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Noteworthy 

1. AI algorithms should be evaluated on clinical tasks.  

2. AI-algorithm evaluations should yield a claim that provides a clear and descriptive characterization 

of the performance of the AI algorithm on a clinical task. The claim should include a definition of 

the clinical task, patient population for whom the task is defined, definition of the imaging process, 

procedure to extract task-specific information and figure of merit to quantify task performance.  

3. We propose a four-class framework that evaluates AI algorithms for nuclear-medicine imaging on 

clinical tasks and yields a claim. The four classes in the framework include promise, technical, 

clinical, and post-deployment evaluation of AI algorithms. 

4. We provide best practices for determining study type, data collection, defining reference standard, 

and choosing figures of merit for each class of evaluation.   

5. Key recommendations are summarized as the RELAINCE (Recommendations for EvaLuation of 

AI for NuClear medicinE) guidelines.  
 

 

ABSTRACT 

 

An important need exists for strategies to perform rigorous objective clinical-task-based evaluation of 

artificial intelligence (AI) algorithms for nuclear medicine. To address this need, we propose a four-class 

framework to evaluate AI algorithms for promise, technical task-specific efficacy, clinical decision 

making, and post-deployment efficacy. We provide best practices to evaluate AI algorithms for each of 

these classes. Each class of evaluation yields a claim that provides a descriptive performance of the AI 

algorithm. Key best practices are tabulated as the RELAINCE (Recommendations for EvaLuation 

of AI for NuClear medicinE) guidelines. The report was prepared by the Society of Nuclear Medicine 

and Molecular Imaging AI taskforce Evaluation team, which consisted of nuclear-medicine physicians, 

physicists, computational imaging scientists, and representatives from industry and regulatory 

agencies.   

 

 

INTRODUCTION 

 

Artificial intelligence (AI)-based algorithms are showing tremendous promise across multiple aspects of 

nuclear medicine, including image acquisition, reconstruction, post-processing, segmentation, 

diagnostics, and prognostics. Translating this promise to clinical reality requires rigorous evaluations of 

these algorithms. Insufficient evaluation of AI algorithms may have multiple adverse consequences, 

including reducing credibility of research findings, misdirection of future research, and, most 

importantly, yielding tools that are useless or even harmful to patients (1). The goal of this report is to 

provide best practices to evaluate AI algorithms developed for different parts of the imaging pipeline 

ranging from image acquisition to post-processing to clinical decision making in the context of nuclear 

medicine. We provide these practices in the context of evaluating AI algorithms that use artificial neural 

network-based architectures, including deep learning. However, many principles are broadly applicable 

to other machine-learning and physics-based algorithms. In the rest of the report, AI algorithms refer to 

those that use artificial neural networks. 

 Evaluation has a well-established and essential role in the translation of any imaging technology but 

is even more critical for AI algorithms due to their working principles. AI algorithms are typically not 
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programmed with user-defined rules, but instead learn rules via analysis of training data. These rules 

are typically not explicit and thus not easily interpretable, leading to unpredictability in output. This leads 

to multiple unique challenges. First, AI algorithms may yield results that may impact performance on 

clinical tasks. For example, AI-based reconstruction may introduce spurious lesions (2), AI-based 

denoising may remove lesions (3), and AI-based lesion segmentation may incorrectly identify healthy 

tissue as malignancies (4). Such malfunctioning can adversely impact clinical utility. Evaluations are 

thus crucial to assess the algorithm’s clinical utility. A second challenge is that of generalizability. AI 

algorithms are often complicated models with many tunable parameters. These algorithms may perform 

well on training data, but not generalize to new data, such as from a different institution (5), population 

groups (6,7) or scanners (8). Possible reasons for this include that the algorithm uses data features that 

correlate with the target outcome only within training data, or that the training data does not sufficiently 

represent the patient population. Evaluations are needed to assess the generalizability of these 

algorithms. A third challenge is data drift during clinical deployment. When using AI systems clinically, 

over time, the input-data distribution may drift from that of the training data due to changes in patient 

demographics, hardware, acquisition and analysis protocols (9). Evaluation in post-deployment settings 

can help identify this data drift. Rigorous evaluation of AI algorithms is also necessary because AI is 

being explored to support decisions in high-risk applications, such as guiding treatment.  

  In summary, there is an important need for carefully defined strategies to evaluate AI algorithms, 

and such strategies should be able to address the unique challenges associated with AI techniques.  

To address this need, the Society of Nuclear Medicine and Molecular Imaging put together an 

Evaluation team within the AI taskforce. The team consisted of computational imaging scientists, 

nuclear-medicine physicians, nuclear-medicine physicists, biostatisticians, and representatives from 

industry and regulatory agencies. The team was tasked with defining best practices for evaluating AI 

algorithms for nuclear-medicine imaging. This report has been prepared by this team.   

In medical imaging, images are acquired for specific clinical tasks. Thus, AI algorithms developed 

for the various parts of the imaging pipeline, including acquisition, reconstruction, post-processing, and 

segmentation, should be evaluated on the basis on how well they assist in the clinical tasks. As 

described later, these tasks can be broadly classified into three categories: classification, quantification, 

or a combination of both (10,11). An oncological PET image may be acquired for the task of tumor-

stage classification or for quantification of tracer uptake in tumor. However, current Al-algorithm 

evaluation strategies are often task agnostic. For example, AI algorithms for reconstruction and post-

processing are often evaluated by measuring image fidelity to a reference standard using figures of 

merit (FoMs) such as root mean square error. Similarly, AI-based segmentation algorithms are 

evaluated using FoMs such as Dice scores. However, studies, including recent ones, show that these 

evaluation strategies may not correlate with clinical-task performance and task-based evaluations may 

be needed (2,3,11-15). One study observed that evaluation of a reconstruction algorithm for whole-

body FDG-PET using fidelity-based FoMs indicated excellent performance, but on the lesion-detection 

task, the algorithm was yielding both false negatives and positives due to blurring and pseudo-low-

uptake patterns, respectively (2). Similarly, an AI-based denoising method for cardiac SPECT studied 

using realistic simulations seemed to yield excellent performance as evaluated using fidelity-based 

FoMs. However, on the task of detecting perfusion defects, no performance improvement was 

observed compared to noisy images (3). Such findings show that task-agnostic approaches to evaluate 

AI algorithms have crucial limitations in quantifying performance on clinical tasks. Thus, evaluation 

strategies that specifically measure performance on clinical tasks are needed.  
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Evaluation studies should also quantitatively describe the generalizability of the AI algorithm to 

different population groups and to different portions of the imaging pipeline, including scanners, 

acquisition, and analysis protocols. Finally, evaluations should yield quantitative measures of 

performance to enable clear comparison with standard-of-care and other methods and provide 

guidance for clinical utility. To incorporate these needs, we recommend that an AI-algorithm evaluation 

strategy should always produce a claim consisting of the following components (Fig. 1): 

- A clear definition of the task 

- Patient population(s) for whom the task is defined 

- Definition of the imaging process (acquisition, reconstruction, and analysis protocols) 

- Process to extract task-specific information 

- Figure of merit to quantify task performance, including process to define reference standard 

We describe each component in the next Section. We next propose an evaluation framework that 

categorizes the evaluation strategies into four classes: proof-of-concept, technical, clinical and post-

deployment evaluation. This framework will serve as a guide to conduct the evaluation study that 

provides evidence to support the intended claim. We also provide best practices for conducting 

evaluations for each class. Key best practices are summarized as the RELAINCE (Recommendations 

for EvaLuation of AI for NuClear medicinE) guidelines.  

     In this report, the terms “training”, “validation” and “testing” will denote the building of a model on a 

specific dataset, the tuning/optimization of the model parameters, and the evaluation of the optimized 

model, respectively. The focus of this report is purely on testing/evaluation of an already developed AI 

algorithm. Best practices for development of AI algorithms are described in a companion paper (16).  
 

COMPONENTS OF THE CLAIM 

 

The claim provides a clear and descriptive characterization of the performance of an AI algorithm 

based on how well it assists in the clinical task. The components of a claim are shown in Fig. 1 and 

described below.  

 

Definition of the Clinical Task 

In this paper, the term “task” refers to the clinical goal for which the image was acquired. Broadly, in 

nuclear medicine, tasks can be grouped into three categories: classification (including lesion detection), 

quantification, or joint classification and quantification. A classification task is defined as one where the 

patient image is used to classify the patient into one of several categories. For example, identifying if 

cancer is present or absent or the cancer stage from an oncological PET image. Similarly, predicting 

whether a patient would/would not respond to therapy would be a classification task. A quantification 

task is defined as one where some numerical or statistical feature is estimated from the patient image. 

Examples include quantifying standardized uptake value, metabolic tumor volume, intra-lesion 

heterogeneity or kinetic parameters from oncological PET images.  

 

Patient Population for Whom the Task is Defined 

The performance of an imaging algorithm can be affected by the physical and statistical properties 

of the imaged patient population. Results for one population may not necessarily translate to others 

(5,7). Thus, the patient population should be defined in the claim. This includes aspects such as sex, 
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ethnicity, age group, geographic location, disease stage, social determinants of health, and other 

disease and application-relevant biological variables.  

 

Definition of Imaging Process 

The imaging system, acquisition protocol, and reconstruction and analysis parameters may affect 

task performance. For example, an AI algorithm evaluated for a high-resolution PET system may rely 

on high-frequency features captured by this system, and thus not apply to low-resolution systems (8). 

Depending on the algorithm, specific acquisition-protocol parameters may need to be specified or the 

requirement to comply with a certain accreditation standard, such as SNMMI-Clinical Trial Network, 

RSNA QIBA profile, and the EARL standards, may need to be stated. For example, an AI-based 

denoising algorithm for ordered-subsets-expectation-maximization (OSEM)-based reconstructed 

images may not apply to images reconstructed using filtered back-projection or even for a different 

number of OSEM iterations since noise properties change with iteration numbers. Thus, depending on 

the application, the claim should specify these parameters. Further, if the algorithm was evaluated 

across multiple scanners, or with multiple protocols, that should be specified.  

 

Process to Extract Task-Specific Information 

Task-based evaluation of an imaging algorithm requires a strategy to extract task-specific 

information from the images. For classification tasks, a typical strategy is to have human observer(s) 

read the images, detect lesions, and classify the patient or each detected lesion into a certain class 

(e.g., malignant or benign). Here, observer competency (multiple trained radiologists/one trained 

radiologist/resident/untrained reader) will impact task performance. The choice of the strategy may 

impact confidence of the validity of the algorithm. This is also true for quantification and joint 

classification/quantification tasks. Thus, this strategy should be specified in the claim.  

 

Figure of Merit (FoM) to Quantify Task Performance 

FoMs quantitatively describe the algorithms performance on the clinical task, enabling comparison 

of different methods, comparison to standard of care, and defining quantitative metrics of success. 

FoMs should be accompanied by confidence intervals (CIs), which quantify uncertainty in performance. 

To obtain the FoM, a reference standard is needed. The process to define the reference standard 

should be stated.  

 

 
Fig. 1: The components of a claim 
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The Claim Describes the Generalizability of an AI algorithm 

Generalizability is defined as an algorithms ability to properly work with new, previously unseen 

data, such as that from a different institution, scanner, acquired with a different image-acquisition 

protocol or processed by a different reader. By providing all the components of a claim, an evaluation 

study will describe the algorithm’s generalizability to unseen data, since the claim will specify the 

characteristics of the population used for evaluation, state whether the evaluation was single or multi-

center, define the image acquisition and analysis protocols used, as well as the competency of the 

observer performing the evaluation study. Fig. 2 presents a schematic showing how different kinds of 

generalizability could be established. Some key points from this figure are listed below: 

- Providing evidence for generalizability requires external validation. This is defined as validation 

where some portion of the testing study, such as the data (patient population demographics) or the 

process to acquire the data, is different from that in the development cohort. Depending on the level 

of external validation, the claim can be appropriately defined.  

- For a study that claims to be generalizable across populations, scanners, and readers, the external 

cohort would be from different patient demographics, with different scanners, and analyzed by 

different readers than the development cohort, respectively.  

- Multi-center studies provide higher confidence about generalizability compared to single-center 

studies since they typically include some level of external validation (patients from different 

geographical locations/different scanners/different readers).  

 

METHODS FOR EVALUATION 

 

The evaluation framework for AI algorithms is provided in Fig. 3. The four classes of this framework 

are differentiated based on their objectives, as briefly described below, with details provided in the 

ensuing subsections. An example for an AI low-dose PET reconstruction algorithm is provided. Fig. 3 

contains another example for an AI-based automated segmentation algorithm. A detailed example of 

 
Fig. 2: increasing levels of rigor of evaluation, and how they in turn provide increased confidence in the 

generalizability 
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using this framework to evaluate a hypothetical AI-based transmission-less attenuation compensation 

method for SPECT (Supplemental Fig. 1) (17) is provided in Supplemental section A. 

- Class 1: Proof-of-concept (POC) evaluation: Shows the novelty and promise of an algorithm 

proposed using task-agnostic FoMs. Provides promise for further clinical task-specific 

evaluation.  

Example: Evaluating the AI PET reconstruction algorithm using root mean square error. 

- Class 2: Technical task-specific evaluation: Quantifies technical performance of an algorithm on 

a clinical task using measures such as accuracy, repeatability, and reproducibility.  

Example: Evaluating accuracy on the task of lesion detection with the AI low-dose PET 

reconstructed images. 

- Class 3: Clinical evaluation: Quantifies the algorithm’s efficacy to assist in making clinical 

decisions. AI algorithms that claim improvements in making diagnostic, predictive, prognostic, or 

therapeutic decisions require clinical evaluation.  

Example: Evaluating the AI reconstruction algorithm on the task of clinically diagnosing patients 

referred with the suspicion of recurrence of cancer. 

- Class 4: Post-deployment evaluation: Monitor algorithm performance in dynamic real-world 

settings after clinical deployment. This may also assess off-label use, such as the algorithm’s 

utility in populations and diseases beyond the original claim or with improved imaging cameras 

and reconstructions that were not used during training. Additionally, this evaluation assesses 

clinical utility and value over time.  

Example: Evaluating whether the AI PET reconstruction algorithm remains effective over time 

after clinical deployment.  

 

 

 
Fig. 3: Framework for evaluation of AI-based algorithms. The left of the pyramid provides a brief description 

of the phase, and the right provides an example of evaluating an AI-based segmentation algorithm on the 

task of evaluating metabolic tumor volume (MTV) using this framework.  
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In the subsections below, for each class of evaluation, we provide the key objectives, the best 

practices for study design (including determining study type, data collection, defining a reference 

standard, and choosing FoMs (Fig. 4)), and finally, a generic structure for the claim.  

 

M.1 Proof-of-concept (POC) evaluation  

 

Objective 

Quantitatively demonstrate the technological innovations of newly developed AI algorithms using 

task-agnostic FoMs and provide evidence that motivates clinical task-specific evaluation. Clinical or 

task-specific technical claims should not be put forth based on POC evaluation.  

 

Rationale for Task-agnostic Objective 

A newly developed AI algorithm may be suitable for multiple clinical tasks. For example, a 

segmentation algorithm may be applicable to radiation-therapy planning, estimating volumetric or 

radiomic features, or monitoring therapy response. Evaluating the algorithm on all these tasks would 

require multiple studies. Further, necessary resources (such as a large, representative dataset) may 

not be available to conduct these studies. Thus, a task-agnostic objective facilitates timely 

dissemination and widens the scope of newly developed AI methods.   

 

Study Design 

 The following are recommended best practices to conduct POC evaluation of an AI algorithm. Best 

practices to develop the algorithm are covered in the companion paper (16).  

 

Data Collection. In POC evaluation, the study can use realistic simulations, physical phantoms, 

and/or retrospective clinical or research data, usually collected for a different purpose, e.g., routine 

diagnosis. The data used for evaluation may come from the development cohort, i.e., the same 

overall cohort that the training and validation cohorts were drawn from. However, there must be no 

overlap between these data. Public databases, such as those available at The Cancer Imaging 

 
Fig. 4: Elements of study design for each class of evaluation 
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Archive (18) and from medical image analysis challenges, such as at https://grand-challenge.org, 

can also be used. 

 

 Defining Reference Standard. For POC evaluations conducted with simulation and physical 

phantoms, the ground truth is known. For clinical data, curation by readers may be used, but that 

may not be of the highest quality. For example, curations by single reader may be sufficient.  

 

Testing Procedure. The testing procedure should be designed to demonstrate promising 

technological innovation. The algorithm should thus be compared against reference and/or 

standard-of-care methods, and preferably other state-of-the-art algorithms.  

 

 Figures of Merit. While the evaluation is task-agnostic, the FoMs should be carefully chosen to 

show promise for progression to clinical task evaluation. For example, evaluating a new denoising 

algorithm that overly smooths the image at the cost of resolution using the FoM of contrast-to-noise 

ratio may be misleading. In those cases, a FoM such as structural similarity index may be more 

relevant. We recommend evaluation of the algorithms using multiple FoMs. A list of some FoMs is 

provided in Supplemental Table 1.  

 

Output Claim of the POC Study 

The claim should state the following: 

- The application (e.g., segmentation, reconstruction) for which the method is proposed.  

- The patient population. 

- The imaging and image-analysis protocol(s).  

- Process to define reference standard  

- Performance as quantified with a task-agnostic evaluation metric.  

We re-emphasize that the POC study claim should not be interpreted as an indication of the algorithm’s 

expected performance in a clinical setting or on any clinical task.  

 

Example Claim 

Consider the evaluation of a new segmentation algorithm. The claim could read as follows: 

“An AI-based PET segmentation algorithm evaluated on 50 patients with locally advanced breast 

cancer acquired on a single scanner with single-reader evaluation yielded mean Dice scores of 0.78 

(95% CI 0.71-0.85).” 

 

M.2 Technical task-specific evaluation  

 

Objective 

To evaluate the technical performance of an AI algorithm on specific clinically relevant tasks such 

as those of detection and quantification using FoMs that quantify aspects such as accuracy 

(discrimination accuracy for detection task and measurement bias for quantification task) and precision 

(reproducibility and repeatability). The objective is not to assess the utility of the method in clinical-

decision making, since clinical-decision making is a combination of factors beyond technical aspects, 

such as prior clinical history, patient biology, other patient characteristics (age/sex/ethnicity) and results 

of other clinical tests. Thus, this evaluation does not consider clinical outcomes.  
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For example, evaluating the accuracy of an AI-based segmentation method to measure metabolic 

tumor volume (MTV) would be a technical efficacy study. This study would not assess whether more 

accurate MTV measurement led to any change in clinical outcome.  

 

Study Design 

Given the goal of evaluating technical performance, the evaluation should be performed in 

controlled settings. Practices for designing such 

studies are outlined below. A framework and 

summary of tools to conduct these studies in 

context of PET is provided in Jha et al (10).  

 Study Type. A technical evaluation study 

can be conducted through the following 

mechanisms:  

1) Realistic simulations are studies 

conducted with anthropomorphic 

digital phantoms simulating patient 

populations, where measurements 

corresponding to these phantoms are 

generated using accurately simulated 

scanners. This includes virtual clinical 

trials, which can be used to obtain 

population-based inferences (19-21).  

2) Anthropomorphic physical-phantom 

studies are conducted on the 

scanners with devices that mimic the human anatomy and physiology.  

3) Clinical-data-based studies where clinical data is used to evaluate the technical performance 

of an AI algorithm. For example, repeatability of an AI algorithm measuring MTV in test-retest 

PET scans. 

 

The tradeoffs with these three study types are listed in Table 1. Each study type can be single or 

multi-scanner/center, depending on the claim: 

- Single-center/single-scanner studies are typically performed with a specific system, image 

acquisition and reconstruction protocol. In these studies, the algorithm performance can be 

evaluated for variability in patients, including different demographics, habitus, or disease 

characteristics, while keeping the technical aspects of the imaging procedures constant. These 

studies can measure the sensitivity of the algorithm to patient characteristics. They can also 

study the repeatability of the AI algorithm. Reproducibility may be explored by varying factors 

such as reconstruction settings. 

- Multi-center/multi-scanner studies are mainly suitable to explore the sensitivity of the AI 

algorithm to acquisition variabilities, including variability in imaging procedures, systems, 

reconstruction methods and settings, and patient demographics if using clinical data. Typically, 

multi-center studies are performed to improve patient accrual in trials and therefore the same in- 

and exclusion criteria are applied to all centers. Further, multicenter studies can help assess the 

need for harmonization of imaging procedures and system performances.  

 
Table 1: Technical evaluation: Comparison of different study types, 

associated trade-offs, and criterion that can be evaluated with the 

study type  

Simulation 

studies

Physical 

phantoms

Clinical 

studies

Advantage

Known ground truth Y Y Rarely

Scanner-based Y Y

Model patient biology
Yes, but 

limited
Y

Model population variability Y Y

Criterion that 

can be 

evaluated

Accuracy Y Y

Repeatability/ reproducibility/noise 

sensitivity with multiple replicates
Y Y

Repeatability/ reproducibility/noise 

sensitivity with test-retest 

replicates

Y
Yes and 

recommended

Biological repeatability/ 

reproducibility/noise sensitivity
Y

Other factors to 

consider

Costs Low Medium High

Time Low Medium High

Confidence about clinical realism Low Medium High
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 Data Collection.   

• Realistic simulation studies: To conduct realistic simulations, multiple digital anthropomorphic 

phantoms are available (22). In virtual clinical trial-based studies, the distribution of simulated 

image data should be similar to that observed in clinical populations. For this purpose, 

parameters derived directly from clinical data can be used during simulations (4). Expert 

reader-based studies can be used to validate realism of simulations (23).  

Next, to simulate the imaging systems, tools such as GATE (24), SIMIND (25), SimSET (26), 

PeneloPET (27), and other tools (10) can be used. Different system configurations, including 

those replicating multi-center settings, can be simulated. If the methods use reconstruction, 

then clinically used reconstruction protocols should be simulated.  

Simulation studies should not use data used for algorithm training/validation. 

• Anthropomorphic physical-phantoms studies: For clinical relevance, the tracer uptake and 

acquisition parameters when imaging these phantoms should mimic that in clinical settings. 

To claim generalizable performance across different scanner protocols, different clinical 

acquisition and reconstruction protocols should be used. A phantom used during training 

should not be used during evaluation irrespective of changes in acquisition conditions 

between training and test phases. 

• Clinical data: Technical evaluation studies will typically be retrospective. Use of external 

datasets, such as those from an institution or scanner not used for method training/validation, 

is recommended. Public databases may also be used. Selection criteria should be defined.  

 

Process to Extract Task-Specific Information. 

• Classification task: Performance of AI-based reconstruction or post-reconstruction algorithms 

should ideally be evaluated using psychophysical studies by expert readers. Methods such 

as two alternative forced choice tests and ratings-scale approaches could be used. When 

human-observer studies are infeasible, validated numerical anthropomorphic observers, such 

as the channelized Hotelling observer with anthropomorphic channels, could be used 

(11,28,29). This may be a better choice than using untrained human observers, who may 

yield misleading measures of task performance. AI algorithms for optimizing 

instrumentation/acquisition can be evaluated directly on projection data. This provides the 

benefit that the evaluation would be agnostic to the choice of the reconstruction and analysis 

method (30,31). In this case, observers that are optimal in some sense, such as the ideal 

observer (which yields the maximum possible area under the receiver operating 

characteristics (ROC) curve (AUC) of all observers) should be used (28). The ideal observer 

can be challenging to compute in clinical settings, and to address this, different strategies are 

being developed (32,33). An example of evaluating a hypothetical AI method for improving 

timing resolution in a time-of-flight PET system is presented in Jha et al (10).  

• Quantification task: The task should be performed using optimal quantification procedures to 

ensure that the algorithm evaluation is not biased due to a poor quantification process. Often, 

performing quantification requires an intermediate manual step. For example, the task of 

regional uptake quantification from reconstructed images may require manual delineation of 

regions of interest. Expert readers should perform these steps. Nuclear medicine images are 

noisy and corrupted by image-degrading processes. Thus, the process of quantification 
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should account for the physics and statistical properties of the measured data. For example, 

if evaluating a segmentation algorithm on the task of quantifying a certain feature from the 

image, the process of estimating that feature should account for the image-degrading 

processes and noise (10). Maximum-likelihood estimation methods could be an excellent 

choice since they are often unbiased and if an efficient estimator exists, they are efficient 

(11). If using prior information on the parameters to be estimated, maximum-a-posteriori (34) 

and posterior-mean (35) estimators could be used. In several cases, measuring quantitative 

features directly from projection data may yield optimal quantification (36,37) and can be 

considered.  

• Joint classification/quantification task: These tasks should again be performed optimally. If 

manual inputs are needed for the classification or quantification component of the task, these 

should be provided by expert readers. Numerical observers such as channelized scanning 

linear observers (38) and those based on deep learning (39) can also be used.  

 

 Defining a Reference Standard. For simulation studies, the ground-truth is known. Experimental 

errors may arise when obtaining ground truth from physical-phantom studies, and preferably, these 

should be modeled during the statistical analysis. For clinical studies, ground truth is commonly 

unavailable. A common workaround is to define a reference standard. The quality of curation to define 

this standard should be high. When the reference standard is expert defined, multi-reader studies are 

preferred where the readers have not participated in the training of the algorithm, and where each 

reader independently interprets images, blinded to the results of the AI algorithm and the other readers 

(40). In other cases, the reference standard may be the current clinical practice. Finally, another 

approach is to use no-gold-standard evaluation techniques, which have shown ability to evaluate 

algorithm performance on quantification tasks without ground truth (41-43). 

 

 Figures of Merit. A list of FoMs for different tasks is provided in Supplemental Table 2. Example 

FoMs include AUC to quantify accuracy on classification tasks, bias, variance, and ensemble mean 

square error to quantify accuracy, precision and overall reliability on quantification tasks, and area 

under the estimation ROC curve for joint detection/classification tasks. Overall, we recommend the use 

of objective task-based measures to quantify performance, and not measures that are subjective and 

do not correspond to the clinical task. For a multicenter study, variability of these FoMs across centers, 

systems and/or observers should be reported. 

 

Output Claim from Evaluation Study 

The claim will consist of the following components: 

- The clinical task (detection/quantification/combination of both) for which the algorithm is 

evaluated.  

- The study type (simulation/physical phantom/clinical).  

- If applicable, the imaging and image-analysis protocol.  

- If clinical data, process to define ground truth.  

- Performance, as quantified with task specific FoMs. 

 

Example Claim 
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Consider the same automated segmentation algorithm as mentioned in the proof-of-concept section 

being evaluated to estimate MTV. The claim could be: 

“An AI-based fully automated PET segmentation algorithm yielded MTV values with a normalized 

bias of X% (provide 95% confidence intervals) as evaluated using physical-phantom studies with an 

anthropomorphic thoracic phantom conducted on a single scanner in a single center.”  

 

M.3 Clinical evaluation  

 

Objective 

Evaluate the impact of the AI algorithm on making clinical decisions, including diagnostic, 

prognostic, predictive and therapeutic decisions for primary end points such as improved accuracy or 

precision in measuring clinical outcome. While technical evaluation was geared towards quantifying the 

performance of a technique in controlled settings, clinical evaluation investigates clinical utility in a 

practical setting. This evaluation will assess the added value that the AI algorithm brings to clinical 

decision making.  

 

Study Design 

 Study Type. Following study types can be used: 

- Retrospective study: A retrospective study employs existing data sources. In a blinded 

retrospective study, readers analyzing the study data are blinded to the relevant clinical 

outcome. Retrospective studies are the most common mechanism to evaluate AI algorithms. 

Advantages of these studies include low costs and quicker execution. These studies can 

provide considerations for designing prospective studies. With rare diseases, these may be 

the only viable mechanism for evaluation. However, these studies cannot conclusively 

demonstrate causality between the algorithm output and the clinical outcome. Also, these 

studies may be affected by different biases such as patient-selection bias.   

- Prospective observational study: In this study, the consequential outcomes of interest occur 

after study commencement, but the decision to assign participants to an intervention is not 

influenced by the algorithm (44). These studies are often secondary objectives of a clinical 

trial. 

- Prospective interventional study: In a prospective interventional study of an AI algorithm, the 

decision to assign the participant to an intervention depends on the AI-algorithm output. These 

studies can provide stronger evidence for causation of the AI-algorithm output to clinical 

outcome. The most common and strongest prospective interventional study design are 

randomized control trials, although other designs such as non-randomized trials and quasi-

experiments are possible (45). Randomized control trials are considered the gold standard of 

clinical evaluation but are typically logistically challenging, expensive, and time consuming, 

and should not be considered as the only means to ascertain and establish effective 

algorithms. 
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- Real-world post-deployment evaluation studies: These studies use real-world data from AI 

algorithms that have received regulatory clearance43. Such studies have the potential to 

provide information on a wider patient population compared to a prospective interventional 

study. Moreover, the real-world data can not only be leveraged to improve performance of the 

initially cleared AI device but also evaluate new clinical applications that require the 

same/similar data as the initially cleared AI-module, thus saving time and cost. The study 

design should be 

carefully crafted with a 

study protocol and 

analysis plan defined 

prior to 

retrieving/analyzing 

the real-world data 

(46,47), with special 

attention paid to 

negate bias (48).  

 

Choosing the study 

type: This is a multi-

factorial decision (Fig. 

5). To decide on the 

appropriate study type, 

we make a distinction 

between AI algorithms 

that make direct interventional recommendations (prescriptive AI) and those that do not 

(descriptive AI):  

- A purely descriptive AI algorithm does not make direct interventional recommendations but 

may alter clinical decision making. The algorithms can be further categorized into those that 

describe the present (e.g., for diagnosis, staging, therapy response assessment) vs. those 

that predict the future (e.g., prognosis of therapy outcome, disease progression, overall 

survival). There are close links between these two categories, and the line between them 

will likely be increasingly blurred in the era of AI: e.g., more-refined AI-derived cancer 

staging that is trained with outcome data and therefore becomes highly predictive of 

outcome. A well-designed blinded retrospective study is sufficient to evaluate a purely 

descriptive AI system. However, if clinical data for a retrospective study do not exist, a 

prospective observational or real-world study is required.  

- A prescriptive AI algorithm makes direct interventional recommendation(s). It may have no 

autonomy (i.e., only making a recommendation to a physician) or full autonomy (no 

supervision), or grades in between. For a prescriptive AI algorithm that is not autonomous, a 

prospective interventional study is recommended. A well-designed real-world study may be 

used as a substitute. However, for a fully autonomous prescriptive AI system of the future 

(e.g., fully automated therapy delivery), such a study may be required. Future studies and 

recommendations are needed for autonomous prescriptive AI systems, as the field is not 

 
Fig. 5: Flowchart to determine the clinical evaluation strategy 
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mature enough. Thus, we limit the scope of this section to only those systems that have 

expert physician supervision.  

 

 Data Collection. An AI algorithm yielding strong performance using data from one institution may 

perform poorly on data from other institutions (5). Thus, we recommend that for clinical evaluation, test 

data should be collected from different, and preferably multiple, institutions. Results from external 

institutions can be compared with internal hold-out samples (data from the same institution not used for 

training) to evaluate generalizability. To avoid variation due to site selection used for the external 

validation, or random bias in internal sample selection, leave-one-site repeated hold-out (for example 

10-fold cross-validation) strategy can be used with a dataset that is completely independent from the 

training and validation dataset. 

  To demonstrate applicability over a certain target population, the collected data should be 

representative of that population in terms of demographics. When the goal is studying performance on 

a specific population subset (e.g., patients with large body mass indices) or check sensitivity of the 

method to certain factors (e.g., patients with metallic implants), the other criteria for patient selection 

should be unbiased. This ensures that the evaluation specifically studies the effect of that factor.  

In studies that are retrospective or based on real-world data, once a database has been set up 

corresponding to a target population using existing datasets, patients should be randomly selected from 

this database to avoid selection bias. 

Sample-size considerations: The study must have a predefined statistical analysis plan (49). The 

sample size is task dependent. For example, if the claim of improved AUC with the use of the AI 

method vs. a non-AI approach or standard clinical analysis is studied, then the sample size will be 

dictated by the detection of the expected change between the two AUCs. Inputs required for power 

analysis to compute sample size may be obtained from POC and technical evaluation studies or 

separate pilot studies.  

 

 Defining Reference Standard. For clinical evaluation, the reference standard should be carefully 

defined. This requires in-depth clinical and imaging knowledge of the data. Thus, medical experts 

should be involved in defining task-specific standard. Some reference standards are listed below: 

- Clinical outcomes: Eventually the goal of imaging is to improve clinical outcomes. Outcomes such 

as overall survival, progression-free survival, major clinical events, and hospitalization, could thus 

serve as gold standards, especially for demonstrating clinical utility in predictive and prognostic 

tasks. A decrease in the use of resources because of the AI tool with comparable outcomes could 

also be a relevant and improved outcome (e.g., fewer non-essential call back tests with AI). 

- External standard: For disease diagnosis tasks, when available, an external standard such as 

invasive findings, e.g., biopsy-pathology or invasive coronary angiography, or some other 

definitive diagnosis (derived from other means than the images utilized) should be considered.  

- Trained-reader-defined clinical diagnosis: For diagnostic tasks, expert reader(s) can be used to 

assess the presence/absence of the disease. Similar best practices as outlined for evaluating 

technical efficacy should be followed to design these studies. However, note that, unlike technical 

evaluation, here the goal is disease diagnosis. Thus, the readers should also be provided other 

factors that are used to make a clinical decision, such as the patient age, sex, ethnicity, other 

clinical factors that may impact disease diagnosis, and results from other clinical tests. Note that 

if the reference standard is defined using a standard-of-care clinical protocol, it may not be 
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possible to claim improvement over with this protocol. In such a case, agreement-based studies 

can be performed and concordance with this protocol results could be claimed within certain 

confidence limits. For example, to evaluate the ability of an AI-based transmission-less 

attenuation compensation algorithm for SPECT/PET, we may evaluate agreement of the 

estimates yielded by this algorithm with that obtained when a CT is used for attenuation 

compensation (50). 

 

Figure of Merit. We recommend quantifying performance on strong, impactful, and objectively 

measurable endpoints such as improved accuracy or precision in measuring clinical outcome. The 

FoMs are summarized in Supplemental Table 2. To evaluate performance on diagnosis tasks, the 

FoMs of sensitivity, specificity, ROC curves, and AUC can be used. Since the goal is demonstrating 

the performance of the algorithm in clinical decision making, sensitivity and specificity may be 

clinically more relevant than AUC. To demonstrate clinical utility in predictive and prognostic decision 

making, in addition to AUC, FoMs that quantify performance in predicting future events such as 

Kaplan-Meier estimators, prediction risk score and median time of future events can be used.   

Output Claim from Clinical Evaluation Study 

The claim will state the following: 

- The clinical task for which the algorithm is evaluated. 

- The patient population over which the algorithm was evaluated.  

- The specific imaging and image-analysis protocol(s) or standards followed.  

- Brief description of study design: Blinded/non-blinded, randomized/non-randomized, 

retrospective/prospective/post-deployment, observational/interventional, number of readers.  

- Process to define reference standard and figure of merit to quantify performance in clinical 

decision making.  

 

Example Claims 

i.Retrospective study: The average AUC of 3 experienced readers on the task of detecting 

obstructive coronary artery disease from myocardial perfusion PET scans improved from X to Y, 

representing an estimated difference of 𝛥  (95% CI for 𝛥), when using an AI-based diagnosis tool 

compared to not using this tool, as evaluated using a blinded retrospective study. 

ii.Prospective observational study: Early change in MTV measured from FDG-PET using an AI-based 

segmentation algorithm yielded an increase in AUC from X to Y, representing an estimated 

difference of 𝛥  (95% CI for 𝛥) in predicting pathological complete response in patients with stage 

II/III breast cancer, as evaluated using a non-randomized prospective observational study.  

iii.Prospective interventional study: Changes in PET-derived quantitative features estimated with the 

help of an AI algorithm during the interim stage of therapy were used to guide treatment decisions 

in patients with stage III NSCLC. This led to an X% increase (95% CI) in responders than when the 

AI algorithm was not used to guide treatment decisions, as evaluated using a randomized 

prospective interventional study.  

 

M.4. Post-deployment evaluation 

 

Objective 
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Post-deployment evaluation has multiple objectives. A key objective is monitoring algorithm 

performance post clinical deployment including evaluating clinical utility and value over time. Other 

objectives include off-label evaluation and collecting feedback for proactive development (Fig. 6).  

Evaluation Strategies 

 Monitoring. Quality and patient safety are critical factors in post-deployment monitoring of an AI 

algorithm. It is imperative to monitor devices and follow reporting guidelines (such as adverse events), 

recalls and corrective actions. Fortunately, applicable laws and regulations require efficient processes 

in place. Often, logging is used to identify root causes for equipment failure. However, the concept of 

logging can be expanded: advanced logging mechanisms could be employed to better understand use 

of an AI algorithm. A simple use case is logging the frequency of using an AI algorithm in clinical 

workflow. Measuring manual intervention for a workflow step that was designed for automation could 

provide a first impression of the performance in a clinical environment. However, more complex use 

cases may include the aggregation of data on AI-algorithm performance and its impact on patient and 

disease management. For wider monitoring, feedback should be sought from customers, including 

focus groups, customer complaint and inquiry tracking, and ongoing technical performance 

benchmarking (51). This approach may provide additional evidence on algorithm performance and 

could assist in finding areas of improvements, clinical needs not well served or even deriving a 

hypothesis for further development. Advanced data logging and sharing must be compliant with 

applicable patient privacy and data protection laws and regulations. 

Routinely conducted image-quality phantom studies also provide a mechanism for post-deployment 

evaluation by serving as sanity checks to ensure that the AI algorithm was not affected by a 

maintenance operation such as a software update. These studies could include assessing contrast or 

standardized uptake value recovery, absence of non-uniformities or artifacts, and cold-spot recovery, 

and other specialized tests depending on the AI algorithm. Also, tests can be conducted to assure that 

there is a minimal or harmonized image quality as required by the AI tool for the configurations as 

stated in the claim.  

AI systems likely will operate on data generated in non-stationary environments with shifting patient 

populations and clinical and operational practices changing over time (9). Post-deployment studies can 

help identify these dataset shifts and assess if recalibration or retraining of the AI method may be 

necessary to maintain performance (52,53). Monitoring the distribution of various patient-population 

descriptors, including demographics and disease prevalence can provide cues for detecting dataset 

shifts. In case of changes in these descriptors, the output of the AI algorithm can be verified by 

physicians for randomly selected test cases. A possible solution to data shift is continuous learning of 

the AI method (54). In Supplemental section B, we discuss strategies (55-57) to evaluate continuous-

learning-based methods.  
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 Off-label Evaluation.  Typically, 

an AI algorithm is trained and 

tested using a well-defined cohort 

of patients, in terms of patient 

demographics, applicable 

guidelines, practice preferences, 

reader expertise, imaging 

instrumentation, and acquisition 

and analysis protocols. However, 

the design of the algorithm may 

suggest acceptable performance in 

cohorts outside of the intended 

scope of the algorithm. Here, a 

series of cases is appropriate to 

collect preliminary data that may 

suggest a more thorough trial. An 

example is a study where an AI 

algorithm that was trained on 

patients with lymphoma and lung cancer (58) showed reliable performance in patients with breast 

cancer (59).  

 

 Collecting Feedback for Proactive Development. Medical products typically have a long lifetime. 

This motivates proactive development and maintenance to ensure that a product represents state of the 

art throughout its lifetime. This may be imperative for AI where technological innovations are expected 

to evolve at a fast pace in the coming years. A deployed AI algorithm offers the opportunity to pool data 

from several users. Specifically, registry approaches enable cost efficient pooling of uniform data, multi-

center observational studies, and POC studies that can be used to develop a new clinical hypothesis or 

evaluate specific outcomes for particular diseases.  

 

Figures of Merit 

We provide the FoMs for the studies where quantitative metrics of success are defined.  

● Monitoring study with clinical data: Frequency of clinical usage of the AI algorithm, number of 

times the AI-based method changed clinical decisions or affected patient management. 

● Monitoring study with routine physical-phantom studies: Since these are mostly sanity checks, 

similar FoMs as when evaluating POC studies may be considered. In case task-based 

evaluation is required, FoMs as provided in Supplemental Table 1 may be used.     

● Off-label evaluation: Similar FoMs as when performing technical and clinical evaluation.  

 

DISCUSSIONS  

The key recommendations from this manuscript are summarized in Table 2. These are referred to 

as the RELAINCE (Recommendations for EvaLuation of AI for NuClear medicinE) guidelines, with the 

goal of improving the reliance of AI for clinical applications. Unlike other guidelines for the use of AI in 

 
Fig. 6: A chart showing the different objectives of post-deployment 

monitoring, grouped as a function of the scope and goal of the study 
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radiology (60-62), these guidelines are exclusively focused on best practices for AI-algorithm 

evaluation.  

This report advocates that an evaluation study should be geared towards putting forth a claim. The 

objective of the claim can be guided by factors such as the degree of impact on patient management, 

level of autonomy, and the risk that the method poses to patients. Risk categories have been proposed 

for medical software by the International Medical Device Regulators Forum and subsequently adopted 

by the FDA (63). The proposed risk categories range from 1 (low risk) to 4 (highest risk) depending on 

the vulnerability of the patient and the degree of control that the software has in patient management. 

The pathway that a developing technology will take to reach clinical adoption will ultimately depend on 

which risk category it belongs to, and investigators should assess risk early during algorithm 

development and plan accordingly (64).  

     In this report, we have proposed a four-class framework for evaluation. For clinical adoption, an 

algorithm may not need to pass through all classes. The POC evaluation is optional as the objective of 

this class is to only demonstrate promise for further evaluation. Further, not all these classes may be fully 

relevant to all algorithms. For example, an AI segmentation algorithm may require technical but not 

necessarily clinical evaluation for clinical adoption. The types of studies required for an algorithm will 

depend on the claim. For example, an AI algorithm that claims to make improvement in making clinical 

decisions will require clinical evaluation. For clinical acceptability of an AI algorithm, evaluating 

performance on clinical tasks is most important. POC, technical, and clinical evaluation could all be 

reported in the same multi-part study.  
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Class of 

evaluation 
Recommendation 

Proof of concept 

evaluation 

Ensure no overlap between development and testing cohort. 

Check that ground-truth quality is reasonable. 

Provide comparison with conventional and state-of-the-art methods. 

Choose figures of merit that motivate further clinical evaluation. 

 

Technical  task-

specific 

evaluation 

Choose clinically relevant tasks: Detection/quantification/combination of both. 

Determine the right study type: Simulation/phantom/clinical. 

Ensure that simulation studies are realistic and account for population variability. 

Testing cohort should be external. 

Reference standard should be high quality and correspond to the task. 

Use an optimal strategy to extract task-specific information. 

Choose figures of merit that quantify task performance. 

 

Clinical 

evaluation 

Determine study type: Retrospective, prospective observational, prospective 

interventional, or post-deployment real-world studies 

Testing cohort must be external. 

Collected data should represent the target population as stated in the claim. 

Reference standard should be high quality and be representative of those used 

for clinical decision making. 

Figure of merit should reflect performance on clinical decision making. 

 

Post-deployment 

evaluation 

Monitor devices and follow reporting guidelines. 

Consider phantom studies as sanity checks to assess routine performance. 

Periodically monitor data drift. 

For off-label evaluation, follow recommendations as in clinical/technical 

evaluation depending on objective. 

 
Table 2: RELAINCE guidelines 
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These evaluation studies should be multidisciplinary, and include computational imaging scientists, 

physicians, physicists, and statisticians right from the study-conception stage. Physicians should be 

closely involved since they are the end users of these algorithms. Previous publications have outlined 

the important role of physicians in evaluation of AI algorithms (65), including for task-based evaluation 

of AI algorithms for nuclear medicine (10). 

     The proposed best practices are generally applicable to evaluating a wide class of AI algorithms, 

including supervised, unsupervised, and semi-supervised approaches. For example, we recommend that 

for even semi-supervised and unsupervised learning algorithms, the algorithm should be evaluated on 

previously unseen data. Additionally, these best practices are broadly applicable to other machine 

learning as well as physics-based algorithms for nuclear-medicine imaging. Further, while these 

guidelines are being proposed in the context of nuclear medicine imaging, they are also broadly 

applicable to other medical-imaging modalities.  

      In addition to above practices, we also recommend that in each class of evaluation, evaluation studies 

should attempt to assess the interpretability of the algorithm. In fact, rigorous evaluations may provide a 

mechanism to make the algorithm more interpretable. For example, a technical efficacy study may 

observe sub-optimal performance of an AI-based denoising algorithm on the tumor-detection task. Then, 

the evaluation study could investigate the performance of the algorithm for different tumor properties 

(size/tumor-to-background ratio) on the detection task(66). This will provide insights on the working 

principles of the algorithm, thus improving the interpretability of the algorithm.  
In summary, AI-based algorithms present an exciting toolset for advancing nuclear medicine. We 

envision that following these best practices for evaluation will assess suitability and provide confidence 

for clinical translation of these algorithms, and provide trust for clinical application, ultimately leading to 

improvements in quality of healthcare.  
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Nuclear Medicine and Artificial Intelligence - Best Practices for Evaluation (the RELAINCE 
guidelines) 

 
Supplementary material 

 
A. Example evaluation of AI Application: AI-based transmission-less SPECT reconstruction 

method 
In this supplementary material, we provide an illustration of applying the four-class evaluation 

framework to evaluate a hypothetical AI-based transmission-less SPECT reconstruction method.  
 
INTRODUCTION 
A major imaging-degrading effect in SPECT is the attenuation of gamma-ray photons as they pass 
through the patient. Attenuation compensation (AC) is considered a pre-requisite for reliable 
quantification and beneficial for visual interpretation tasks in SPECT (1). Typical AC methods require 
the availability of an attenuation map, often obtained using a transmission scan, such as an X-ray CT 
scan. However, this has several disadvantages, such as increased radiation dose, higher costs, and 
possible misalignment between SPECT and CT scans. To address this issue, multiple AI-based 
transmission-less AC methods for SPECT are being developed. Here we provide a manual to evaluate 
one such hypothetical AC method using the four-class evaluation framework proposed in the main 
manuscript. We assume that this hypothetical method has been developed for myocardial perfusion 
SPECT (MPS). For purposes of illustration, we assume that this method, similar to published 
approaches (2,3), is a deep-learning (DL)-based approach that uses scatter-window projections to 
estimate the attenuation map. This attenuation map along with the photopeak data are then used to 
reconstruct the activity map using an ordered subsets expectation maximization (OSEM)-based 
approach. The manual we provide focuses on the evaluation and not the development of this method. 
For development, best practices as laid out in Bradshaw et al (4) are recommended. 

In the discussion below, we will compare our approach with two other AC approaches in SPECT. 
The first approach uses CT-derived attenuation maps for AC, where the CT can be obtained from a 
dual-modality SPECT/CT system. This approach is well suited to provide a reference standard when a 
gold standard is unavailable. The second approach is the Uniform AC method, which uses a uniform 
attenuation map. The approach is widely used for AC when the attenuation map is unavailable. The 
Uniform AC method we consider is OSEM-based. In the text below, we denote the deep learning-based 
AC, CT-based AC, and Uniform AC approaches by DLAC, CTAC, and UniformAC, respectively. 
 
PROOF-OF-CONCEPT EVALUATION 
Objective of Evaluation 

Demonstrate that the hypothetical DLAC method has promise for further evaluation on clinical 
tasks. 

 



Study Design 
 Data collection. For POC evaluation, the evaluator could consider using an existing database of 

patient images at a medical center on a single scanner. The database should consist of the SPECT 
projection data in photopeak and scatter windows and the CT scans for these patients, preferably 
acquired along with the SPECT images. The database should be randomly sampled to define the 
dataset for this study. This projection data will then be reconstructed using the hypothetical DLAC 
method to obtain the reconstructed activity images. 

 
 Defining reference standard. The reconstructed activity images from the CTAC approach are 

considered as the reference standard. 
 
 Testing procedure. To demonstrate technological innovation, the evaluator should evaluate their 

method with state-of-the-art and with commonly used methods. The state-of-the-art method would be 
the CTAC-based approach. The commonly used method would be the UniformAC approach that is 
OSEM based and assumes a uniform attenuation map. The activity map derived using the DLAC and 
UniformAC approaches should be compared with the reference standard CTAC-based approach. 

 
 Figure of merit. The FoMs to demonstrate technological innovation and promise could include the 

normalized root mean square error (RMSE), structural similarity index (SSIM), and peak signal-to-
noise-ratio (PSNR), along with the corresponding confidence intervals.  

 
Example Claim 

A deep learning-based transmission-less SPECT reconstruction method for myocardial perfusion 
SPECT evaluated on patients acquired on a single scanner from a single center yields SSIM of Y (95% 
CI) and PSNR of Z dB (95% CI) with the reference standard as CTAC method. The proposed method 
significantly outperformed the UniformAC method in terms of SSIM and PSNR (p-value < 0.05).  

 
TECHNICAL TASK-SPECIFIC EVALUATION 
Objective of Evaluation 

A major clinical task for which MPS images are acquired is detecting perfusion defects. We 
describe the procedure to quantify technical efficacy on this detection task.  

 
Study Design 

A virtual clinical trial provides a rigorous mechanism to conduct this technical evaluation. We 
describe the study design for a virtual clinical trial-based evaluation: 

 
 Data collection. Anthropomorphic phantoms, such as the 3-D extended cardiac and torso 

phantom, can be used to generate the ground truth patient activity and attenuation maps. The 
generated patient population should preferably be representative of those seen in clinical practice and 



have variation in biological properties, including height, weight, and organ shapes and sizes. The 
patient population should consist of those with and without cardiac defects and prevalence of the defect 
should preferably be as observed in clinical practice. For the purpose of having a clinical realistic defect 
variation, defects of different sizes, severities and locations should be simulated. Tracer uptakes should 
be assigned to various region, according to clinical guided distributions, yielding the simulated digital 
activity maps. The true attenuation maps can be generated using the 3-D extended cardiac and torso 
phantom, where the attenuation coefficients are defined at 140 keV, since the tracer used in MPS 
studies, Tc-99m, emits photons at that energy.  

Next, a 3D clinical SPECT system used to acquire MPS images should be accurately simulated. 
One software to simulate these systems accurately is SIMIND, a photon-tracking-based software (5). 
The acquisition process should simulate clinical protocols. MPS scans are typically conducted with low 
energy high-resolution collimators and with NaI-based detectors. Further, the SPECT projections are 
often obtained at 60 angles uniformly spaced over 180 degrees from left posterior oblique to right 
anterior oblique modeling body-contouring orbits. For the DLAC method, projection data should be 
obtained in both the photopeak (126-154 KeV) and the scatter window (90-122 KeV). The projection 
data should then be reconstructed using the DLAC, CTAC and UniformAC methods. 
 The workflow of virtual clinical trial is shown in Supplemental Figure 1. 

 Defining a reference standard. Since this is a simulation study, the presence or absence of the 
defect is known and will thus provide the reference standard. 

 
  Process to extract task-specific information. In the evaluation study dataset, the defects vary in 
activity uptake, shape, and locations, leading to signal variability. Similarly, variation in the shapes and 
sizes of the other organs, activity uptake through the rest of the body, and variation in patient 
anatomies leads to background variability. Therefore, this is a signal known statistically/background 

 
Supplemental Figure 1. The workflow of the virtual clinical trial. 

 



known statistically (SKS/BKS) task. To avoid bias due to observers, we recommend choosing an 
optimal observer. One such option could be trained nuclear medicine physicians, but that may make 
these studies logistically challenging. Another option is numerical observers. One such numerical 
observer was proposed by Li et al. precisely for this SKS/BKS task (6). To use this observer, Li et al 
cropped the reconstructed activity maps with the centroid of heart at the center of images, and then 
windowed the intensity values so that the range [0, maximum in the heart] was mapped to the range 
[0,255]. Then, the testing data was divided into sub-ensembles according to the defect types. The 
numerical observer that is chosen will yield test statistics. By varying a threshold for these test statistics, 
the images will be classified into diseased and healthy-patient category. Next, using the knowledge of 
the ground truth, receiver operating characteristic (ROC) curves can be plotted. This observer study 
can be conducted with both CTAC and UniformAC approach. 
 
  Figures of merit. ROC curves. The area under the ROC curve (AUC), along with the 
corresponding confidence intervals, should be reported for this technical evaluation study. Delong’s test 
can be used to evaluate if the difference in AUCs using the different methods was statistically 
significant. 

 
Example Claim 

A deep learning-based transmission-less SPECT attenuation compensation (AC) method for 
myocardial perfusion SPECT was non-inferior to a CT-based AC method on the task of detecting 
perfusion defects with 80% power and a significance level of 5%. The AUC difference was within a pre-
defined margin of 0.1/0.05. 

 
CLINICAL EVALUATION 
Objective  

Evaluate the efficacy of the hypothetical DLAC method for transmission-less AC in MPS in 
diagnosing patients with coronary artery disease (CAD).  
 
Study Design 

 Study type. MPS images are acquired to make diagnostic decisions and not direct therapeutic 
interventional recommendations. Based on the flowchart in Fig. 5 of the main paper, a blinded 
retrospective study is chosen for clinical evaluation. 

 
  Data collection. The collected data should be from an external cohort. One strategy is to first 
obtain a database of patients who underwent clinical MPS scans. This institution should be different 
from the institution that provided the data to train the method. The database should again be 
representative of patient populations, including patients with different ages, sexes, ethnicities, and BMI. 
The database should contain projection data in photopeak and scatter windows and the CT scans. The 
database should then be randomly sampled to define the dataset for the evaluation study. The 



projection data from this dataset are input to the DLAC approach, yielding the activity maps. These 
projection data are also used to obtain the activity maps with the CTAC and UniformAC approach. 
 

 Defining reference standard. Since we do not know if a patient in this database has CAD or not, 
we need to define a reference standard. For this purpose, one approach is to use the SPECT images 
reconstructed with the CTAC approach. These images could be evaluated by a panel of physicians to 
diagnose if the patient has CAD. The physicians would be provided additional information as required 
to make this diagnostic decision, such as other clinical-test results or past patient history. Based on the 
panel consensus, the patients are classified as those with positive and negative CAD diagnosis.  

 
 Sample size. A power-analysis is recommended to compute the sample size, where the inputs 

could be from the proof of concept and the technical efficacy studies.  
 

 Reader studies. The evaluation study can be a two alternative forced choice study. In this study, 
one could have a panel of experienced physicians, who were not involved in the development of the 
algorithm or defining the reference standard, be presented two images: one from a patient with positive 
CAD diagnosis and the other from a patient with a negative CAD diagnosis. The physicians would be 
asked to diagnose which of the two patients has CAD. Additional information as required to make this 
diagnostic decision, such as other clinical-test results or past patient history would be provided to the 
physicians. With the reference standard obtained as defined earlier, accuracy for this diagnostic task 
could be calculated. It can be shown that this accuracy is equal to AUC for this task (7). 

 
 Figure of merit. One choice for FoM is the AUC for diagnosing CAD, which quantifies the accuracy 

of diagnosis. The confidence intervals should also be reported for the FoM. 
 

Example Claim 
The average AUC of three experienced physicians on the task of diagnosing coronary artery 

disease by reading myocardial perfusion SPECT images increased from X to Y (increase of ΔAUC 
(95% confidence intervals)) when these images were reconstructed using a deep learning-based 
transmission-less AC method as compared to UniformAC method, as evaluated in a blinded 
retrospective study with clinical patient data collected from two institutions. The reference standard for 
this study was obtained by three separate readers who read the perfusion SPECT images 
reconstructed with a CT-based AC approach.  

 
POST-DEPLOYMENT MONITORING 
Objective 

Evaluate the performance of the DLAC method for an off-label study, namely, AC for quantitative 
dopamine transporter (DaT) scan SPECT.  

 



Evaluation Strategy 
As this is a different clinical application, the algorithm first needs to be trained. For this purpose, 

best practices as laid out in Bradshaw et al (4) are recommended. Here we focus on the evaluation of 
the algorithm. We will lay out a strategy for technical task-specific evaluation, where the clinical task is 
to quantify the activity in the putamen and caudate. 

 
 Data collection. The dataset used in the off-label evaluation could be from a DaTscan SPECT 

patient data repository collected on a single scanner from a single center. The patients in this database 
should be representative of those seen in clinical practice with variations in biological properties, such 
as genders, ages, ethnicities, and head sizes. The database needs to be randomly sampled to select 
patients. For the selected patients, the CT images, and projection data both in photopeak (143-175 
KeV) and scatter windows (90 – 143 keV) would be selected. 
 The projection data is then reconstructed using the DLAC, CTAC and UniformAC methods 
following a similar approach as described in the previous sections but following the clinical protocols for 
a DaTscan SPECT study. 

 
 Defining the reference standard. The reference standard for this quantification task is the uptake 

in the caudate and putamen region. Since this is a clinical study, the ground-truth uptake values are 
unavailable. To address this issue, the reference standard can be defined from the images 
reconstructed using the CTAC approach. To define the reference standard, the caudate and putamen 
regions need to be segmented from the DaTscan SPECT images. For this purpose, a consensus-
based study may be considered where a panel of physicians provide a consensus segmentation for 
these regions on images obtained with the CTAC approach. The mean activity uptake in the defined 
left/right caudate and putamen would then define a reference standard.  

 
 Process to extract task-specific information. Our goal here is to estimate the uptake in the caudate 

and putamen region from these images. For this purpose, on the reconstructed images, we could have 
a panel of physicians, who were not involved in training the method or defining the reference standard, 
define the boundaries of the caudate and putamen regions. The uptake in these regions will provide the 
required quantitative values. The same approach could be followed for the images reconstructed with 
the UniformAC approach. 

 
 Figure of merit. Ensemble bias and ensemble mean square error of regional activity uptake 

obtained by the DLAC/UniformAC method compared with the CTAC method, along with the 
corresponding confidence intervals.  

 
 No-gold-standard evaluation. As mentioned in the main text, another approach to evaluate these 

methods on the quantitative task of measuring regional uptake is no-gold-standard evaluation. In this 
evaluation, the average activity in each region obtained by the DLAC, UniformAC, and CTAC methods 



are calculated. These regional uptake values are then input to the no-gold-standard evaluation 
technique, which can then rank the different methods on the basis of precision without availability of 
ground-truth quantitative values.  

 
Claim 

The normalized bias of regional activity uptake in the striatal regions obtained with an AI-based 
transmission-less AC method was X% (95% C.I.) as evaluated in a blinded retrospective study 
conducted by three readers with data from a repository of patients who underwent DaTscan SPECT on 
a single scanner in a single center, and where the reference standard was defined as the striatal uptake 
values computed on the images reconstructed with CT-based AC. Further, the method significantly 
outperformed the UniformAC method on the quantification task (p-value < 0.05). 

 
B. Evaluation of continuous-learning AI-based algorithms 

Typically, AI-based clinically available medical devices are locked prior to marketing. However, the 
performance of these algorithms may degrade when they encounter patient populations, scanners, 
clinical protocols or other situations different from their training set (8). To address this issue, 
researchers have proposed the continuous-learning (CL) approach (9). This approach aims to model 
the flux or inherent skewness of real-world data to incrementally fine tune model performance. 
However, CL approaches have to deal with multiple challenges including catastrophic forgetting 
(whereby, the AI forgets previously learnt information upon learning new information) , skewness in the 
distribution of the sequentially incoming stream of new data (9), and concept drift. Thus, there is an 
important need for rigorous evaluation of these methods before clinical deployment.  

To illustrate an example evaluation strategy, consider an AI-based PET-denoising algorithm that 
uses the CL approach to account for data drift. The network is deployed at time point t0. Post-
deployment, it is observed that the patient BMIs are more diverse than in the training set. Thus, to 
account for this change in patient’s BMI, the algorithm is retrained at time point t1. At a later time point 
t2, the PET scanner reconstruction algorithms are updated. The PET denoising algorithm is again 
trained to account for this. Consider an FoM that quantifies performance at each time step on some 
clinically relevant task. Then we can formulate a 3x3 accuracy matrix (10) whose entries, Rij, quantify 
performance on the test set at time step ti for the update at time point tj. Using this matrix, we can 
measure the influence that the retraining has on performance with previous test sets. This performance 
can be quantified as the average of R1,0 - R0,0, R2,0 – R0,0, and R2,1 – R1,1. This measure, referred as 
backward transfer, quantifies the forgetting of the AI product through its lifecycle of incremental 
learning. Analogously, a forward transfer measure can determine the influence that learning a task has 
on the performance of future tasks (average of the terms R1,0, R2,0, R2,1). 

We note that most CL-based deployment insights are in the context of proof-of-concept 
implementations (11,12) and their use for nuclear-medicine requires further research. For CL 
evaluation, construction of bias-free external test sets and harmonization of data heterogeneity for 
digital health are needed. Hence, we recommend that a CL-enabled device be evaluated using the 

https://arxiv.org/pdf/1706.08840.pdf


framework as discussed in the main paper, with the participation of various stakeholders, who will have 
to finalize benchmark datasets, FoMs and basic ground rules such as the frequency of updates, test 
sets, robustness in cyber-security, countermeasures against reverse engineering, traceability of patient 
data/model parameters and so on at every successive modular update before clinically deploying a CL 
model. We envision that multi-institutional data repositories such as the Medical Imaging and Data 
Resource Center, that exhibit optimal standardization, curation and compliance with ethical 
responsibilities to honor patients' privacy will play a key role in evaluation of CL methods.  

Overall, the CL paradigm aims to rectify flaws of the current static AI algorithms in digital 
healthcare. However, careful evaluation is required to thoroughly validate the use of CL in nuclear 
medicine.  

 
C. Figures of merit for evaluating performance in proof-of-concept studies 

Supplemental Table 1 provides a list of figures of merit (FoMs) for evaluating performance in proof-
of-concept studies for different applications of AI.  

Supplemental Table 1: A list of FoMs for proof-of-concept evaluation studies 

Application Evaluation figures of merit 

Instrumentation Percent improvement in timing or spatial resolution or sensitivity 

Reconstruction and image 
enhancement 

Mean squared error, Structural similarity index, peak signal to 
noise ratio, Contrast-to-noise ratio 

Image registration 
Mean squared error, Structural similarity index, Mutual 

information 

Segmentation 
Dice scores, Jaccard distance, Hausdroff distance, Fraction of 

voxels accurately classified 

 
 
D. Table of figures of merit for evaluating performance on clinical tasks 

Supplemental Table 2 provides figures of merit for technical and clinical evaluation. Figures of merit 
for detection/classification tasks to demonstrate technical efficacy can also be used as figures of merit 
for clinical evaluation on diagnostic tasks.  
 
  



Supplemental Table 2: A list of FoMs to evaluate performance on clinical tasks 

Type of 
task 

Evaluation 
criterion 

Figure of merit Description 
Range 

and 
Target 

Notes 

2-class 

classification  
Accuracy  

Sensitivity/Sensitivity 

Sensitivity: Ability to correctly identify 

positive cases based on a cut-off 

Specificity: Ability to correctly identify 

negative cases based on a cut-off 

[0; 1] 

1 

Not influenced by disease prevalence. 

Requires a priori choice of cut-off. Sensitivity 

and specificity should be used in 

conjunction. 

Youden index = sensitivity + 

specificity -1 
Sensitivity + specificity -1 

[-1; 1] 

1 

Not influenced by disease prevalence. 

Requires a priori choice of cut-off. 

AUC: Area under the ROC 

curve 

Overall classification accuracy, regardless 

of the cut-off value. 

[0; 1] 

1 
Not influenced by disease prevalence. 

Likelihood ratio for positive 

test results = sensitivity / (1-

specificity) 

Likelihood that an image is classified 

positive in truly positive images compared 

to negative images 

[0; ∞]  
Not influenced by disease prevalence. 

Requires a priori choice of cut-off. 

Likelihood ratio for negative 

test results = (1-sensitivity) / 

specificity 

Likelihood that an image is classified 

negative in truly positive images 

compared to negative images 

[0; ∞]  
Not influenced by disease prevalence. 

Requires a priori choice of cut-off. 

F1-score = 2. 

(precision.recall)/(precision+

recall) 

A weighted average of precision and 

recall 

[0; 1] 

1 

F1 ignores the true negatives and is only 

relevant when the true negatives do not 

matter 

Balanced accuracy Average of specificity and sensitivity  
[0; 1] 

1 

Of interest when data is unbalanced; crude 

measure of accuracy; Requires a priori 

choice of cut-off 

Matthew’s correlation 

coefficient 

MCC= (TP x TN - FP x FN) / 

squareroot[(TF + FP) x (TP + FN) x (TN + 

FP) x (TN + FN)] 

[-1; 1] 

1 

Takes into account true and false positives 

and negatives and is generally regarded as 

a balanced measure which can be used 



even if the classes are of very different 

sizes. No intuitive interpretation; Requires a 

priori choice of cut-off 

Positive predictive value 

(PPV)/Negative predictive 

value (NPV) 

PPV and NPV are probability that cases 

classified as positive(negative) are truly 

positive (negative) based on a cut-off, 

respectively. 

[0; 1] 

1 

Largely influenced by disease prevalence; 

Requires a priori choice of cut-off 

Precision-recall AUC 
Overall classification accuracy, regardless 

of the cut-off value. 

[0; 1] 

1 

Hypothesis testing methods/software are 

sparse. 

N-class 

classification 
Accuracy 

Sensitivity and false positive 

rate from the N x N 

confusion matrix 

For each class, sensitivity (false positive 

rate) is the proportion of correctly 

(incorrectly) classified subjects 

[0; 1] 

1 

Each class has an associated sensitivity and 

FPR. Requires a priori choice of cut-

off.  Does not account for types of false 

classifications. 

Area under the N-

dimensional ROC curve 

Expansion of the traditional ROC curve to 

N dimensions 

[0; 1] 

1 
Not influenced by disease prevalence. 

Brier score 
Measures accuracy of probabilistic 

predictions 

[0; 1] 

0 
Can also be applied to 2-class classification 

Quantification Bias 

Mean Bias 
The mean difference between measured 

and true value 

[-∞; +∞] 

0 

Unscaled measure of the algorithm’s 

tendency to over- or under-estimate the true 

value. 

Proportional Bias 
Slope of the regression line of true vs 

measured values 

[-∞; +∞] 

1 

There is proportional bias when slope ≠1 

which must be accounted for when 

measuring change over time. 

Bias profile Plot of bias over a range of true values  Should be used to evaluate and illustrate 

when the bias changes over the true value 

Ensemble bias 
Average bias over the entire range of true 

values 

[-∞; +∞] 

0 

Should be used when the bias changes over 

the true value 



Precision 

Standard deviation 

Closeness of replicate measurements to 

each other when repeating the 

measurements in exactly the same setting 

[0; +∞]  
Best used when the SD is constant over the 

range of measurements 

Coefficient of variation 
SD divided by the square root of the 

mean of the measurements 

[0; +∞] 

0 

Best used when the SD is proportional to 

the magnitude of measurements. 

Precision profile 
Plot of standard deviation (or CV) over a 

range of true values 
 Should be used when standard deviation (or 

CV) changes as function of true value 

Ensemble standard 

deviation 

Average standard deviation over the 

entire range of true values 
[0; +∞] 

Should be used when standard deviation 

changes as function of true value 

Reliability Root Mean Square error 
Summary FoM that quantifies both bias 

and precision 

[0; +∞] 

0 
Informs about bias and variability 

Repeatability 

Reproducibility  

Repeatability Coefficient 

Repeatability: Closeness of replicate 

measurements on the same subject when 

the same imaging methods were used. 

Reproducibility: Closeness of 

measurements on the same subject when 

different imaging methods were used (i.e., 

different scanner, image analysis 

software, technician, etc). 

[0; +∞] 

0 

Describes the smallest difference between 

two measurements that can be considered a 

real change with 95% confidence, when 

there is no change in imaging methods. 

Reproducibility Coefficient 
[0; +∞] 

0 

Describes the smallest difference between 

two measurements that can be considered a 

real change with 95% confidence, when 

different imaging methods were used. 

Quantification 
Limits of 

agreement 
Bland Altman analysis 

Quantify the agreement between a 

proposed method and a reference 

standard 

 
Preferred when the reference standard may 

be erroneous 

Combined 

detection/ 

localization 

Accuracy 
Area under the localization 

ROC 

Accuracy in correctly detecting and 

locating the lesion 

[0; 1] 

1 
Limited to one lesion per subject 

Accuracy Area under the FROC curve 
Accuracy in correctly detecting and 

locating lesions 

[0; 1] 

1 

Multiple lesions per subject; summary index 

difficult to interpret 



Accuracy 
Area under the ROI-ROC 

curve 

Accuracy in correctly detecting and 

locating lesions within mutually exclusive 

ROIs (e.g. lung lobes, colon segments, 

breasts) 

[0; 1] 

1 

Multiple lesions per subject; summary index 

has interpretation similar to traditional ROC 

area. 

Accuracy 
Area under the estimation 

ROC curve (AUEROC) 

Accuracy in correctly detecting and 

quantifying parameters about the lesion 

[0; 1] 

1 

Generalizes to any joint detection-estimation 

task 

Prediction of 

Future Events 

Probability of 

occurrence of 

an event 

Survival curve 
A plot of the percent of patients that are 

event-free as a function of time 
 

Can be used for time until any event, such 

as death, onset of disease, disease re-

occurrence. 

Probability of 

occurrence of 

an event 

Kaplan-Meier estimator 

Non-parametric FoM used to estimate the 

fraction of patients that are event-free at a 

certain timepoint 

 
Often used to compare survival of two or 

more cohorts of patients. 

Likelihood of 

Future event 
Prediction risk score 

A semi-quantitative risk score that 

describes the likelihood of a future event 

taking place based on patient-specific 

inputs to an algorithm 

 

Binary, ordinal, or continuous value.  Often 

probability based E.g. A score that 

describes the likelihood of a disease 

occurring in the future 

Time of future 

event 
Predictive interval 

Time interval for which a future event is 

estimated to occur based on patient-

specific inputs to an algorithm 

  

Time of future 

event 

Median time of a future 

event 

Median time until future event for typical 

patient, usually based on longitudinal data 

from a cohort of patients. 

 Not patient-specific 
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