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ABSTRACT                       39 

We introduce Multi-Organ Objective Segmentation (MOOSE) software that generates subject-specific, 40 

multi-organ segmentation using data-centric AI principles to facilitate high-throughput systemic 41 

investigations of the human body via whole-body PET imaging. Methods: Image data from two PET/CT 42 

systems (uEXPLORER and Siemens TruePoint TrueView) was used in training MOOSE. For non-cerebral 43 

structures, 50 WB-CT images were used, 30 of which were acquired from healthy controls (HC, 14M/16F) 44 

and 20 datasets were acquired from oncology patients (14M/6F). Non-cerebral tissues consisted of 13 45 

abdominal organs, 20 bone segments, subcutaneous fat, visceral fat, psoas, and skeletal muscle. An expert 46 

panel performed manual segmentation of all non-cerebral structures except for subcutaneous, visceral 47 

fat, and skeletal muscle, which were semi-automatically segmented using thresholding. A majority-voting 48 

algorithm was used to generate a ‘reference standard’ segmentation. From the 50 CT datasets, 40 were 49 

used for training and 10 for testing purposes. For cerebral structures, 34 18F-FDG PET/MRI brain image 50 

volumes were used from 10 HC (5M/5F imaged twice) and 14 non-lesional epilepsy patients (7M/7F). Only 51 

18F-FDG PET images were considered for training: 24/34 and 10/34 volumes were used for training and 52 

testing. The dice score coefficient (DSC) was used as the primary and the average symmetric surface 53 

distance (ASSD) as a secondary metric to evaluate the automated segmentation performance. Results: An 54 

excellent overlap between the reference labels and MOOSE-derived organ segmentations was observed:  55 

92% of non-cerebral tissues showed DSC values of >0.90, while a few organs exhibited lower DSC values 56 

(e.g., adrenal glands (0.72), pancreas (0.85), and bladder (0.86)). The median DSC values of brain 57 

subregions derived from PET images were lower. Only 29% of the brain segments had a median DSC of 58 

>0.90, while segmentation of 60% of regions yielded a median DSC of 0.80-0.89. Results of the ASSD 59 

analysis demonstrated that the average distance between the reference standard and the automatically 60 

segmented tissue surfaces (organs, bones, brain regions) lies within the size of image voxels (2mm). 61 
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Conclusion: The proposed segmentation pipeline allows automatic segmentation of 120 unique tissues 62 

from whole-body 18F-FDG PET/CT images with high accuracy.  63 

  64 
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INTRODUCTION 65 

Living organisms maintain steady internal physiological conditions through dynamic, self-regulating multi-66 

organ systemic interactions (1), also known as homeostasis. In healthy subjects, any notable deviation 67 

from homeostasis is avoided with the aid of systemic feedback loops (2). Chronic pathologies are 68 

conceived as sustained disturbances in homeostasis, which cannot be compensated by systemic 69 

communications (3). Molecular imaging modalities, such as positron emission tomography (PET), can 70 

provide essential insights into diverse biological processes within the human body by using highly-specific 71 

radiotracers that track molecular function in vivo (4). Assuming that homeostasis is associated with a 72 

balanced, albeit variable, glycolytic pattern, PET can help characterise bespoke feedback loops and 73 

deviations that lead to pathologies. However, until recently, whole-body PET imaging protocols were 74 

typically limited to only a portion of the patient’s body (e.g., neck to upper thigh) due to the relatively 75 

narrow axial field-of-view (FOV, 15-25cm) of PET systems. This limitation required multiple bed positions 76 

to be acquired sequentially to cover the axial field of investigation. Nonetheless, this acquisition mode 77 

failed to fully harness the multi-systemic physiological information provided by PET imaging (5).  78 

With the recent advent of large axial FOV PET/CT systems (>70 cm) (6–8), the opportunity arose 79 

to acquire total-body (TB) PET images with only 1-2 bed positions, facilitating multi-organ system analysis. 80 

Such systemic analysis might allow the investigation of multi-organ interactions in various pathologies, 81 

such as those associated with cancer (9), cachexia (10,11), metabolic syndrome (12), or the more recent 82 

COVID-19 virus (13). However, the amount of data generated by this new generation of PET/CT systems 83 

are too large to be adequately analysed without automated processing pipelines.  84 

In response, we developed a multi-organ objective segmentation (MOOSE) tool, an open-source 85 

software framework based on data-centric Artificial Intelligence (14) (AI) principles (Supplemental Fig. 1) 86 

to allow fully-automated generation of a subject-specific total-body (TB) 18F-FDG PET/CT tissue-map 87 

consisting of over 100 different tissue types. The development of such a software tool dramatically 88 
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increases the amount of information that can be efficiently extracted from PET data. Further, such a tool 89 

provides a means to observe normal physiology and pathological conditions globally, permitting systems-90 

level investigations into human physiology. For example, when applied in a clinical setting, this approach 91 

will allow physicians to automatically generate a list of standard uptake values (SUV) for all organs of 92 

interest, which might provide auxiliary information during the diagnostic process. In addition, the 93 

automated generation of a complete set of organ-specific SUVs lends itself well to AI-supported diagnostic 94 

screening, allowing organ SUV ratios to be compared across subjects and alerting the physician about 95 

potential secondary pathologies. 96 

  97 
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MATERIALS AND METHODS 98 

Overall segmentation strategy 99 

Our approach is based on the latest state-of-the-art nnU-Net segmentation framework (15). More 100 

importantly, we propose a data-centric approach (14,16) where the network model is fixed, and the data 101 

is iteratively augmented to increase the performance of the AI system. As such, the model’s performance 102 

is continuously monitored. As new data deviating from the training dataset’s characteristics enter the 103 

processing stream, the model is retrained to enhance performance.  104 

Data 105 

Two different types of datasets were used for the development of a software tool able to segment 106 

both cerebral (83 regions) and non-cerebral structures (37 tissues).  107 

For training and evaluation of non-cerebral structures, 50 whole-body low-dose CT datasets were used. 108 

Among these 50 datasets, 30 CT images were acquired from healthy volunteers (14M/16F, 47 ± 13 years) 109 

using the uEXPLORER total-body PET/CT system (17). The remaining 20 datasets belonged to a 110 

retrospective patient cohort from a Siemens TruePoint TrueView (TPTV) PET/CT system (14M/6F, 67 ± 12 111 

years). The non-cerebral tissues atlas consists of 13 abdominal organs, 20 bone segments, subcutaneous 112 

fat, visceral fat, psoas, and skeletal muscle (Supplemental Table 1, Supplemental Fig. 2).  113 

An expert segmentation panel comprised of four physicians and four medical students (final year) 114 

was responsible for the manual segmentation of all non-cerebral structures, except for subcutaneous and 115 

visceral fat and skeletal muscle, which were outlined using an established thresholding method (18). The 116 

physicians were responsible for segmenting the abdominal organs and psoas while the students 117 

generated the bone segments. From the 50 datasets, 40 were used for training, and 1tenwere used for 118 

testing (hold-out dataset) purposes. 119 

For training and evaluation of cerebral structures, we used 34 18F-FDG PET/MRI brain datasets (10 healthy 120 

controls test-retest: 5M/5F, 27 ± 7 years and 14 non-lesional epilepsy patients: 7M/7F, 29 ± 9 years) 121 
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(19,20). The cerebral atlas consisted of 83 brain subregions (Supplemental Table 1), automatically created 122 

from PET data in combination with T1-MR images and the Hammersmith atlas (21). In short, subject-123 

specific T1-MR images were normalized to MNI space using SPM 12 (22). The obtained (inverse) transform 124 

was then used to spatially transform brain regions of the Hammersmith atlas into the individual subject's 125 

native space, yielding 83 subject-specific cerebral sub-regions which were transfered to coregistered PET 126 

image volumes. Of the 34 datasets, 24 and 10 were used for training and testing, respectively. 127 

Reference standard generation 128 

To address inter-variability issues of the organ segmentation, the Simultaneous Truth and 129 

Performance Level Estimation (STAPLE) algorithm (23) was employed to generate reference volumes for 130 

further performance assessment. Each reference volume represents a probabilistic estimate of the “true” 131 

segmentation as well as a measure of multi-operator segmentation performance, (STAPLE variance). The 132 

STAPLE method was not employed for reference segmentations derived using automatic (brain atlas) or 133 

semi-automatic (thresholding) methods.  134 

U-Net-based semantic segmentation 135 

The nnU-Net implementation of the generic U-Net architecture is a self-configuring method for 136 

deep learning-based biomedical image segmentation. This implementation exhibits strong performance 137 

by retaining the original U-Net-like architecture while automating the complex process of manual 138 

hyperparameter configuration (15).  139 

In our implementation, training of the nnU-Net was performed separately for the following four structure 140 

classes: (i) 13 abdominal organs and psoas, (ii) 20 bone structures, (iii) 83 brain regions (iv) fat 141 

(subcutaneous and visceral) and skeletal muscle. Segmentation of non-cerebral tissues was performed 142 

based on CT data, whereas segmentation of cerebral regions was carried out using 18F-FDG PET images. 143 

Assessment of deviation from training dataset distribution 144 
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It is unlikely that any training dataset will be sufficient to fully capture the variability encountered 145 

in clinical routine. Accordingly, a data-centric approach is necessary, permitting continuous monitoring of 146 

segmentation performance so that data that substantially deviates from the original training data 147 

distribution (i.e., Out-of-distribution (OOD) data) is detected. Erroneous segmentation results obtained 148 

for such data will then require manual correction by a human expert. Once corrected, this data can be 149 

appended in suitable quantities to the initial training dataset for retraining purposes.  150 

Since continuous operator-based monitoring of segmentation performance is untenable in clinical 151 

routine, we developed an automated error analysis routine that detects OOD datasets based on 152 

morphometric analysis of organ shapes (e.g., elongation, volume, area, maximum and minimum bounding 153 

box diameter), which were determined for each STAPLE-derived segmentation of structures, and a 154 

normative morphological feature database was generated. Upon segmentation of a new dataset, 155 

morphological features for each segmented structure are calculated and compared to the normative 156 

morphology database, yielding a distance (Z-score) in “similarity space” for each structure. The Z-score 157 

reflects the difference between the shapes of the segmented structure in comparison to its normative 158 

value obtained from the training datasets. In our implementation, we chose a value of Z = 1.5 as the cut-159 

off for OOD labelling.  160 

Algorithm performance vs. training sample size 161 

Primary performance assessment of the automated segmentation (MOOSE) was performed for 162 

all structures using the Dice score coefficient (DSC) (24). A DSC value of 1.0 with respect to STAPLE 163 

indicates perfect overlap and 0 indicates no overlap. In addition, the average symmetric surface distance 164 

(ASSD) (25) was used as a secondary metric, representing the average distance (in mm) between surface 165 

voxels of the standard and the automated segmentation. 166 

To assess the segmentation performance as a function of training sample size, we calculated for 167 

each non-cerebral structure the DSC and the ASSD using the segmented volumes derived using 10 (D10), 168 



  10 

20 (D20), and 40 (D40) training data sets, respectively. A similar analysis was performed for cerebral 169 

regions with 8 (D’8), 16 (D’16), and 24 (D’24) data sets. In both instances, cases were randomly selected 170 

from the whole datasets (50 cases for non-cerebral and 34 cases for cerebral structures). The testing (hold-171 

out) dataset included 10 cases that were not part of the training sets in both instances. 172 

Algorithm performance vs. training dataset variability 173 

To investigate the effect of training dataset variability on segmentation performance, we 174 

performed a series of training/test runs using various mixtures of two datasets that differed significantly 175 

with respect to arm position (either arms down or crossed on chest, Supplemental Fig. 3). We created 176 

four subsets of training datasets, each with a total sample size of 20. The first dataset consisted of 20 low-177 

dose CT images with arms down (SMS20). The other three training datasets included mixtures of images: 178 

(i) MIX2-18 (18 arms down, 2 crossed), MIX5-15 (15 arms down, 5 crossed), and MIX10-10 (10 arms down, 179 

10 crossed). Networks trained on these four training datasets were then used to segment 10 test datasets 180 

that included only images with crossed arm positions (X10). The following four (training test) scenarios 181 

were investigated: [SMS20→X10], [MIX2-18→X10], [MIX5-15→X10] and [MIX10-10→X10]. Segmentation 182 

results were assessed separately for bone structures of the arm (radius, ulna, carpal, metacarpal, fingers) 183 

and for all other bone structures (that did not differ positionally). This analysis provided information 184 

regarding the necessary variability in the training dataset required to segment OOD data accurately. 185 

Algorithm performance for clinical OOD datasets 186 

We applied the trained network to two small pathological cohorts that were not part of the initial 187 

training set: three lymphoma and three mesothelioma lung cancer cases. The intent was to assess the 188 

performance of MOOSE on clinical datasets that differ significantly from the training data distribution. 189 

The segmentation quality was evaluated based on similarity space analysis (Z-scores). OOD datasets with 190 

incorrect segmentations were manually corrected, and the corrected segmentations were then appended 191 

to the original training datasets for retraining purposes.  192 
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Statistical assessment 193 

A paired t-test was applied to determine whether DSC values differed significantly between the 194 

various training sample sizes and to investigate the effect of training dataset variability (either fully OOD 195 

or mixed) on DSC values. In addition, a correlation analysis (Pearson’s rho) was performed to investigate 196 

the relationship between STAPLE variance and the DSC values associated with the best (D40) training 197 

sample size. A similar analysis was also performed using the ASSD metric. 198 

Software tool implementation 199 

Our processing pipeline is based on Python, and C++ programming languages, with the nnU-Net 200 

framework representing the segmentation backbone, built using PyTorch 1.6.031 (26). Similarity space 201 

was implemented using the morphometric capabilities of SimpleITK 2.1.0 (27), and manual cleaning of 202 

erroneous segmentation results was performed using 3D Slicer (28) (Version 4.11.20210226).  203 

  204 
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RESULTS 205 

Effect of training data size on segmentation performance 206 

The majority of non-cerebral tissues (81%) were segmented with high accuracy (DSC>0.90) as seen 207 

from Fig. 1. Of note, DSC analysis generally showed an excellent overlap between STAPLE-derived 208 

reference and organ segmentations based on 10 (D10), 20 (D20), and 40 (D40) training data sets. This 209 

excellent overlap was confirmed based on ASSD analysis, yielding average distances of 1.40 + 1.29, 1.05 + 210 

1.26 and 0.68 + 0.52mm for D10, D20 and D40, respectively. However, the performance of the automated 211 

segmentation was suboptimal for a small group of organs (highlighted in red, Fig. 1), with low median DSC 212 

and high SD values (Supplemental Fig. 4A), such as the adrenal glands (DSC=0.72), pancreas (0.85), and 213 

bladder (0.86). Subsequent correlation analysis of the STAPLE variance and the DSC values derived from 214 

the (best) D40 training set is shown in Supplemental Fig. 4B. The graph indicates an overall highly 215 

significant negative correlation (rho = -0.79, p = 0.002) with the three identified regions showing high 216 

STAPLE variance. This significant correlation with the STAPLE variance was also reproduced using the ASSD 217 

metric (rho = 0.60, p = 0.042, Supplemental Fig. 5), indicating that accurate segmentation of this subset 218 

of regions is challenging even for human experts. 219 

The segmentation performance for bone structures was similar to that of the abdominal organs 220 

(Fig. 2). Again, one notes an excellent overlap between the reference structure volumes and those 221 

obtained using the automated segmentation based on 10 (D10), 20 (D20), and 40 (D40) training data sets 222 

(ASSD of 1.63 + 3.01, 1.61 + 3.14 and 0.83 + 0.76mm, respectively), except for a small number of bone 223 

structures with either low DSC mean or high SD values (Supplemental Fig. 6). These structures were the 224 

carpal bones, metacarpal bones, and phalanges of the toes. Removal of these organs resulted in a similar 225 

segmentation performance between D20 and D40 (p = 0.07), with segmentation based on D10 remaining 226 

significantly worse than D20 (p = 0.016) and D40 (p = 0.010). 227 
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Although median DSC values of brain subregions derived from PET images were relatively low 228 

(only 29% of brain segments had median DSC values >0.90, see Supplemental Fig. 7), ASSD values showed 229 

sub-voxel differences between the template regions and the automated segmentation, with similar 230 

performance across the D10 (0.52 + 0.35mm), D20 (0.53 + 0.41mm) and D40 (0.46 + 0.27mm) datasets.  231 

Effect of training dataset variability on segmentation performance 232 

Results of dataset variability analysis are shown in Fig. 3. The figure indicates that segmentation 233 

of structures that substantially deviate from the ‘expected’ position in the training datasets was 234 

suboptimal. However, by including at least two cases that match the deviant position to the training 235 

dataset resulted in a significant performance improvement. Specifically, DSC values for bones of the arm 236 

were significantly lower for the fully OOD [SMS20→X10] scenario (DSC = 0.87 + 0.12) as compared to the 237 

three scenarios that included 10% [MIX2-18→X10] (DSC = 0.92 + 0.06; p = 0.04), 25% [MIX5-15→X10] (DSC 238 

= 0.940 + 0.003; p = 0.01) and 50% [MIX10-10→X10] (DSC = 0.91 + 0.04; p = 0.04) of cases that matched 239 

the deviant position. In addition, the COV for DSC values derived from the three mixed training datasets 240 

was significantly lower (COV = 6.6%, p = 0.01; COV = 3.3%, p = 0.03; COV = 4.3%. p = 0.01) as compared to 241 

the COV for DSC values derived using the fully OOD training dataset (COV = 13.5%). In comparison, 242 

performance of all four scenarios for bone structures that were matched in position between the training 243 

and test datasets was similar, with DSC values of >0.95 (Fig. 3). 244 

Detection of OOD segmentation errors 245 

Application of similarity space analysis identified segmentation errors in clinical datasets that 246 

included various anatomical pathologies, representing OOD datasets for specific organs. This was clearly 247 

demonstrated by applying the initially trained neural network to two distinct OOD datasets (lymphoma 248 

and mesothelioma) that were not part of the initial training set. Specifically, all lymphoma patients 249 

presented with splenomegaly which led to its incorrect classification as a “liver” and “spleen” (Fig. 4A). 250 

Following manual correction (time required ~3min per case), we appended two corrected data sets to the 251 
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original training set to retrain the neural network. The retrained neural network correctly segmented the 252 

abnormally enlarged spleen in the third lymphoma patient which was used as a hold-out dataset (Fig. 5). 253 

Similarly, the large tumor mass in the lungs of mesothelioma patients was incorrectly classified as 254 

part of the liver, heart, and bladder (Fig. 4B). Again, similarity space analysis identified the incorrect 255 

segmentation and labelled the dataset as representing an OOD image pattern (Fig. 6A). Following manual 256 

correction of two out of three patients, these two cases were again appended to the training data set, 257 

and the neural network was retrained using the extended training set. Once again, we determined an 258 

improvement in the segmentation performance of the third (uncorrected) data set (Fig. 6). 259 

  260 
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DISCUSSION 261 

Hybrid molecular imaging modalities, such as 18F-FDG PET/CT allow the investigation of multi-262 

organ systemic interactions through which living organisms maintain homeostasis and allostasis. The 263 

resulting images are not mere pictures - they represent a rich pallet of multi-dimensional data (29). By 264 

systemically parcellating these datasets into respective organ/tissue classes, one can, in theory, study 265 

system-level interactions in detail between the various homeostatic and allostatic networks, allowing a 266 

better understanding of pathological abnormalities in vivo. Nevertheless, manual segmentation of various 267 

tissues in the human body is not tenable, either in research applications or in clinical routine.  268 

To bridge this gap, we developed a fully-automated segmentation pipeline (MOOSE) that allows 269 

the creation of subject-specific multi-tissue FDG PET/CT atlases (Supplemental Fig. 2). These tissue-maps 270 

enables the extraction of subject-specific functional information from molecular imaging data with 271 

minimal additional effort for further analysis. We based the developed segmentation pipeline on the 272 

latest state-of-art nnU-Net architecture (15) and demonstrated that robust training of the convolutional 273 

neural network could be achieved with as low as 20 datasets, provided that sufficient variability in the 274 

training dataset is present. In addition, our results support the concept of data-centric AI, which focuses 275 

primarily on data quality rather than quantity.  276 

In general, MOOSE performed reasonably well in segmenting most of the non-cerebral tissues 277 

while exhibiting poorer segmentation performance on selected organs, such as thyroid, adrenal gland and 278 

bladder. Our correlation analysis revealed a significant negative correlation between the STAPLE variance 279 

and the DSC values derived from the (best) D40 training set (Supplemental Fig. 4B). This result suggests 280 

that, due to a combination of small organ size, low contrast and increased noise levels present in low-281 

dose CT images, accurate segmentation of bespoke structures is challenging even for human experts. 282 

AI, PET imaging, and systems biology 283 
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The ultimate objective of the developed multi-organ and tissue segmentation methodology is to 284 

promote the concept of whole-person research (30) and systems biomedicine (31) through whole/total-285 

body 18F-FDG PET/CT imaging. With the advent of large axial FOV PET/CT systems, most or all organs can 286 

be simultaneously imaged, therefore allowing an improved evaluation of interactions between organs in 287 

both healthy and diseased states. We envision that through automated extraction of rich physiological 288 

information inherent in PET/CT data (e.g., organ SUVs), disease-specific “metabolic fingerprints” can be 289 

derived that uniquely characterize diverse pathologies affecting system-level organ interaction 290 

(Supplemental Fig. 8). Such an analysis might uncover metabolic dependencies among sets of organs and 291 

might provide novel insights into metabolic pathway dysregulation associated with disease progression. 292 

Moreover, given the fact that non-cerebral tissues are segmented directly from CT data, this technique is 293 

insensitive to variations in PET tracer uptake patterns, thus allowing the study of diverse system-level 294 

functional processes using a multitude of function-specific radiotracers. 295 

Training of neural networks using sparse datasets 296 

It is commonly assumed that the performance of a neural network increases with the size of the 297 

training set. Therefore, most non-healthcare image classification applications are trained on vast numbers 298 

of training cases (e.g., ImageNet (32)). However, creating large training datasets in the medical field is 299 

problematic, as manual curation of medical images is highly time-consuming and heavily dependent on 300 

domain-specific human expert knowledge. In this study, 50 medical image datasets were manually 301 

segmented (into 120 objects for each dataset) by medical professionals. This process required significant 302 

personal effort by each expert and took several months to complete. Such an effort cannot be expected 303 

to be repeated numerous times when additional silos of data (possibly with a different distribution) 304 

become available.  305 

In recognition of this methodological constraint, we investigated the effect of both training 306 

sample size and training sample variability on segmentation performance. Our results demonstrate that 307 
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segmentation performance is primarily dependent on whether the training dataset allows the correct 308 

identification of several distinct unique image patterns, each characterized by a mean spatial pattern and 309 

the associated variance (Fig 4-6). This insight also explains why more cases are usually preferred, as it is 310 

likely that a greater number of unique image patterns can be captured using a larger dataset. However, 311 

the number of images needed per unique pattern is not evident. Our results suggest that accurate 312 

segmentation of abnormal image patterns is viable, provided that the training data includes a small 313 

number (2-4) of cases that establish a distinct image pattern with the associated morphological variance. 314 

A data-centric approach to segmentation 315 

Over the long run, any clinically viable medical image segmentation method will require a system 316 

where incoming data is constantly utilized to adjust model parameters to accommodate changing data 317 

distributions. To accomplish this, the implemented data-centric approach executes two operations: first, 318 

it performs active monitoring of segmentation performance followed by the users input to correct the 319 

erroneous segmentation, and second, implements periodic updating of model parameters through 320 

retraining of the neural network using an updated training set (which includes the manually corrected 321 

OOD data).  322 

In particular, segmentation performance is continuously monitored in similarity space, and 323 

feedback regarding segmentation accuracy is provided to the physician in the form of tissue-specific Z-324 

scores that signal potential deviations from tissue shape/position in the normative training data 325 

distribution. Based on this analysis, all tissues that are judged to be out-of-distribution (Z > 1.5) are 326 

flagged, and the physician is prompted for corrective action. This approach ensures adequate 327 

segmentation of all tissues present in abnormal datasets and provides important curated data for future 328 

retraining of the neural network. Moreover, this strategy addresses potential segmentation problems 329 

right when they occur in the processing pipeline, when corrective actions can be carried out most 330 

efficiently and with the least effort.  331 
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It is important to note that the presented segmentation framework bears its challenges. First and 332 

foremost, this methodology mandates a high-performance workstation which might be cost-prohibitive. 333 

Our network training was performed on a dedicated server (Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz 334 

32 CPU cores, 256 GB of RAM, and 1 x Nvidia GeForce RTX 3090 Ti), allowing the generation of one TB 335 

18FDG PET/CT tissue-map from an individual whole-body PET/CT dataset in about 30 minutes. Moreover, 336 

once OOD data sets are collected, the neural network needs to be retrained, which took approximately 337 

two days to complete using the above server configuration. Finally, there is some unavoidable subjectivity 338 

in identifying OOD data sets as the cut-off defining OOD data is based on heuristics. 339 

 340 

CONCLUSION 341 

We present here a fully-automated, data-centric segmentation pipeline for the creation of a total-342 

body 18F-FDG PET/CT tissue-map. The generated map is modular and consists of 120 tissues and bone 343 

structures, enabling the automated extraction of image information for both cerebral and non-cerebral 344 

regions, potentially providing added information about secondary abnormalities during the diagnostic 345 

process.  346 

  347 



  19 

CODE-AVAILABILITY 348 

We have named our software pipeline MOOSE120, which stands for Multi-Organ Objective 349 

Segmentation. MOOSE120 is free and is an open-source software. All codes related to MOOSE120 are 350 

available online. All models for our application are publicly available, and a complete description of the 351 

processing pipeline is available on our GitHub page (https://github.com/QIMP-Team/MOOSE).  352 
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KEY POINTS: 364 

QUESTION: How can we efficiently extract diagnostic information from whole-body 18F-FDG-PET/CT data? 365 

PERTINENT FINDINGS: An automated approach for multi-organ segmentation of whole-body 18F-FDG-366 

PET data is presented. It builds on the nnU-Net methodology driven by data-centric principles and 367 

supports accurate segmentation of 37 extra-cerebral and 83 cerebral regions. Over 92% of the non-368 

cerebral tissues were segmented with a Dice score value of more than 0.90, while 89% of the cerebral 369 

areas had a DSC of more than 0.80. 370 

IMPLICATIONS FOR PATIENT CARE: The developed software tool increases the amount of information 371 

extracted from standard, whole-body PET/CT datasets and provides means to perform system-level 372 

investigations into human physiology.   373 
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ETHICS DECLARATION 436 

All the data utilized in this study were acquired in accordance with the Declaration of Helsinki. Written 437 

informed consent was obtained from all the subjects prior to the examinations.  438 

Dataset Acquisition system Institutional Review Board Reference 

number 

34 18F-FDG PET/MR 

brain datasets 

Siemens Biograph mMR, 

Siemens Healthineers 

Medical University of Vienna EK1960/2014 

30 low-dose healthy 

control CT datasets 

uEXPLORER, United 

Imaging Healthcare 

The University of California 

at Davis  

I1341792-18 

20 low-dose mixed 

pathological Siemens 

CT datasets 

Siemens Biograph mCT 

TruePoint TrueV, 

Siemens Healthineers 

Medical University of Vienna EK1649/2016 

Three Lymphoma 

datasets 

Philips Gemini GXL16, 

Philips Medical Systems 

Protection des Personnes 

Sud-Est III, Hôpital HOTEL-

DIEU, Place de l'Hôpital  

 

Etude 

REMARC Réf: 

2009 - 006B; 

Eudract N°: 

2008-008202-

52. 

Three mesothelioma 

datasets 

Siemens Biograph mCT 

TruePoint TrueV, 

Siemens Healthineers 

Medical University of Vienna EK1649/2016 
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FIGURES 440 

 441 

Figure 1. Median DSCs of abdominal organs (10 test datasets) were obtained from models based on three 442 

separate training subsets: D40 (circle), D20 (square), D10 (triangle). The inverted triangle (pink) indicates 443 

the 0.90 mark. Red background highlights organs characterised by low median DSCs (<0.90) and high 444 

standard deviation (SD, see Supplemental Fig. 4).  445 
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 446 

Figure 2. Median DSCs of bone structures (10 test datasets) as obtained from models based on three 447 

separate training subsets: D40 (circle), D20 (square), and D10 (triangle). The inverted triangular marker 448 

indicates the 0.90 mark. Red background highlights bones characterised by low median DSCs (<0.90). 449 

     450 

  451 
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 452 

Figure 3. (A) Bar graph demonstrating a similar performance of different models for bone segmentation 453 

other than forearm bones. Green bar depicts the homogenous training dataset (SMS-20), whereas mixed 454 

training datasets (MIX2-18, MIX5-15, MIX10-10) are represented by red bars. (B) Bar graph showing 455 

segmentation performance of forearm bones. A significant performance improvement is seen in the 456 

mixed training datasets (red bars) compared to the homogeneous training dataset (green bar). (C) 457 

Forearm bone analysis of an individual subject. The images demonstrate that the forearm bones are 458 

incorrectly segmented in the case of the SMS20 (green background) model, whereas all mixed models 459 

accurately segmented the forearm bones (red background). 460 
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 461 

Figure 4 (A) Error analysis in similarity space for a representative lymphoma patient. Horizontal bars depict 462 

distance in similarity space, with blue bars characterizing organs with a z-value of <1.5. The figure shows 463 

z-scores >1.5 for the liver, kidneys, and bladder (red bars). Corresponding organ segmentations are 464 

displayed to the right for the liver (z = 1.9) and the heart (z = 9.9), indicating suboptimal segmentation 465 

results that require manual correction. (B) Error analysis in similarity space for a representative 466 

mesothelioma patient with z-scores >1.5 for the liver, heart, bladder, and lung. Incorrect organ 467 

segmentations are shown to the right for the liver (z = 2.8) and the heart (z = 8.4).  468 
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 469 

Figure 5 (A) Organ segmentation of a hold-out lymphoma test dataset using a training dataset that did 470 

not include splenomegaly cases. (B) Organ segmentation of the same patient following inclusion of 2 471 

(different) lymphoma datasets and model retraining using the expanded training dataset. It can be seen 472 

that the updated model is able to recognise the new image pattern resulting in a correct segmentation of 473 

both the liver and the spleen. 474 

 475 
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 476 

Figure 6 (A) Organ segmentation of a hold-out mesothelioma test dataset using a training dataset that did 477 

not include mesothelioma cases. (B) Organ segmentation of the same patient following inclusion of 2 478 

(different) mesothelioma datasets and model retraining using the expanded training dataset. The updated 479 

model recognized the new image pattern resulting in a correct segmentation of the heart. 480 

  481 
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SUPPLEMENTAL FIGURES 482 

 483 

 484 

 485 

Supplemental Figure 1. Life-cycle of data-centric AI approach. The main goal is to identify the datasets 486 

that cause a reduction in the model’s performance. Once these datasets are identified, they are added to 487 

the original training dataset, and the network is retrained. 488 

  489 
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 490 

Supplemental Figure 2. 18F-FDG total-body PET/CT tissue-map consisting of 120 unique tissues - both 491 

cerebral and non-cerebral structures. 492 

  493 
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 494 

Supplemental Figure 3. An example image of a low-dose CT from the Siemens (left) and uEXPLORER (right) 495 

system. The two images differ in their noise characteristics and the hand-positions of the subjects. 496 

Subjects scanned using the Siemens system position their hands side-by-side (left), while subjects scanned 497 

using the uEXPLORER system have their hands crossed across the chest (right). 498 

 499 
 500 
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 501 

Supplemental Figure 4. (A) Standard deviation (SD) values of Dice Score Coefficients (DSCs) were 502 

determined for various abdominal organs derived using 10 (D10), 20 (D20) and 40 (D40) training datasets. 503 

The graph indicates that SD values are similar for most organs except for the bladder, adrenal gland, 504 

thyroid and pancreas. (B) The correlation plot shows a highly significant negative correlation between the 505 

DSCs obtained from the D40 training dataset and the STAPLE variance. The organs with the lowest DSC 506 

values are also those with the highest SD (adrenal gland, pancreas and thyroid), indicating that 507 

segmentation of these three structures is problematic even for human experts. 508 
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 509 

Supplemental Figure 5. The correlation plot shows a significant correlation between the average 510 

symmetric surface distance (ASSD) and the STAPLE variance, indicating that the segmentation of the 511 

bladder, pancreas and the adrenal gland is more challenging than for other organs. It can be seen that the 512 

average misalignment between contours is about twice (>1mm) that of other organs, confirming the 513 

conclusion derived using the DSC metric.  514 

  515 

 516 
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 517 

Supplemental Figure 6. Standard deviation (SD) values of Dice Score Coefficients (DSCs), determined for 518 

various bone structures derived using 10 (D10), 20 (D20) and 40 (D40) training data sets. The graph 519 

indicates that the SD of the three data sets is similar for most organs, except for the radius and ulna. The 520 

variability in segmentation accuracy of these two bone structures is high in case of a small training data. 521 

 522 
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 523 

Supplemental Figure 7. Mean (A) and SD (B) values of the DSCs determined for various brain regions 524 

(denoted by dots) derived using 8 (D8), 16 (D16) and 24 (D24) training datasets. One can appreciate that 525 

increase in the training data set size has only a minor effect on segmentation performance, causing a small 526 

decrease in the DSC variance. 527 
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 528 

Supplemental Figure 8. Concept diagram showing the extraction of a “metabolic fingerprint” from PET/CT 529 

data obtained from a control and disease population. The developed automated multi-organ 530 

segmentation pipeline is used to extract organ SUV values from both groups (control: grey, disease: 531 

orange), allowing the study of systems-level alterations in the pattern of organ metabolic activity as a 532 

consequence of the disease process. 533 

  534 
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SUPPLEMENTAL TABLES 535 

Supplemental Table 1. List of cerebral (highlighted in green) and non-cerebral tissues (highlighted in 536 

orange) along with their corresponding label-index in the total-body digital FDG PET/CT tissue-map. 537 

Label-index Tissues 

1 R-Hippocampus 

2 L-Hippocampus 

3 R-Amygdala 

4 L-Amygdala 

5 R-Anterior-temporal-lobe-medial-part 

6 L-Anterior-temporal-lobe-medial-part 

7 R-Anterior-temporal-lobe-lateral-part 

8 L-Anterior-temporal-lobe-lateral-part 

9 R-Parahippocampal-and-ambient-gyri 

10 L-Parahippocampal-and-ambient-gyri 

11 R-Superior-temporal-gyrus-posterior-part 

12 L-Superior-temporal-gyrus-posterior-part 

13 R-Middle-and-inferior-temporal-gyrus 

14 L-Middle-and-inferior-temporal-gyrus 

15 R-Fusiform-gyrus 

16 L-Fusiform-gyrus 

17 R-Cerebellum 

18 L-Cerebellum 

19 Brainstem 

20 L-Insula 

21 R-Insula 

22 L-Lateral-remainder-of-occipital-lobe 

23 R-Lateral-remainder-of-occipital-lobe 

24 L-Cingulate-gyrus-gyrus-cinguli-anterior-part 

25 R-Cingulate-gyrus-gyrus-cinguli-anterior-part 

26 L-Cingulate-gyrus-gyrus-cinguli-posterior-part 

27 R-Cingulate-gyrus-gyrus-cinguli-posterior-part 
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28 L-Middle-frontal-gyrus 

29 R-Middle-frontal-gyrus 

30 L-Posterior-temporal-lobe 

31 R-Posterior-temporal-lobe 

32 L-Inferiolateral-remainder-of-parietal-lobe 

33 R-Inferiolateral-remainder-of-parietal-lobe 

34 L-Caudate-nucleus 

35 R-Caudate-nucleus 

36 L-Nucleus-accumbens 

37 R-Nucleus-accumbens 

38 L-Putamen 

39 R-Putamen 

40 L-Thalamus 

41 R-Thalamus 

42 L-Pallidum 

43 R-Pallidum 

44 Corpus-callosum 

45 R-Lateral-ventricle-excluding-temporal-horn 

46 L-Lateral-ventricle-excluding-temporal-horn 

47 R-Lateral-ventricle-temporal-horn 

48 L-Lateral-ventricle-temporal-horn 

49 Third-ventricle 

50 L-Precentral-gyrus 

51 R-Precentral-gyrus 

52 L-Straight-gyrus 

53 R-Straight-gyrus 

54 L-Anterior-orbital-gyrus 

55 R-Anterior-orbital-gyrus 

56 L-Inferior-frontal-gyrus 

57 R-Inferior-frontal-gyrus 

58 L-Superior-frontal-gyrus 

59 R-Superior-frontal-gyrus 

60 L-Postcentral-gyrus 
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61 R-Postcentral-gyrus 

62 L-Superior-parietal-gyrus 

63 R-Superior-parietal-gyrus 

64 L-Lingual-gyrus 

65 R-Lingual-gyrus 

66 L-Cuneus 

67 R-Cuneus 

68 L-Medial-orbital-gyrus 

69 R-Medial-orbital-gyrus 

70 L-Lateral-orbital-gyrus 

71 R-Lateral-orbital-gyrus 

72 L-Posterior-orbital-gyrus 

73 R-Posterior-orbital-gyrus 

74 L-Substantia-nigra 

75 R-Substantia-nigra 

76 L-Subgenual-frontal-cortex 

77 R-Subgenual-frontal-cortex 

78 L-Subcallosal-area 

79 R-Subcallosal-area 

80 L-Pre-subgenual-frontal-cortex 

81 R-Pre-subgenual-frontal-cortex 

82 L-Superior-temporal-gyrus-anterior-part 

83 R-Superior-temporal-gyrus-anterior-part 

84 Adrenal-glands 

85 Aorta 

86 Bladder 

87 Brain 

88 Heart 

89 Kidneys 

90 Liver 

91 Pancreas 

92 Spleen 
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93 Thyroid 

94 Inferior vena cava 

95 Lung 

96 Carpal 

97 Clavicle 

98 Femur 

99 Fibula 

100 Humerus 

101 Metacarpal 

102 Metatarsal 

103 Patella 

104 Pelvis 

105 Phalanges of the hand 

106 Radius 

107 Ribcage 

108 Scapula 

109 Skull 

110 Spine 

111 Sternum 

112 Tarsal 

113 Tibia 

114 Phalanges of the feet 

115 Ulna 

116 Skeletal-muscle 

117 Subcutaneous-fat 

118 Torso-fat 

119 Psoas 

120 Entire Skeleton 

  538 
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