificity 68.2 % (45.1 - 86.1 %) 

PPV 78.1 % (65.9 - 86.9 %) 

NPV 93.8 % (68.2 - 99.1 %) 

Accuracy 83.3 % (69.8 - 92.5 %) 

PPV = positive predictive value; NPV = negative predictive value 
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Table 4. Confusion matrices and performance metrtices for the decision trees. 

MRI PET/MRI 

 Predicted  Predicted 

negative positive negative positive 

actual 
negative 20 2 

actual 
negative 21 1 

positive 3 23 positive 4 22 

MRI 

Sensitivity 88.5 % (69.9 - 97.6 %) 

Specificity 90.9 % (70.8 - 98.9 %) 

PPV 92.0 % (75.3 -97.8 %) 

NPV 87.0 % (69.5 -95.1 %) 

Accuracy 89.6 % (77.3 -96.5 %) 

PET/MRI 

Sensitivity 84.6 % (65.1 - 95.6 %) 

Specificity 95.5 % (77.2 - 99.9 %) 

PPV 95.7 % (76.3 - 99.3 %) 

NPV 84.0 % (68.0 - 92.9. %) 

Accuracy 89.6 % (77.3 - 96.5 %) 

PPV = positive predictive value; NPV = negative predictive value 
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SUPPLEMENTS 

Supplemental Table 1. Diagnostic performance of MRI and PET/MRI in assessment of lymph node 
status of radiologists and random forest classifier in training sample (values given in %). 
 

 
PPV = positive predictive value; NPV = negative predictive value 

PPV = positive predictive value; NPV = negative predictive value 

 

  

 Radiologist Random Forest Algorithm 

 MRI PET/MRI MRI PET/MRI 

Sensitivity 

(95% - CI) 

74.3 

64.6-82.4 

84.0 

75.3-90.6 

77.5 

68.1-85.1 

98.0 

93.1-99.8 

Specificity 

(95% - CI) 

92.9 

87.6-96.4 

88.4 

82.3-93.0 

95.5 

90.9-98.2 

100.0 

97.6-100.0 

PPV 

(95% - CI) 

87.2 

79.2-92.4 

82.4 

75.0-87.9 

91.9 

84.5-95.9 
100.0 

NPV 

(95% - CI) 

84.6 

79.8-88.5 

89.5 

84.5-93.1 

86.5 

81.7-90.2 

98.7 

95.1-99.7 

Accuracy 

(95% - CI) 

85.5 

80.6-89.6 

86.7 

81.9-90.6 

88.3 

83.7-92.0 

99.2 

97.2-99.1 
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Supplemental Table 2. Performance of the decision trees for MRI (A) and PET/MRI (B) on the training 
data.  

 
(A) 

 Predicted 

negative positive 

actual 
negative 143 11 

positive 27 75 

 

Sensitivity 73.5 % (63.9 – 81.8 %) 

Specificity 92.9 % (87.6 – 96.4 %) 

PPV 87.2 % (79.2 – 92.4 %) 

NPV 84.1 % (79.3 – 88.0 %) 

Accuracy 85.2 % (80.2 – 89.3 %) 

 

(B) 

 Predicted 

negative positive 

actual 
negative 149 5 

positive 28 74 

 

Sensitivity 72.6 % (62.8 – 80.9 %) 

Specificity 96.8 % (92.6 – 98.9 %) 

PPV 93.7 % (86.1 – 97.3 %) 

NPV 84.2 % (79.5 – 88.0 %) 

Accuracy 87.1 % (82.4 – 91.0 %) 

PPV = positive predictive value; NPV = negative predictive value
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Supplemental Table 3. Exact, falsely low and falsely high detection of lymph nodes in 
PET/MRI per clinical lymph node stage. 
 

 

 
PET/MRI detection 

exact 
PET/MRI detection 

falsely low 
PET/MRI detection 

falsely high 

Reference Standard 

 
Nodal 
stage 

Absolute number 
of patients 

cN0 154 

PET/MRI cN0 

142  

(92.3%) 

 

PET/MRI cN1 or 
higher  

12  

(7.8%) 

cN1 68 

PET/MRI cN1 

62  

(91.2 %) 

PET/MRI cN0 

4  

(5.9 %) 

PET/MRI cN2 or 
higher  

2  

(2.9%) 

cN2a 9 

PET/MRI cN2a 

7  

(77.8 %) 

PET/MRI cN1 or 
lower 

0  

(0 %) 

PET/MRI cN2b or 
higher 

 2  

(22.2%) 

cN2b 2 

PET/MRT cN2b 

2  

(100 %) 

PET/MRI cN2a or 
lower 

0  

(0 %) 

PET/MRI cN3a or 
higher 

0  

(0 %) 

cN3a 11 

PET/MRI cN3a 

11  

(100 %) 

PET/MRI cN2b or 
lower 

0  

(0 %) 

PET/MRI cN3b or 
higher 

0  

(0 %) 

cN3b 8 

PET/MRI cN3b 

8  

(100 %) 

PET/MRI cN3a or 
lower 

0  

(0 %) 

PET/MRI cN3c 

0  

(0 %) 

cN3c 3 

PET/MRI cN3c 

2  

(66.7 %) 

PET/MRI cN3b or 
lower 

1  

(33.3 %) 
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Imaging protocol  

To ensure a blood glucose level of <150 mg/dl, patients fasted for six hours before the 

examinations. 18F-FDG was administered intravenously with a weight adapted dose (4 MBq/kg 

body weight) one hour before the PET/MRI examination. The examination area covered a range 

from the head to the proximal thighs in the supine body position. To evaluate the axillary lymph 

nodes, the thoracic sections of the whole-body staging were evaluated.  

The whole-body MRI protocol comprised the following sequences: 

1) For center one and two: A transverse T2-w half Fourier acquisition single shot turbo spin 

echo (HASTE) sequence in breath-hold technique with a slice thickness of 7 mm (TE 97 

ms; TR 1500 ms; Turbo factor (TF) 194; FOV 400 mm; phase FOV 75%; acquisition matrix 

320 × 240 mm; in plane resolution 1.3 x 1.3 mm; TA 0:47 min / bed position). For center 

three: A coronal T2-w half Fourier acquisition single shot turbo spin echo (HASTE) 

sequence in breath-hold technique with a slice thickness of 6 mm (TE 121 ms; TR 1500 

ms; Turbo factor (TF) 194; FOV 400 mm; phase FOV 75%; acquisition matrix 320 × 240 

mm; in plane resolution 1.3 x 1.3 mm; TA 0:47 min / bed position) 

2) A transversal diffusion-weighted (DWI) echo-planar imaging (EPI) sequence in free 

breathing with a slice thickness of 5.0 mm (TR 7400 ms; TE 72 ms; b-values: 0, 500 and 

1000 s/mm2, matrix size 160 x 90; FOV 400 mm x 315 mm, phase FOV, 75 %; GRAPPA, 

acceleration factor 2; in plane resolution 2.6 x 2.6 mm; TA 2:06 min / bed position)  

3) A fat-saturated post-contrast transverse 3-dimensional Volumetric Interpolated Breath-

hold Examination (VIBE) sequence with a slice thickness of 3 mm (TE, 1.53 ms; TR, 3.64 

ms; Flip angle 9◦; FOV 400 x 280 mm; phase FOV 75%; acquisition matrix 512 × 384, in 

plane resolution 0.7 x 0.7 mm; TA 0:19 min / bed position) 

PET images were reconstructed using the iterative ordered-subset expectation maximization 

(OSEM) algorithm, 3 iterations and 21 subsets, a Gaussian filter with 4-mm full width at half 

maximum (FWHM) and a 344 × 344 image matrix. For MR-based attenuation correction of the 
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patient tissues a two-point (fat, water) coronal 3D-Dixon-VIBE sequence was acquired to generate 

a four-compartment model (background air, lungs, fat, muscle).  

 

 


