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ABSTRACT 

Sarcoidosis and lymphoma often share common features on 18F-FDG PET/CT, such as intense 

hypermetabolic lesions of lymph nodes and multiple organs. We aimed at developing and validating 

radiomics signatures to differentiate sarcoidosis from Hodgkin (HL) and diffuse large B-cell (DLBCL) 

lymphoma. Methods: We retrospectively collected 420 patients (169 sarcoidosis, 140 HL and 111 

DLBCL) who underwent a pretreatment 18F-FDG PET/CT at the University Hospital of Liege. The 

studies were randomly distributed to 4 physicians who gave their diagnostic suggestion between the 3 

diseases. Individual and pooled performances of physicians were then calculated. The inter-observer 

variability was evaluated using a sample of 34 studies interpreted by all physicians. Volumes of interest 

(VOI) were delineated over the lesions and the liver using MIM software, and 215 radiomic features 

were extracted using Radiomics toolbox. Models were developed combining clinical data (age, gender 

and weight) and radiomics (original and tumor-to-liver TLR radiomics), with 7 different feature 

selection approaches and 4 different machine learning (ML) classifiers, to differentiate sarcoidosis and 

lymphomas on both lesion-based and patient-based approaches. Results: For identifying lymphoma vs. 

sarcoidosis, physicians’ pooled sensitivity, specificity, area under the curve (AUC) and accuracy were 

0.99 (CI95%:0.97-1.00), 0.75 (CI95%: 0.68-0.81), 0.87 (CI95%: 0.84-0.90) and 89.3%, respectively, 

whereas for identifying HL in the tumor population, it was 0.58 (CI95%: 0.49-0.66), 0.82 (CI95%: 

0.74-0.89), 0.70 (CI95%: 0.64-0.75) and 68.5%, respectively. A moderate agreement was found 

between observers for the diagnosis of lymphoma vs. sarcoidosis and HL vs. DLBCL with Fleiss kappa 

values of 0.66 (CI95%: 0.45-0.87) and 0.69 (CI95%: 0.45-0.93), respectively. The best ML models for 

identifying lymphoma vs. sarcoidosis showed AUC of 0.94 (CI95%: 0.93-0.95) and 0.85 (CI95%: 

0.82-0.88) in lesion- and patient-based approaches, respectively, using TLR radiomics (+ age for the 

second). To differentiate HL and DLBCL, we obtained AUC of 0.95 (CI95%: 0.93-0.96) in lesion-

based approach using TLR radiomics, and 0.86 (CI95%: 0.80-0.91) in patient-based using original 

radiomics and age. Conclusion: Characterization of sarcoidosis and lymphoma lesions is feasible using 
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ML and radiomics, with very good to excellent performances, equivalent or better than those of doctors 

who showed significant interobserver variability in their assessment.  

Keywords: Radiomics, Machine Learning, Sarcoidosis, Lymphoma, 18F-FDG PET/CT 
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INTRODUCTION 

Sarcoidosis is a systemic inflammatory disease characterized by the development of granulomas that 

may involve lymph nodes and various organs. Hodgkin lymphoma (HL) and diffuse large B-cell 

lymphoma (DLBCL), the most frequent type of non-Hodgkin lymphoma, are also characterized by 

enlarged invaded lymph nodes but can also affect many organs. When 2-[18F]fluoro-2-deoxy-D-glucose 

(18F-FDG) PET/CT is performed at diagnosis, these diseases may present with a similar pattern, i.e. 

intense hypermetabolism in enlarged lymphadenopathies, in particular in the mediastinum. 

Involvement of many other nodal stations may also be observed, along with extranodal lesions, and the 

distribution of lesions thus helps imaging specialists in interpreting these PET/CT scans. Nonetheless 

the accuracy of the visual interpretation of 18F-FDG PET/CT scans for differentiating sarcoidosis from 

lymphomas is imperfect (1). Semiquantitative measurements such as the maximum standardized uptake 

value (SUVmax) have not proven to be the answer either (2,3). Moreover, sarcoidosis can develop 

before (sarcoidosis-lymphoma syndrome) and after lymphoma, and immunotherapy-induced sarcoid-

like reactions are increasingly observed (4-7). No matter the results of the imaging studies, pathological 

confirmation of the disease is mandatory in all cases prior to initiating treatment. 

 Histopathology of these entities is very different, suggesting that deep characteristics of the 

image might also be specific. Radiomics is a high-throughput approach allowing the extraction of large 

amounts of data from images and the characterization of the lesion phenotype (8,9). The development 

of artificial intelligence and machine learning (ML) combined with radiomics has gained popularity in 

different medical imaging tasks, including lesion identification and characterization. In lymphoma, 

some studies showed the potential of [18F]FDG PET/CT radiomics to differentiate lymphoma from 

other types of cancers and to differentiate different types of lymphoma (10-14). To the best of our 

knowledge, no study has yet explored the use of 18F-FDG PET/CT radiomics to characterize 

sarcoidosis lesions, except one for the diagnosis of cardiac involvement (15). 
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 The primary objective of the present study was to develop and validate a radiomics signature to 

differentiate sarcoidosis, HL and DLBCL lesions. Furthermore, we compared the ML-driven diagnosis 

with the physicians’ performance in categorizing the three diseases, taking into account the inter-

observer variability. 

 

MATERIALS AND METHODS 

Patients 

 The study has been approved by the Ethics Committee of the University Hospital of Liège. The 

need for written informed consent was waived due to the retrospective and non-interventional design of 

the study. We retrospectively collected consecutive 18F-FDG PET/CT scans performed at the 

University Hospital of Liège between 04/2010 and 02/2020 in patients with HL, DLBCL or sarcoidosis 

at initial diagnosis, prior to any treatment. The diagnosis was based on pathology in all lymphoma 

cases and in the large majority of cases of sarcoidosis. The diagnosis of the remaining sarcoidosis cases 

was based upon clinical evidence and follow-up. Exclusion criteria were radiotracer extravasation, 

artefacts in pathological areas, the absence of delineated volume of interest (VOI) after semi-automatic 

segmentation method (described below) and scans with missing relevant information in the DICOM 

(Digital imaging and communications in medicine) files. Basic clinical data (age, gender and weight) 

were collected from the information obtained routinely on the day of the PET/CT. Figure 1 shows the 

flowchart of the study. 

 

Imaging 

 18F-FDG PET/CT scans were acquired using 2 cross-calibrated PET/CT systems: a GEMINI TF 

Big Bore and a GEMINI TF 16 (Philips Medical Systems, Cleveland, OH, USA); 66 minutes in 

average (range: 58-92) after intravenous injection of 18F-FDG (mean injected activity: 245 MBq, 

depending linearly on patient’s weight). Patients fasted for at least 6h before the injection and the 
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median glycemia was 92 mg/dl (range: 59-195). A low-dose CT (5 mm slice thickness; tube voltage: 

120 kV and tube current–time product: 50 to 80 mAs depending on the patient’s weight) was 

performed without injection of intravenous contrast agent, followed by a PET emission scan of 90 

seconds per bed position (50% of overlapping) extending from the upper thighs to the skull base. All 

images were acquired and reconstructed according to the European Association of Nuclear Medicine 

Research Limited guidelines for both PET/CT systems. Images were reconstructed with standard 4x4x4 

mm3 voxels (slice thickness 4 mm) using iterative list mode time-of-flight algorithms (BLOB-OS-TF) 

and corrections for attenuation, dead-time, random and scatter events were applied, without post-

reconstruction smoothing. 

 

Lesion segmentation and clinical diagnosis 

 The entire cohort of anonymized patients was randomly distributed into 4 groups (A to D) and 

attributed to 4 nuclear medicine physicians, unaware of any clinical information or diagnosis, with an 

experience of 6 years (observer A), 3 years (observer B), 15 years (observer C) and 10 years (observer 

D). In a first step, based on the visual interpretation of the PET/CT, the physicians attributed a 

diagnosis to each patient of their cohort. For that purpose, they first assigned either sarcoidosis or 

cancer and, if the latter was selected, they chose HL or DLBCL. This evaluation was solely based on 

the experience of each physician. No reading guidelines, visual or semi-quantitative interpretation 

criteria were provided to the readers within the framework of the study. For each answer, the 

physicians indicated their level of confidence: 0=possible, 1=probable and 2=certain. 

In the next step, every physician segmented PET VOIs of his/her assigned patients population using 

MIM software v7.0.5 (MIM Software Inc, Cleveland, OH) with the following procedure: 1) automatic 

selection of all the regions using an absolute threshold SUVmax≥3 within a rectangular VOI manually 

drawn on the whole-body, 2) automatic exclusion of VOIs smaller than 2 cc, 3) manual exclusion of all 
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the physiological VOIs (brain, heart, kidneys, …), 4) manual modification of some pathological VOIs, 

i.e. removing physiological activity in continuity with the pathological VOI, never enlarging the VOI. 

In the absence of literature references for this combination of diseases, especially considering 

sarcoidosis, the thresholds of SUVmax and volume were decided after tests were performed on a sample 

of images with the aim of including as many lesions as possible while limiting the need for manual 

modifications. A VOI of 20 ml was also drawn in the healthy liver.  

 

Radiomics extraction and models elaboration 

 Two hundred and fifteen features were extracted from the segmented PET volumes using the 

Radiomics research toolbox (Radiomics SA, Liège, Belgium), coded with Matlab and which is aligned 

with the imaging biomarkers standardization initiative (IBSI) with however some additional features 

(list of all features in supplemental material). We also studied the ratio of the features values calculated 

in the tumor and in the liver (TLR), except for the shape features. For the calculation of the texture 

matrix-based features, the intensities were discretized using two different methods according to IBSI 

recommendations: fixed bin number, using 32 and 64 bins, and fixed bin width with 4 different widths 

of 0.05, 0.1, 0.2 and 0.5 SUV. 

 Since each patient may have more than one lesion, two radiomics approaches were tested. In a 

first approach, each lesion was considered as one observation (‘lesion-based approach’) and the goal 

was to classify each lesion as, firstly, belonging to the sarcoidosis or lymphoma class and secondly, as 

belonging to the HL or DLBCL class. In the second approach (‘patient-based approach’), radiomic 

features of each lesion and for each patient were merged using 1) their minimum value 2) their 

maximum value 3) their mean value 4) their median value, and clinical data (age, gender and weight) 

were added to the radiomic features. Here, the aim was to classify each patient into the sarcoidosis, HL 

or DLBCL groups. 
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 We also evaluated whether combining different feature selection (FS) approaches and ML 

classifiers would allow for a radiomics signature 1) to differentiate sarcoidosis from lymphoma patients 

and 2) to differentiate HL from DLBCL. For that purpose, we tested a different set of models, which 

differ in i) the features type, i.e., original radiomics (OR) or TLR radiomics, ii) the FS and ML 

classifier method, and iii) the effect of adding clinical data before FS. Seven different FS methods were 

tested: 1-Accuracy decrease obtained from the embedded FS of the random forest (RF) classifier; 2- 

Gini impurity decrease obtained from the embedded FS of the RF classifier; 3- Forward FS using 

Minimum Redundancy Maximum Relevance (MRMR) method with Pearson correlation; 4- Backward 

FS using MRMR with Pearson correlation; 5- Forward FS using MRMR with Spearman correlation; 6- 

Backward FS using MRMR with Spearman correlation; 7- Forward MRMR based on the mutual 

information. We also used 4 ML classifiers: RF, support vector machine with radial kernel, naive 

Bayes (NB) and a logistic regression(16). The dataset was stratified with the same percentage of 

classes, avoiding unbalanced data, and randomly divided into training and test sets (80% and 20%, 

respectively). We tested different models that differ in the FS, ML and intensity discretization method 

as well as the number of features, which was between 2 to 20 with intervals of two. We used 5-fold 

cross validation in our training data, and we chose the best radiomic signature according to the best 

mean 5-fold cross validation area under the precision-recall curve (AUCpr). For each classifier, the 

default hyperparameters values were used in their respective R packages. Finally, for each of the 

different models with distinct selected features, all training data were bootstrapped, in order to derive 

the corresponding 95% confidence intervals for each performance metric and tested on the independent 

test set. The number of bootstrap repetitions was set to at least 1000 repetitions. Since images came 

from only two scanners (same manufacturer and model, same acquisition protocols), which were also 

cross-calibrated, we did not consider necessary to perform data harmonization. As recently suggested 

by Buvat and Orlhac (17), we performed a T.R.U.E checklist to assess the potential impact of our 

findings. 
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Statistical analysis 

 The homogeneity in terms of age and weight across the A, B, C, and D populations was 

assessed by Kruskal-Wallis non-parametric test, whereas chi-square test association was performed for 

gender and the final diagnosis (gold standard). Additionally, the homogeneity in terms of age, gender 

and weight across cancer and sarcoidosis patients as well as HL vs. DLBCL patients was also evaluated 

using chi-square test and Kruskal-Wallis test. Statistical significance was assigned for p-value lower or 

equal to 0.05. 

 The diagnostic performances of all observers pooled together and each individual observer 

against the gold-standard was calculated using sensitivity (Se), specificity (Sp), positive predictive 

value (PPV) and negative predictive value (NPV). In addition, the diagnostic performance was 

evaluated by calculating the percentage of agreement (or accuracy) and the AUC. To calculate the 

predicted probabilities, we fitted a logistic regression model with the observer’s classification as the 

predictor. We additionally bootstrapped the data to measure the AUC 95% confidence intervals. The 

confidence intervals for the Se, Sp, PPV, and NPV were calculated using exact binomial confidence 

limits. 

 To test the variability between observers, we applied the confidence interval approach in sample 

size estimation for inter-observer agreement with binary outcomes (18). Due to a lack of literature on 

the established agreement, to calculate the sample size in the case of 4 observers, we assigned an 

expected kappa of 0.70, indicating moderate agreement (19), a lower bound of 0.50 with unknown 

upper bound, and a significance level of 0.05. With a prevalence of 0.3 for the sarcoidosis vs. cancer 

and 0.6 for the HL vs. DLBCL classifications, a sample size of 27 and 23 was required, respectively. 

Based on this estimation, we randomly selected a subgroup of 34 patients, who were subsequently 

analyzed by all 4 observers, in order to evaluate the inter-observer variability. Due to the 

misclassification for the sarcoidosis vs. cancer, only 21 patients remained in the evaluation of inter-

observer variability in the analysis of HL vs. DLBCL. Fleiss’s kappa was employed to investigate the 
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overall agreement between 4 observers in the classification (for sarcoidosis/cancer, and for 

HL/DLBCL) and intraclass correlation coefficients (ICCs) for degree of certainty. Finally, Hotelling’s 

T-squared (T2) test was used to test the difference in agreement between pairs of observers. 

 For radiomics, we evaluated performances of the models described above using AUC, AUCpr, 

Se, Sp, PPV and NPV with 0.5 probabilities threshold on the test set, for lesion-based and patient-based 

approaches. Statistical and ML analyses were performed for the two clinical tasks (sarcoidosis/cancer 

and HL/DLBCL) using R software V4.0.3. 

 

RESULTS 

 A total of 448 patients meeting the study inclusion criteria were initially identified. After 

applying the exclusion criteria, 420 patients (mean age 49±18y; 241/179 men/women) remained in the 

study (Figure 1). According to the gold-standard, 169 patients had sarcoidosis (40.2%), 140 HL 

(33.3%) and 111 DLBCL (26.4%). Ann Arbor stages for HL and DLBCL were 10 I, 1 IE, 64 II, 1 IIE, 

19 III, 20 IIIS, 25 IV and 10 I, 27 II, 12 III, 10 IIIS, 52 IV, respectively; and 81 patients with 

sarcoidosis had extra-thoracic lesions. Table 1 presents patient’s characteristics and gold-standard for 

the entire population and the 4 physicians’ subsamples. The 4 groups were balanced except for 

observer D, who had significantly more sarcoidosis patients and fewer DLBCL. A significant 

difference in patients’ age was observed across the 4 subsamples (p=0.008), with patients in group D 

significantly younger than those in groups A and B; which could be explained by the difference in the 

distribution of diseases. There was no significant difference for weight and gender across the 4 

subsamples.  
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Individual and pooled observer’s performances as compared to the gold-standard  

 For identifying lymphomas (HL & DLBCL) in the entire population (n=420), the Se and Sp 

were 0.99 (0.97-1.00) and 0.75 (0.68-0.81), respectively. AUC-ROC was 0.87 (0.84-0.90) and accuracy 

was 0.893 (0.86-0.92). Similarly, Cohen’s kappa (κ)=0.78 (0.72-0.84) revealed a substantial agreement 

with the gold standard. Taking the certainty level into account, a significant higher agreement κ=0.86 

(0.79-0.92) was found for certainty level 2 compared to a κ=0.41 (0.23-0.58) for level 1 (p<0.001). 

 Overall and individual observers’ performances for the diagnosis of cancer versus sarcoidosis 

for their sub-sample populations are listed in Table 2. All observers had an excellent Se (0.97 to 1.00) 

but a lower and more variable Sp (0.58 to 0.81). AUC and accuracy ranged from 0.79 to 0.90 and from 

0.85 to 0.92, respectively. Regarding the confidence levels, observers A, B, C and D chose the level 2 

in 81%, 80%, 80% and 65% of cases; level 1 in 15%, 19%, 12% and 27% of cases; and level 0 in 4%, 1 

%, 8% and 8% of cases, respectively.  

 For identifying HL in the cancer population (n=248, after removing 3 patients mistakenly 

categorized with sarcoidosis), the Se and Sp were 0.58 (0.49-0.66) and 0.82 (0.74-0.89) respectively. 

AUC-ROC was 0.70 (0.64-0.75) and accuracy was 0.69 (0.63-0.74). Cohen’s kappa κ=0.40 (0.29-0.51) 

indicated only a fair agreement with the gold standard. When certainty level was at 2, a significantly 

higher κ=0.51 (0.41-0.67) was obtained compared to a κ=0.20 (0.14-0.39) at level 1 of certainty 

(p=0.003). 

 Overall and individual observers’ performances for the diagnosis of HL vs. DLBCL for their 

sub-sample populations are listed in Table 3. The Se ranged from 0.39 to 0.77 and Sp from 0.77 to 

0.85. AUC and accuracy ranged from 0.60 to 0.81 and from 0.59 and 0.82, respectively. Regarding the 

confidence levels, observers A, B, C and D selected the level 2 in 54%, 46%, 61% and 45% of cases; 

level 1 in 38%, 49%, 33% and 43% of cases and level 0 in 8%, 5%, 6% and 12% of cases, respectively. 

Representative examples of PET studies are shown in Figures 2 and 3. 
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Inter-observer agreement 

 In the sample of 34 patients, a Fleiss’ kappa value of 0.66 (0.45-0.87) indicated that the four 

observers were in moderate agreement with one another in the diagnosis of cancer vs. sarcoidosis. 

Regarding the certainty levels, an ICC=0.353 (0.181-0.547) showed poor agreement among the 

observers. At the individual level, the agreement with the gold standard was highly variable, as κ 

ranged from 0.45 to 0.93. Hotelling’s T2 test showed that the agreement with the gold standard differed 

significantly between the 2 extreme values, i.e. observers B and D (T2 = 8.70, p=0.006). 

 For the diagnosis of HL versus DLBCL, in the population of 21 patients diagnosed with cancer 

evaluated by all four observers, the Fleiss’ kappa value of 0.69 (0.45-0.93) indicated a moderate 

agreement between observers. Regarding the certainty levels, an ICC of 0.075 (0.076-0.316) showed 

poor agreement among the observers. At the individual level, only observer A displayed a substantial 

agreement with the gold-standard (κ=0.70; 0.38-1.01), whereas the three other observers showed poor 

agreement with κ ranging from 0.07 to 0.27. Hotelling’s T2 test showed that observer A outperformed 

the other three observers in terms of agreement with the gold-standard and the most significant 

difference was between observers A and B (T2=9.60, p=0.006). There was no significant difference of 

agreement between observers B, C and D. Supplemental tables 1-2 show all the individual kappa and 

Hotelling’s T2 values of the inter-observer agreement analysis, for the two tasks. 

 

Performance of radiomics models compared to the gold-standard 

 In the whole cohort, 2816 VOIs were segmented, including 1028 (36.5%) for sarcoidosis, 836 

for HL (29.7%) and 952 (33.8%) for DLBCL (mean number of VOIs by patient: 42.1 for sarcoidosis, 

44.7 for HL and 75.8 for DLBCL). One patient with sarcoidosis was excluded from the radiomics 

analyses (n=419) because of diffuse liver pathological infiltration that did not allow the delineation of 

the hepatic background VOI. The results of the best models compared to the physicians’ performances 

are summarized in Figures 4 and 5. 
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 A RF classifier, where features were selected with the embedded RF features selection using the 

accuracy decrease as a criterion, yielded the best performances to differentiate cancer from sarcoidosis 

following a ‘lesion-based’ approach. This model included 4 TLR radiomics features discretized with 

FBW with width of 0.05 SUV: two first-order gray-level statistics features (Stats_min; Stats_p10), one 

intensity volume histogram feature (IVH_AIRV_90) and one textural feature (GLCM_infoCorr2). This 

model showed Se of 0.92 (0.89-0.94), Sp of 0.80 (0.75-0.84), PPV of 0.88 (0.86-0.91) and NPV of 0.85 

(0.81-0.89). For the test set, performances were excellent with AUC and AUCpr of 0.94 (0.93-0.95) 

and 0.96 (0.95-0.97), respectively, and it performed significantly better than the best model with 

original radiomics (AUC 0.68 and AUCpr 0.78). The best “patient-based” radiomics models included 

TLR radiomics (intensity volume histogram, shape and texture features), merged using their minimum 

values, and age of patients but showed poorer results than differentiation by lesion, with AUC and 

AUCpr of 0.85 (0.82-0.88) and 0.88 (0.84-0.92), respectively. For a decisional threshold of 0.5, it 

showed Se of 0.84 (0.78-0.90), Sp of 0.67 (0.56-0.76), PPV of 0.79 (0.74-0.84) and NPV of 0.74 (0.67-

0.83), respectively. Supplemental tables 3-6 shows the selected features and results of the best original 

and TLR radiomics models for lesion-based and patient-based analysis. 

 

 To differentiate HL and DLBCL, the ‘lesion-based’ radiomics model with the best 

performances used RF classifier (Gini impurity decrease) and was composed of 2 TLR radiomics 

features discretized with FBW with width of 0.05 SUV: one first-order gray-level statistics features 

(Stats_min) and one textural feature (GLCM_infoCorr2). It showed Se, Sp, PPV and NPV of 0.89 

(0.85-0.92), 0.88 (0.84-0.92), 0.87 (0.83-0.90) and 0.90 (0.87-0.92), respectively. For the test set, 

performances were excellent with AUC and AUCpr of 0.95 (0.93-0.96) and 0.95 (0.92-0.96), 

respectively, close to those of the validation set (AUC and AUCpr of 0.97, both) and significantly 

better than the best model with original radiomics (AUC 0.67 and AUCpr 0.62). The best patient-based 

radiomics models used a NB classifier and a forward MRMR with Pearson correlation for feature 
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selection. The model included original radiomic features merged with their maximal values and 

discretized with FBW with width of 0.5 SUV (first-order, intensity volume histogram, and textural 

features: IH-entropy, IVH_AIRV_70, GLCM_infoCorr1, NGLDM_SM, NGLDM_DNN) and patient’s 

age. It showed very good performances with AUC and AUCpr of 0.86 (0.80-0.91) and 0.87 (0.78-

0.91), respectively. For a decisional threshold of 0.5, this model showed Se of 0.79 (0.71-0.86), Sp of 

0.85 (0.73-0.86), PPV of 0.87 (0.79-0.89) and NPV of 0.76 (0.70-0.83), respectively. 

 

DISCUSSION 

 In cancer imaging, 18F-FDG PET/CT takes advantage of a high sensitivity but the specificity is 

intrinsically limited by significant uptake by various inflammatory and infectious lesions. Obviously 

18F-FDG uptake alone cannot reliably identify the pathology of the tumor. In this study, we developed 

radiomics signatures to characterize lesions with highly increased 18F-FDG uptake, as a proof of 

concept of machine learning to differentiate inflammation from cancer, and to differentiate 2 cancer 

types. At the lesion level, we found highly accurate signatures with an AUC of 0.94 for the first task, 

and 0.95 for the second one. At the patient level, we created models with very good performances to 

differentiate cancer vs. sarcoidosis (AUC 0.85) and HL vs. DLBCL (AUC 0.86), which were 

respectively equivalent and significantly better than human performances. All physicians showed an 

excellent sensitivity (0.97-1.00) to identify patients with cancer and a good but lower specificity (0.75). 

Overall, the global performances were good with an AUC of 0.87. However, there was only a moderate 

agreement among the observers, especially due to poorer performance of the youngest observer 

(resident in training with 3 years of experience). Furthermore, the observers greatly varied in their level 

of certainty when deciding whether a PET/CT scan results was cancer or sarcoidosis. Interestingly 

enough, this was with a significant correlation with performance, i.e. higher confidence was associated 

with better performances. To differentiate HL and DLBCL, the overall performance of the physicians 

deteriorated with an AUC of 0.70, which was related to a moderate sensitivity. Again, large variability 
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was observed among the observers with one of them performed significantly better than the other three. 

However, the difference was unrelated to the experience, whereas a significant correlation was 

observed with the degree of certainty. Observer D had a different sample of diseases compared to the 

others. Yet, the fact that he was not aware of this information and his performances in his subsample 

and in the inter-observer variability analysis were reassuring factors as to this possible confounding 

effect on the obtained results. 

 The findings confirmed that radiomic analysis of the metabolic signal could effectively 

distinguish inflammatory and neoplastic lesions (20-22) but also different types of cancer (10,12,23-

26). Regarding lymphomas, in a population of 25 patients, Lartizien et al. used 18F-FDG PET/CT 

radiomics and support vector machine classifier to distinguish aggressive lymphoma lesions (B-cell 

lymphoma and HL) from non-lymphomatous uptake sites (brown fat, inflammation, infection, 

physiologic thymic uptake, …) with an AUC of 0.91 (27). Lippi et al. related good performance of ML 

to discriminate different types of lymphomas from each other, especially HL, but in a small population 

of patients (11). Recently, de Jesus et al. showed very promising results to differentiate follicular 

lymphoma and DLBCL using radiomics and ML classifier in a population of 120 patients, which could 

have important clinical use when monitoring patients for aggressive transformation (14). Their best 

performing model showed an AUC of 0.86 significantly higher than the performance of the SUVmax-

based model (AUC 0.79). In addition to the significant difference of population size and different types 

of lymphoma, certain methodological differences should be highlighted with our work, including the 

type of ML classifier based on per-lesion only, the segmentation method and choice of analyzed 

lesions, the absence of comparison with human performance and the use of radiomics of PET and CT 

simultaneously. Beyond the proof of concept, our results may have clinical implications. Indeed, the 

high sensitivity of the model could avoid an invasive biopsy procedure in patients with sarcoidosis, 

providing these excellent results be confirmed in a large and independent external population. 
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 Machine learning algorithms performances depend on several factors, including, but not limited 

to: data size, randomness during learning or pre-processing steps (28). Given this, we tested a different 

set of models, which differs in i) the feature types, i.e. original radiomics or TLR radiomics, ii) the FS 

strategy and number of features, iii) the intensity discretization scheme. We have shown in previous 

studies that using the ratio of the tumor features with the liver as reference organ improves the 

predictive performance in cervical cancer as well as the robustness across centers (16). The 

improvement in models’ performance can be caused by a normalizing effect of the SUVs on each 

patient. In the present study, the TLR models systematically outperformed the OR models in the 

‘lesion-based approach’ but not when considering the ‘patient-based’ approach. Despite of this fact, the 

performances of the models when using TLR features were close to the ones using the original features, 

showing the high potential of ratio-based features in terms of applicability in different centers. 

 Even though the present study followed the IBSI standardization initiative guidelines and 

scored 56% according to the radiomics quality score (29), it has several limitations, including its 

retrospective and monocentric design, with the need for an external validation within an independent 

population. It is possible that performances of physicians were underestimated in comparison to clinical 

routine due to the complete absence of clinical data. Moreover, physicians were nuclear medicine 

specialists without specific training in radiology, which could potentially influence performance. 

Conversely, the performance of radiomics and ML could possibly be improved by integrating more 

clinical (sweats, weight loss, etc…) and biological data, the localization of lesions (11), the CT or MRI 

radiomics (14,24,30)and by using a deep learning approach (31). In our study, some VOIs were 

manually adapted in case of physiological activity overflowing on a pathological VOI. However, those 

were rare occurrences, which was less likely to result in biases in the results. Also, we excluded from 

the study the patients without any VOI generated by the automated segmentation process. Given that 

these represented only a small part of the population (n=12/448 patients; 2.5 %), it was unlikely that 
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they would have affected the results. Finally, to show validity, reproducibility, usefulness and 

explainability of our results, we add a T.R.U.E checklist in supplemental material. 

 

CONCLUSION 

 The characterization of sarcoidosis and lymphoma lesions is feasible using ML and radiomics, 

inherent in their very good to excellent performances, proving to be equivalent or better than those of 

doctors who showed significant interobserver variability in their assessment.  
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KEY POINTS 

1) Question: Are specialists in medical imaging able to differentiate sarcoidosis and lymphomas based 

on visual analysis of 18F-FDG PET/CT and can machine learning models using radiomics help them 

in this task? 

2) Pertinent findings: Physicians characterize these diseases with variable performance, from 

moderate to very good. Machine learning and radiomics models achieve similar and better 

performances, in a more reproducible way. 

3) Implications for patient care: Machine learning and radiomics models are able to differentiate 

sarcoidosis and lymphoma, making it possible to consider, after external validation, their use in 

order to avoid unnecessary biopsies in patients with high suspicion of sarcoidosis. 
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Tables and Figures 

 

 

Table 1. Patients’ characteristics for the entire population (n=420) and the 4 physicians subsamples 

 

 

 
Overall Observer A Observer B Observer  C Observer D 

Age (y),median (Q1-Q3) 49 (35-61) 52 (36-67) 52 (37-61) 49 (39-60) 44 (29-55) 

Weight (Kg),median (Q1-Q3) 75 (63-86) 74 (62-84) 75 (66-85) 72 (62-85) 77 (63-89) 

Gender: female-male  179-241 47-62 41-61 45-55 46-64 

      

Diagnosis 
     

Sarcoidosis 169 (40.2%) 36 (33%) 36 (35.5%) 34 (34%) 63 (57%) 

Hodgkin lymphoma 140 (33.3%) 32 (29%) 36 (35.5%) 35 (35%) 37 (34%) 

Diffuse large B-cell 

lymphoma 

111 (26.5%) 41 (38%) 29 (29%) 31 (31%) 10 (9%) 
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Table 2. Overall and individual observers’ performances for the diagnosis of sarcoidosis versus 

lymphoma. Between brackets: 95% confidence intervals. 

 

 

 Overall Observer A Observer B Observer  C Observer D 

Proposed diagnosis: 

Sarcoidosis-Cancer 
130-290 31-78 21-80 28-72 50-60 

Correct 

classification 
375/420: 89.3% 

(86.3-92.2%) 
100/109: 91.7% 

(86.6-96.9%) 
86/101: 85.1% 

(78.2-92.1%) 
92/100: 92% 

(86.7-97.3%) 
97/110: 88.2% 

(82.3-94.2%) 

Correct sarcoidosis 

classification 
133/169: 78.7% 

(72.5-84.9%) 
29/36: 80.6% 

(67.6-93.5%) 
21/36: 58.3% 

(42.2-74.4%) 
27/34: 79.4% 

(65.8-93%) 
56/63: 88.9% 

(81.1-96.7%) 

Correct cancer 

classification  
248/251: 98.8% 

(97.5-100%) 
71/73: 97.3% 

(93.5-100%) 
65/65: 100% 

65/66: 98.5% 

(95.5-100%) 
47/47: 100% 

Sensitivity 0.99 (0.97-1.00) 0.97 (0.90-1.00) 1.00 (0.94-1.00) 
0.98 (0.92-

1.00) 
1.00 (0.92-1.00) 

Specificity 0.75 (0.68-0.81) 0.81 (0.64-0.92) 0.58 (0.41-0.74) 
0.79 (0.62-

0.91) 
0.79 (0.67-0.89) 

Positive predictive 

value 
0.86 (0.81-0.89) 0.91 (0.81-0.96) 0.81 (0.71-0.89) 

0.90 (0.82-

1.00) 
0.78 (0.66-0.88) 

Negative predictive 

value 
0.98 (0.93-1.00) 0.94 (0.79-0.99) 1.00 (0.84-1.00) 

0.96 (0.82-

1.00) 
1.00 (0.93-1.00) 

AUC-ROC  0.87 (0.84-0.90) 0.89 (0.82-0.96) 0.79 (0.71-0.87) 
0.89 (0.82-

0.96) 
0.90 (0.85-0.95) 
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Table 3.Overall and individual observers’ performances for the diagnosis of Hodgkin (HL) versus 

Diffuse Large B-Cell (DLBCL) lymphomas. Between brackets: 95% confidence intervals. 

 

 Overall Observer A Observer B Observer  C Observer D 

Proposed diagnosis:  

HL-DLBCL 
110-180 33-45 22-58 27-45 28-32 

Correct  HL 

classification 
80/140: 57.1% 

(49.0-65.3%)  
23/32: 71.9% 

(56.3-87.5%) 
14/36: 38.9% 

(23.0-54.8%) 
20/35: 57.1% 

(40.8-73.5%) 
27/37: 73.0% 

(58.7-87.3%) 

Correct DLBCL 

classification 
91/111: 82% 

(74.8-89.1%) 
35/41: 85.4% 

(74.5-96.2%) 
24/29: 82.8% 

(69.0-96.5%) 
24/31: 77.4% 

(62.7-92.1%) 
8/10: 80% 

(55.2-100%) 

When observer said 

cancer and gold-

standard was 

cancer: 

     

- correct HL 

classification  
79/137: 57.7% 

(49.4-65.9%) 
23/30: 76.7% 

(61.5-91.8%) 
14/36: 38.9% 

(23.0-54.8%) 
20/34: 58.8% 

(42.3-75.4%) 
22/37: 59.5% 

(43.6-75.3%) 

- correct DLBCL 

classification  
91/111: 82% 

(74.8-89.1%) 
35/41: 85.4% 

(74.6-96.2%) 
24/29: 82.8% 

(69.0-96.5%) 
24/31: 77.4% 

(62.7-91.1%) 
8/10: 80% 

(55.2-100%) 

      

Sensitivity 
0.58 (0.49-

0.66) 
0.77 (0.58-

0.90) 
0.39 (0.23-

0.57) 
0.59 (0.41-

0.75) 
0.59 (0.42-0.75) 

Specificity 
0.82 (0.74-

0.89) 
0.85 (0.71-

0.94) 
0.83 (0.64-

0.94) 
0.77 (0.59-

0.90) 
0.80 (0.44-0.97) 

Positive predictive 

value 
0.80 (0.71-

0.87) 
0.79 (0.60-

0.92) 
0.74 (0.49-

0.91) 
0.74 (0.54-

0.89) 
0.92 (0.73-0.99) 

Negative predictive 

value 
0.61 (0.53-

0.69) 
0.83 (0.69-

0.93) 
0.52 (0.37-

0.67) 
0.63 (0.46-

0.78) 
0.35 (0.16-0.57) 

Accuracy 
170/248: 

68.5% (62.7-

74.3%) 

58/71: 81.7% 

(72.7-90.7%) 
38/65: 58.5% 

(46.5-70.5%) 
44/65: 67.7% 

(56.3-79.1%) 
30/47: 63.8% 

(50.1-77.5%) 
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AUC-ROC  
0.70 (0.64-

0.75) 
0.81 (0.72-

0.91) 
0.60 (0.50-

0.72) 
0.68 (0.57-

0.79) 
0.70 (0.54-0.85) 
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Figure 1: Study flowchart  
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Figure 2: Representative examples of  18F-FDG PET/CT studies of diseases localized to the thorax. A. 

Diffuse Large B-Cell lymphoma ; B. Hodgkin lymphoma ; C. Sarcoidosis 
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Figure 3: Representative examples of  18F-FDG PET/CT studies of diffuse diseases. A. Diffuse Large 

B-Cell lymphoma; B. Sarcoidosis; C. Hodgkin lymphoma  
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Figure 4: Columns chart illustrating physicians’ and machine learning (ML)-radiomics models’ 

performances for the diagnosis of sarcoidosis versus lymphoma. AUC: area under the curve. Vertical 

lines at the top of each bar represent confidence intervals. 

 

 

  



 

  30 

 
 

Figure 5: Columns chart illustrating physicians’ and machine learning (ML)-radiomics models’ 

performances for the diagnosis of Hodgkin lymphoma versus diffuse large B-cell lymphoma. AUC: 

area under the curve. Vertical lines at the top of each bar represent confidence intervals. 
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Supplemental Table 1. Cohen’s kappa for agreement with the gold standard in the diagnosis of BBS vs. Cancer and 
pairwise comparison of diagnostic performance 
 
 

Cohen’s kappa Pairwise comparison Hotelling’s T-squared 

Observer A 0.79 (0.55, 1.02) A and B T2 = 3.92, p=0.056 
Observer B 0.45 (0.13, 0.78)  C T2 = 0.01, p=0.943 
Observer C 0.78 (0.53 - 1.02)  D T2 = 2.13, p=0.154 
Observer D 0.93 (0.79, 1.07) B and C T2 = 2.93, p=0.096 

   D T2 = 8.70, p=0.006 
  C and D T2 = 2.21, p=0.146 

 
 
 
 
 
 

Supplemental Table 2. Cohen’s kappa for agreement with the gold standard in the diagnosis of Hodgkin lymphoma 
vs. DLBCL and pairwise comparison of diagnostic performance 

 

Cohen’s kappa Pairwise comparison Hotelling’s T-squared 

Observer A 0.70 (0.38, 1.01) A and B T2 =9.60, p=0.006 
Observer B 0.07 (-0.35, 0.49)  C T2 = 5.42, p=0.031 
Observer C 0.27 (-0.15, 0.69)  D T2 = 5.42, p=0.031 
Observer D 0.27 (-0.15, 0.69) B and C T2 = 2.18, p=0.155 

   D T2 =2.18, p=0.155 
  C and D (*) 

 (*) The calculation was not performed due to no variability observed between observers C and D. 

  



Supplemental Table 3 
Best radiomic models and its diagnostic performance with95% confidence intervals of ‘Lesion based’ models in the classification of 
cancer vssarcoidoisis. The best radiomic signature was chosen according to the best mean 5-fold cross validation AUCpr. 
 
Radiomics 

type 
Classifier Model Features AUC AUCpr Sensitivity Specificity PPV NPV 

OR RF FS: RF_Gini; 
Discretization:FBW 

(0.5 SUV); 

Stats_min;Shape_areaDensi
tyBE;Shape_flatness;Shape
_elongation;Shape_volume
DensityBB;Shape_centroid
Distance;Shape_areaDensit
yBB;Shape_volumeDensity
BE;Stats_p10;NGLDM_H

GLDE;GLCM_maxCorr;IV
H_AIRV_80;GLSZM_SAE
;NGLDM_DV;IVH_AIRV
_90;GLSZM_LISAE;NGT
DM_busyness;IVH_AIRV_
50;Shape_leastaxislength;S

hape_maxDiameter2D2 

0.68 
(0.66-
0.70) 

0.78 
(0.77-
0.80) 

0.83 (0.79-
0.88) 

0.34 (0.27-
0.41) 

0.68 
(0.67-
0.70) 

0.54 
(0.49-
0.60) 

          
TLR RF FS: RF_Accuracy; 

Discretization:FBW 
(0.05 SUV);  

Stats_min;IVH_AIRV_90;
Stats_p10;GLCM_infoCorr

2 

0.94 
(0.93-
0.95) 

0.96 
(0.95-
0.97) 

0.92 (0.89-
0.94) 

0.80 (0.75-
0.84) 

0.88 
(0.86-
0.91) 

0.85 
(0.81-
0.89) 

  



Supplemental Table 4 
Best radiomic models and its diagnostic performance with95% confidence intervals of ‘Lesion-based’ models in the classification of 
HLvsDLBCL. The best radiomic signature was chosen according to the best mean 5-fold cross validation AUCpr. 
 
Radiomics 

type 
Classifier Model Features AUC AUCpr Sensitivity Specificity PPV NPV 

OR RF FS: 
MRMR_Forward

_spearman; 
Discretization:FB

W (0.2 SUV);  

GLCM_inverseVar;Stats_ske
wness;Stats_min;IVH_RVRI
_20;IH_maxGradI;IVH_RV
RI_10;GLCM_maxCorr;IH_
entropy;IH_mode;Shape_elo

ngation 

0.67 
(0.64-
0.70) 

0.62 
(0.58-
0.66) 

0.57 (0.50-
0.64) 

0.66 (0.60-
0.73) 

0.60 
(0.56-
0.64) 

0.64 
(0.60-
0.67) 

          
TLR RF FS:RF_Gini; 

Discretization:FB
W (0.05 SUV);  

GLCM_infoCorr2;Stats_min 0.95 
(0.93-
0.96) 

0.95 
(0.92-
0.96) 

0.89 (0.85-
0.92) 

0.88 (0.84-
0.92) 

0.87 
(0.83-
0.90) 

0.90 
(0.87-
0.92) 

 
 
 
  



Supplemental Table 5 
Best radiomic models and its diagnostic performance with95% confidence intervals of ‘Patient-based’ models in the classification of 
cancervssarcoidosis. The best radiomic signature was chosen according to the best mean 5-fold cross validation AUCpr. 
 

Radiomics 
type 

Radiomics 
merge 
metric 

Classifier Model Features AUC AUCpr Sensitivity Specificity PPV NPV 

OR Mean LR FS: 
MRMR_Backwar

d_pearson; 
Discretization:FB

W (0.1 SUV); 

Stats_skewness;Stats_min;Sta
ts_kurtosis;Shape_volumeDe
nsityBE;Shape_volumeDensit
yBB;Shape_sphericity;Shape
_spherDisprop;Shape_flatnes
s;Shape_elongation;Shape_co
mpactness3;Shape_compactn
ess2;Shape_asphericity;Shape
_areaDensityBE;Shape_area

DensityBB 

0.76 
(0.72-
0.80) 

0.79 
(0.75-
0.83) 

0.79 (0.72-
0.86) 

0.60 (0.50-
0.68) 

0.75 
(0.70-
0.78) 

0.67 
(0.59-
0.75) 

           
TLR Minimum RF FS: 

RF_Accuracy; 
Discretization:FB

N (32 bins) 

NGLDM_SM2;Shape_surfV
olRatio;Shape_compactness2;
GLRLM_RP;IVH_AIRV_70;

Shape_volumeDensityBE 

0.82 
(0.79-
0.85) 

0.87 
(0.82-
0.90) 

0.79 (0.72-
0.86) 

0.65 (0.56-
0.74) 

0.77 
(0.73-
0.82) 

0.68 
(0.62-
0.76) 

OR+ 
Clinical 

Maximum RF FS: 
RF_Accuracy; 
Discretization: 

FBW (0.5) 

Age;GLCM_correl1;GLSZM
_HILAE;NGLDM_HGLDE;
Shape_asphericity;Shape_sph

erDisprop 

0.85 
(0.81-
0.89) 

0.87 
(0.82-
0.91) 

0.80 (0.72-
0.90) 

0.74 (0.65-
0.82) 

0.82 
(0.77-
0.87) 

0.72 
(0.64-
0.81) 

TLR+ 
Clinical 

Minimum RF FS:RF_Accuracy
; Discretization: 
FBN (32 bins) 

NGLDM_SM2;Shape_surfV
olRatio;Age;Shape_volumeD
ensityBE;NGLDM_DNN;Sha
pe_sphericity;IVH_AIRV_70

;GLDZM_DZNN 

0.85 
(0.82-
0.88) 

0.88 
(0.84-
0.92) 

0.84 (0.78-
0.90) 

0.67 (0.56-
0.76) 

0.79 
(0.74-
0.84) 

0.74 
(0.67-
0.83) 

 
  



Supplemental Table 6 
Best radiomic models and its diagnostic performance with95% confidence intervals of ‘Patient-based’ models in the classification of 
HLvsDLBCL. The best radiomic signature was chosen according to the best mean 5-fold cross validation AUCpr. 
 

Radiomics 
type 

Radiomics 
merge 
metric 

Classifier Model Features AUC AUCpr Sensitivity Specificity PPV NPV 

OR Maximum NB FS:MRMR_Forw
ard_pearson; 

Discretization: 
FBW (0.5 SUV) 

IH_entropy;NGLDM_GLN;IV
H_AIRV_70;Shape_compactne
ss2;GLCM_infoCorr1;GLSZM
_SZN;GLSZM_SZNN;GLDZ
M_LDE;IH_minGradI;Stats_m
ax;GLCM_entrop2;IH_maxGra
d;NGLDM_SDE;IVH_AVRI_
50;IH_medianD;NGLDM_LG
LDE;GLCM_maxCorr;IVH_A
IRV_80;GLDZM_IN;NGLDM

_DNN 

0.73 
(0.67-
0.77) 

0.70 
(0.64-
0.73) 

0.71 (0.61 - 
0.79) 

0.72 (0.64-
0.77) 

0.76 
(0.71-
0.81) 

0.66 
(0.59-
0.74) 

           
TLR Minimum RF FS:RF_Accuracy

; Discretization: 
FBW (0.1 SUV) 

IVH_RVRI_20;NGLDM_SM2
;Shape_surfVolRatio;IVH_AV
RI_40;GLSZM_INN;IH_unifor
mity;GLCM_homogeneity2;G
LDZM_INN;GLRLM_GLNN;
NGLDM_GLNN;IVH_RVRI_
30;GLCM_homogeneity1;GLD
ZM_SDE;GLSZM_HILAE;N

GLDM_LGSDE;Shape_maxDi
ameter3D;GLSZM_LIE;Shape
_volumeDensityBE;NGTDM_

coarseness;IVH_AVRI_50 

0.67 
(0.61-
0.72) 

0.67 
(0.60-
0.75) 

0.71 (0.61-
0.79) 

0.56 (0.45-
0.68) 

0.67 
(0.62-
0.73) 

0.60 
(0.52-
0.68) 

OR+ 
Clinical 

Maximum NB FS:MRMR_Forw
ard_pearson; 

Discretization: 
FBW (0.5 SUV) 

IH_entropy;Age;NGLDM_SM;
IVH_AIRV_70;GLCM_infoCo

rr1;NGLDM_DNN 

0.86 
(0.80-
0.91) 

0.87 
(0.78-
0.91) 

0.79 (0.71-
0.86) 

0.85 (0.73-
0.86) 

0.87 
(0.79-
0.89) 

0.76 
(0.70 -
0.83) 



TLR+ 
Clinical 

Maximum RF FS: 
MRMR_Forward

_spearman; 
Discretization: 

FBW (0.5 SUV) 

GLRLM_LRHGE;Age;IH_cov
;IVH_TLGRI_60;GLSZM_LA
E;Shape_compactness2;GLSZ

M_SZN;NGLDM_HGLDE;GL
CM_inverseVar;GLDZM_IN;

GLSZM_SZNN;Sexe 

0.79 
(0.72-
0.85) 

0.81 
(0.72-
0.88) 

0.68 (0.57-
0.82) 

0.74 (0.64-
0.82) 

0.77 
(0.71-
0.84) 

0.65 
(0.57-
0.76) 
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Definition of RadiomiX features 


First-order gray-level statistics 


First-order gray-level statistics describe the distribution of gray-values within the volume. Let 𝑋 


denote the three dimensional image matrix with 𝑁 voxels, 𝑃 the first order histogram, 𝑃(𝑖) the 


fraction of voxels with intensity level 𝑖 and 𝑁𝑙  the number of discrete intensity levels. 


1. Energy


𝑒𝑛𝑒𝑟𝑔𝑦 =∑𝑋(𝑖)2
𝑁


𝑖=1


 


Energy is also known as the sum of squares. 


2. Entropy


𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =∑𝑃(𝑖) log2 𝑃(𝑖)


𝑁𝑙


𝑖=1


 


3. Kurtosis


𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =


1
𝑁
∑ (𝑋(𝑖) − 𝑋̅)4𝑁
𝑖=1


(
1
𝑁
∑ (𝑋(𝑖) − 𝑋̅)2𝑁
𝑖=1 )


2


where 𝑋̅ is the mean of 𝑋. 


4. Maximum


The maximum intensity value of 𝑋. 


𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = max⁡(𝑋) 


5. Mean


The mean gray-value of 𝑋. 


𝑚𝑒𝑎𝑛 =
1


𝑁
∑𝑋(𝑖)


𝑁


𝑖=1


 







6. Mean absolute deviation


The mean of the absolute deviations of all voxel intensities around the mean intensity value. 


𝑚𝑒𝑎𝑛⁡𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒⁡𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
1


𝑁
∑|𝑋(𝑖) − 𝑋|


𝑁


𝑖=1


 


where 𝑋̅ is the mean of 𝑋. 


7. Median


The sample median of 𝑋, or the 50th percentile of 𝑋. 


8. Minimum


The minimum intensity value of 𝑋. 


𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = min(𝑋) 


9. Range


The range of intensity values of 𝑋. 


𝑟𝑎𝑛𝑔𝑒 = max(𝑋) − min(𝑋) 


10. Root mean square (RMS)


The quadratic mean, or the square root of the mean of squares of all voxel intensities. 


𝑅𝑀𝑆 = √
∑ 𝑋(𝑖)2𝑁
𝑖


𝑁


11. Skewness


𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =


1
𝑁
∑ (𝑋(𝑖) − 𝑋̅)3𝑁
𝑖=1


(√
1
𝑁
∑ (𝑋(𝑖) − 𝑋̅)2𝑁
𝑖=1 )


3


where 𝑋̅ is the mean of 𝑋. 


12. Standard deviation


𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑⁡𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (
1


𝑁 − 1
∑(𝑋(𝑖) − 𝑋̅)2
𝑁


𝑖=1


)


1 2⁄


where 𝑋̅ is the mean of 𝑋. 







13. Robust mean absolute deviation


The mean absolute deviation (0) of only those voxels in 𝑋 with a gray-value between the 10th and 90th 


percentile. 


14. 10th percentile


The 10th percentile of 𝑋, a robust alternative to the minimum gray-value (8). 


15. 90th percentile


The 90th percentile of 𝑋, a robust alternative to the maximum gray-value (4). 


16. Interquartile range


The interquartile range is defined as the 75th minus the 25th percentile of 𝑋. 


17. Uniformity


𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =∑𝑃(𝑖)2


𝑁𝑙


𝑖=1


 


18. Variance


𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1


𝑁 − 1
∑(𝑋(𝑖) − 𝑋̅)2
𝑁


𝑖=1


 


where 𝑋̅ is the mean of 𝑋. Variance is the square of the standard deviation (12). 







Fractal Dimension features (FD)


Given the FD processed image 𝐼, with 𝑁 elements: 


19. Average:


𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1


𝑁
∑𝐼 


20. Lacunarity


𝑙𝑎𝑐𝑢𝑛𝑎𝑟𝑖𝑡𝑦 =


1
𝑁
∑ 𝐼2


1
𝑁2∑𝐼


− 1


21. Standard deviation:


𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑⁡𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (
1


𝑁 − 1
∑(𝐼 − 𝐼)2)


1 2⁄


Where 𝐼 is the mean of 𝐼. 







Geometric features 


Geometric features describe the shape and size of the volume of interest. Let 𝑉⁡be the volume and 𝐴 


the surface area of the volume of interest. Let 𝑁 be the total number of voxels, 𝑋 = {𝑋⃗1, 𝑋⃗2, … , 𝑋⃗𝑁} 


the set of N Cartesian coordinate vectors and 𝐼 = {𝐼1, 𝐼2, … , 𝐼𝑁} the corresponding intensity values. 


22. Asphericity


𝑎𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 = (
1


36𝜋


𝐴3


𝑉2)


1
3


− 1


23. Centroid distance


The centroid distance is the Euclidean distance between the geometric centroid (𝐶𝑔) and the centroid 


weighing each voxel by its intensity value (𝐶𝑖). The centroid distance is a measure of how close the 


high intensity values are to the geometric center. 


𝐶𝑔 =
1


𝑁
∑𝑋⃗𝑖


𝑁


𝑖=1


 


𝐶𝑖 =
∑ 𝐼𝑋⃗𝑖
𝑁
𝑖=1


∑ 𝐼𝑁
𝑖=1


𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑⁡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ‖𝐶𝑔 − 𝐶𝑖‖ 


24. Compactness 1


Compactness is a measure of how much the volume resembles a sphere.


𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠⁡1 =
𝑉


√𝜋𝐴
2
3


25. Compactness 2


𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠⁡2 = 36𝜋
𝑉2


𝐴3


26. Compactness 3


𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠⁡3 =
𝑉


√𝜋𝐴
3
2







27. Maximum diameter


The maximum diameter is the largest pairwise difference between voxels on the surface of the 


volume, in 3D and for each plane separately. The following diameters are calculated: 


27.1. The maximum three-dimensional tumor diameter. 


27.2. The maximum two-dimensional diameter of all transversal planes. 


27.3. The maximum two-dimensional diameter of all sagittal planes. 


27.4. The maximum two-dimensional diameter of all coronal planes. 


28. Major axis length


Axis lengths are measures of the extent of the volume along its three principle axis. Principle 


component analysis (PCA) on the x, y and z coordinates of all voxels within the volume is used to 


determine the three orthogonal eigenvectors and corresponding eigenvalues (𝜆𝑚𝑎𝑥, 𝜆𝑚𝑖𝑛𝑜𝑟, 𝜆𝑚𝑖𝑛). 


The major axis length is the largest eigenvalue (𝜆𝑚𝑎𝑥) as determined by PCA. 


29. Minor axis length


The largest eigenvalue (𝜆𝑚𝑖𝑛𝑜𝑟) as determined by PCA. 


30. Least axis length


The smallest eigenvalue (𝜆𝑚𝑖𝑛) as determined by PCA. 


31. Elongation


𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 =
𝜆𝑚𝑖𝑛𝑜𝑟


𝜆𝑚𝑎𝑥


32. Flatness


𝑓𝑙𝑎𝑡𝑛𝑒𝑠𝑠 =
𝜆𝑚𝑖𝑛


𝜆𝑚𝑎𝑥







33. Spherical disproportion 


Spherical disproportion is a measure of how much the volume resembles a sphere. 


𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙⁡𝑑𝑖𝑠𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =
𝐴


4𝜋𝑅2


Where 𝐴 is the surface area and 𝑅⁡is the radius of a sphere with the same volume as the tumor, 


obtained through: 


𝑅 = √
3𝑉


4𝜋


3


34. Sphericity 


Sphericity is a measure of how much the volume resembles a sphere. 


𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
𝜋
1
3(6𝑉)


2
3


𝐴
=
(36𝜋𝑉2)


1
3


𝐴


35. Surface area


The surface area is calculated by triangulation (i.e. dividing the surface into connected triangles, 


which define the isosurface enclosing the volume) and is defined as: 


𝑠𝑢𝑟𝑓𝑎𝑐𝑒⁡𝑎𝑟𝑒𝑎 =∑
1


2
|𝑎𝑖𝑏𝑖 × 𝑎𝑖𝑐𝑖|


𝑁


𝑖=1


 


Where 𝑁 is the total number of triangles covering the surface and 𝑎, 𝑏 and 𝑐 are edge vectors of the 


triangles. 


36. Surface to volume ratio


𝑠𝑢𝑟𝑓𝑎𝑐𝑒⁡𝑡𝑜⁡𝑣𝑜𝑙𝑢𝑚𝑒⁡𝑟𝑎𝑡𝑖𝑜 =
𝐴


𝑉


37. Volume


The volume is defined as the number of voxels within the volume multiplied by the voxel volume. 


𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑁𝑣 


Where 𝑣 is the volume of a single voxel. 







Gray-Level Co-Occurrence Matrix based features (GCLM)


A normalized GLCM is defined as 𝑃(𝑖, 𝑗; 𝛿, 𝛼), a matrix with size 𝑁𝑔 × 𝑁𝑔 describing the second-order 


joint probability function of an image, where the (𝑖, 𝑗)th element represents the number of times 


the combination of intensity levels 𝑖 and 𝑗 occur in two pixels in the image, that are separated by a 


distance of 𝛿 pixels in direction 𝛼, and 𝑁𝑔 is the maximum discrete intensity level in the image. Let: 


𝑃(𝑖, 𝑗) be the normalized (i.e. ∑ 𝑃(𝑖, 𝑗) = 1) co-occurrence matrix, generalized for any 𝛿 and 𝛼 , 


𝑝𝑥(𝑖) = ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔


𝑗=1
, 


𝑝𝑦(𝑗) = ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔


𝑖=1
, 


𝜇𝑥 be the mean of 𝑝𝑥, where 𝜇𝑥 = ∑ ∑ 𝑖𝑃(𝑖, 𝑗)
𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1
 


𝜇𝑦 be the mean of 𝑝𝑦, where 𝜇𝑦 = ∑ ∑ 𝑗𝑃(𝑖, 𝑗)
𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1
 


𝜎𝑥 be the standard deviation of 𝑝𝑥, where 𝜎𝑥
2 = ∑ ∑ 𝑃(𝑖, 𝑗)(𝑖 − 𝜇𝑥)


2𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


𝜎𝑦 be the standard deviation of 𝑝𝑦, where 𝜎𝑦
2 = ∑ ∑ 𝑃(𝑖, 𝑗)(𝑗 − 𝜇𝑦)


2𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


𝑝𝑥+𝑦(𝑘) = ∑ ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1
, 𝑖 + 𝑗 = 𝑘, 𝑘 = 2,3,… ,2𝑁𝑔, 


𝑝𝑥−𝑦(𝑘) = ∑ ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1
, |𝑖 − 𝑗| = 𝑘, 𝑘 = 0,1, … , 𝑁𝑔 − 1, 


𝐻𝑋𝑌1 = −∑ ∑ 𝑃(𝑖, 𝑗) ln(𝑝𝑥(𝑖)𝑝𝑦(𝑗)) ⁡
𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1
, 


𝐻𝑋𝑌2 = −∑ ∑ 𝑝𝑥(𝑖)𝑝𝑦(𝑗) ln(𝑝𝑥(𝑖)𝑝𝑦(𝑗))
𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1
, 


𝐻𝑋 = −∑𝑝𝑥 ln(𝑝𝑥) 


𝐻𝑌 = −∑𝑝𝑦 ln(𝑝𝑦) 


38. Average (𝝁)


𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡(𝜇) =
∑ ∑ (𝑖 + 𝑗)𝑃(𝑖, 𝑗)


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


2


Note that for a symmetrical GLCM, 𝜇 = 𝜇𝑥 = 𝜇𝑦. 







39. Autocorrelation


𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =∑∑𝑖𝑗𝑃(𝑖, 𝑗)


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


 


40. Cluster Prominence


𝑐𝑙𝑢𝑠𝑡𝑒𝑟⁡𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 =∑∑[𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦]
4
𝑃(𝑖, 𝑗)


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


41. Cluster Shade


𝑐𝑙𝑢𝑠𝑡𝑒𝑟⁡𝑠ℎ𝑎𝑑𝑒 =∑∑[𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦]
3
𝑃(𝑖, 𝑗)


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


42. Cluster Tendency


𝑐𝑙𝑢𝑠𝑡𝑒𝑟⁡𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦 =∑∑[𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦]
2
𝑃(𝑖, 𝑗)


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


43. Contrast


𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =∑∑|𝑖 − 𝑗|2𝑃(𝑖, 𝑗)


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


= ∑ 𝑘2


𝑁𝑔−1


𝑘=0


𝑝𝑥−𝑦(𝑘) 


44. Correlation


𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ 𝑖𝑗𝑃(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


𝜎𝑥𝜎𝑦


45. Difference Average (𝝁𝒙−𝒚)


𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒⁡𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡(𝜇𝑥−𝑦) = ∑ 𝑘𝑝𝑥−𝑦


𝑁𝑔−1


𝑘=0


 


46. Difference Entropy


𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒⁡𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑃𝑥−𝑦(𝑖) log2[𝑃𝑥−𝑦(𝑖)]


𝑁𝑔−1


𝑖=0


 







47. Difference Variance


𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒⁡𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑ (𝑖 − 𝜇𝑥−𝑦)
2𝑃𝑥−𝑦(𝑖)


𝑁𝑔−1


𝑖=0


48. Dissimilarity


𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =∑∑|𝑖 − 𝑗|𝑃(𝑖, 𝑗)


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


 


49. Energy


𝑒𝑛𝑒𝑟𝑔𝑦 =∑∑[𝑃(𝑖, 𝑗)]2


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


 


This feature is also called Angular Second Moment (ASM) and Uniformity. 


50. Entropy (H)


𝑒𝑛𝑡𝑟𝑜𝑝𝑦⁡(𝐻) = −∑∑𝑃(𝑖, 𝑗) log2[𝑃(𝑖, 𝑗)]


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


 


51. Homogeneity 1


ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦⁡1 =∑∑
𝑃(𝑖, 𝑗)


1 + |𝑖 − 𝑗|


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


This feature is also called Inverse Difference. 


52. Homogeneity 2


ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦⁡2 =∑∑
𝑃(𝑖, 𝑗)


1 + |𝑖 − 𝑗|2


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


This feature is also called Inverse Difference Moment. 


53. Informational measure of correlation 1 (IMC1)


𝐼𝑀𝐶1 =
𝐻 − 𝐻𝑋𝑌1


max{𝐻𝑋,𝐻𝑌}


Where 𝐻 is the entropy (50). 







54. Informational measure of correlation 2 (IMC2)


𝐼𝑀𝐶2 = √1 − 𝑒−2(𝐻𝑋𝑌2−𝐻) 


Where 𝐻 is the entropy (50). 


55. Inverse Difference Moment Normalized (IDMN)


𝐼𝐷𝑀𝑁 =∑∑
𝑃(𝑖, 𝑗)


1 + (
|𝑖 − 𝑗|2


𝑁𝑔
2 )


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


56. Inverse Difference Normalized (IDN)


𝐼𝐷𝑁 =∑∑
𝑃(𝑖, 𝑗)


1 + (
|𝑖 − 𝑗|
𝑁𝑔


)


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


57. Inverse variance


𝑖𝑛𝑣𝑒𝑟𝑠𝑒⁡𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =∑∑
𝑃(𝑖, 𝑗)


|𝑖 − 𝑗|2


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


, 𝑖 ≠ 𝑗 


58. Maximal Correlation Coefficient


𝑚𝑎𝑥𝑖𝑚𝑎𝑙⁡𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛⁡𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = √second⁡largest⁡eigenvalue⁡of⁡𝑄 


𝑄 = ∑
𝑃(𝑖, 𝑘)𝑃(𝑗, 𝑘)


𝑝𝑥(𝑖)𝑝𝑦(𝑘)


𝑁𝑔


𝑘=1


59. Maximum Probability


𝑚𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = max{𝑃(𝑖, 𝑗)} 


60. Sum average (SA)


𝑠𝑢𝑚⁡𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡(𝑆𝐴) = ∑[𝑖𝑃𝑥+𝑦(𝑖)]


2𝑁𝑔


𝑖=2


 


61. Sum entropy


𝑠𝑢𝑚⁡𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑃𝑥+𝑦(𝑖) log2[𝑃𝑥+𝑦(𝑖)]


2𝑁𝑔


𝑖=2


 







62. Sum variance


𝑠𝑢𝑚⁡𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑(𝑖 − 𝑆𝐴)2𝑃𝑥+𝑦(𝑖)


2𝑁𝑔


𝑖=2


63. Variance (sum of squares)


𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =∑∑(𝑖 − 𝜇)2𝑃(𝑖, 𝑗)


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


 







Gray-Level Run-Length matrix based features (GLRLM)


Run length metrics quantify gray level runs in an image. A gray level run is defined as the length in 


number of pixels, of consecutive pixels that have the same gray level value. In a gray level run length 


matrix 𝑝(𝑖, 𝑗|𝜃), the (𝑖, 𝑗)th element describes the number of times 𝑗 a gray level 𝑖 appears 


consecutively in the direction specified by 𝜃. Let: 


𝑝(𝑖, 𝑗) be the (𝑖, 𝑗)th entry in the given run-length matrix 𝑝, generalized for any direction 𝜃, 


𝑁𝑔 the number of discrete intensity values in the image, 


𝑁𝑟 the maximum run length, 


𝑁𝑠 the total number of runs, where 𝑁𝑠 = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1


𝑁𝑔


𝑖=1
, 


𝑝𝑟  the sum distribution of the number of runs with run length 𝑗, where 𝑝𝑟(𝑗) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔


𝑖=1
, 


𝑝𝑔 the sum distribution of the number of runs with gray level 𝑖, where 𝑝𝑔(𝑖) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1 , 


𝑁𝑝 the number of voxels in the image, where 𝑁𝑝 = ∑ 𝑗𝑝𝑟
𝑁𝑟
𝑗=1 ,


𝑝𝑛(𝑖, 𝑗) the normalized run-length matrix, where  𝑝𝑛(𝑖, 𝑗) =
𝑝(𝑖,𝑗)


𝑁𝑠
, 


𝜇𝑟 the mean run length, where 𝜇𝑟 = ∑ ∑ 𝑗𝑝𝑛(𝑖, 𝑗)
𝑁𝑟
𝑗=1


𝑁𝑔


𝑖=1
, 


𝜇𝑔 the mean gray level, where 𝜇𝑔 = ∑ ∑ 𝑖𝑝𝑛(𝑖, 𝑗)
𝑁𝑟
𝑗=1


𝑁𝑔


𝑖=1
. 


64. Short Run Emphasis (SRE)


𝑆𝑅𝐸 =
1


𝑁𝑠
∑


𝑝𝑟
𝑗2


𝑁𝑟


𝑗=1


65. Long Run Emphasis (LRE)


𝐿𝑅𝐸 =
1


𝑁𝑠
∑𝑗2𝑝𝑟


𝑁𝑟


𝑗=1


66. Gray Level Non-Uniformity (GLN)


𝐺𝐿𝑁 =
1


𝑁𝑠
∑𝑝𝑔


2


𝑁𝑔


𝑖=1







67. Gray Level Non-Uniformity Normalized (GLNN)


𝐺𝐿𝑁𝑁 =
1


𝑁𝑠
2∑𝑝𝑔


2


𝑁𝑔


𝑖=1


68. Run Length Non-Uniformity (RLN)


𝑅𝐿𝑁 =
1


𝑁𝑠
∑𝑝𝑟


2


𝑁𝑟


𝑗=1


69. Run Length Non-Uniformity Normalized (RLNN)


𝑅𝐿𝑁𝑁 =
1


𝑁𝑠
2∑𝑝𝑟


2


𝑁𝑟


𝑗=1


70. Run Percentage (RP)


𝑅𝑃 =
𝑁𝑠
𝑁𝑝


71. Low Gray Level Run Emphasis (LGRE)


𝐿𝐺𝑅𝐸 =
1


𝑁𝑠
∑


𝑝𝑔


𝑖2


𝑁𝑔


𝑖=1


72. High Gray Level Run Emphasis (HGRE)


𝐻𝐺𝑅𝐸 =
1


𝑁𝑠
∑𝑖2𝑝𝑔


𝑁𝑔


𝑖=1


73. Short Run Low Gray Level Emphasis (SRLGE)


𝑆𝑅𝐿𝐺𝐸 =
1


𝑁𝑠
∑∑


𝑝(𝑖, 𝑗)


𝑖2𝑗2


𝑁𝑟


𝑗=1


𝑁𝑔


𝑖=1


74. Short Run High Gray Level Emphasis (SRHGE)


𝑆𝑅𝐻𝐺𝐸 =
1


𝑁𝑠
∑∑


𝑝(𝑖, 𝑗)𝑖2


𝑗2


𝑁𝑟


𝑗=1


𝑁𝑔


𝑖=1


75. Long Run Low Gray Level Emphasis (LRLGE)


𝐿𝑅𝐿𝐺𝐸 =
1


𝑁𝑠
∑∑


𝑝(𝑖, 𝑗)𝑗2


𝑖2


𝑁𝑟


𝑗=1


𝑁𝑔


𝑖=1







76. Long Run High Gray Level Emphasis (LRHGE)


𝐿𝑅𝐻𝐺𝐸 =
1


𝑁𝑠
∑∑𝑝(𝑖, 𝑗)𝑖2𝑗2


𝑁𝑟


𝑗=1


𝑁𝑔


𝑖=1


 


77. Gray level variance (GLV)


𝐺𝐿𝑉 =∑∑(𝑖 − 𝜇𝑔)
2𝑝𝑛(𝑖, 𝑗)


𝑁𝑟


𝑗=1


𝑁𝑔


𝑖=1


78. Run length variance (RLV)


𝑅𝐿𝑉 =∑∑(𝑗 − 𝜇𝑟)
2𝑝𝑛(𝑖, 𝑗)


𝑁𝑟


𝑗=1


𝑁𝑔


𝑖=1


79. Run entropy (RE)


𝑅𝐸 = −∑∑𝑝𝑛(𝑖, 𝑗|𝜃)log2[ 𝑝𝑛(𝑖, 𝑗)]


𝑁𝑟


𝑗=1


𝑁𝑔


𝑖=1


 







Gray-Level size-zone matrix based features (GLSZM)


A gray level size-zone matrix describes the amount of homogeneous connected areas within the 


volume, of a certain size and intensity. The (𝑖, 𝑗)th entry of the GLSZM 𝑝(𝑖, 𝑗) is the number of 


connected areas of gray-level (i.e. intensity value) 𝑖 and size 𝑗. GLSZM features therefore describe 


homogeneous areas within the tumor volume, describing tumor heterogeneity at a regional scale. 


Let: 


𝑝(𝑖, 𝑗) be the (𝑖, 𝑗)th entry in the given GLSZM 𝑝, 


𝑁𝑔 the number of discrete intensity values in the image, 


𝑁𝑧 the size of the largest, homogeneous region in the volume of interest, 


𝑁𝑠 the total number of homogeneous regions (zones), where 𝑁𝑠 = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑧
𝑗=1


𝑁𝑔


𝑖=1
, 


𝑝𝑧 the sum distribution of the number of zones with size 𝑗, where 𝑝𝑧(𝑗) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔


𝑖=1
, 


𝑝𝑔 the sum distribution of the number of zones with gray level 𝑖, where 𝑝𝑔(𝑖) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑧
𝑗=1 , 


𝑁𝑝 the number of voxels in the image, where 𝑁𝑝 = ∑ 𝑗𝑝𝑧
𝑁𝑧
𝑗=1 ,


𝑝𝑛(𝑖, 𝑗) the normalized size-zone matrix, where  𝑝𝑛(𝑖, 𝑗) ⁡=
𝑝(𝑖,𝑗)


𝑁𝑠
, 


𝜇𝑧 the mean zone size, where 𝜇𝑧 = ∑ ∑ 𝑗𝑝𝑛(𝑖, 𝑗|𝜃)
𝑁𝑧
𝑗=1


𝑁𝑔


𝑖=1
, 


𝜇𝑔 the mean gray level, where 𝜇𝑔 = ∑ ∑ 𝑖𝑝𝑛(𝑖, 𝑗|𝜃)
𝑁𝑧
𝑗=1


𝑁𝑔


𝑖=1
. 


80. Small area Emphasis (SAE)


𝑆𝐴𝐸 =
1


𝑁𝑠
∑


𝑝𝑧
𝑗2


𝑁𝑧


𝑗=1


81. Large area Emphasis (LAE)


𝐿𝐴𝐸 =
1


𝑁𝑠
∑𝑗2𝑝𝑧


𝑁𝑧


𝑗=1


82. Intensity Non-Uniformity (IN)


𝐼𝑁 =
1


𝑁𝑠
∑𝑝𝑔


2


𝑁𝑔


𝑖=1







83. Intensity Non-Uniformity Normalized (INN)


𝐼𝑁𝑁 =
1


𝑁𝑠
2∑𝑝𝑔


2


𝑁𝑔


𝑖=1


84. Size-zone Non-Uniformity (SZN)


𝑆𝑍𝑁 =
1


𝑁𝑠
∑𝑝𝑧


2


𝑁𝑧


𝑗=1


85. Size-zone Non-Uniformity Normalized (SZNN)


𝑆𝑍𝑁𝑁 =
1


𝑁𝑠
2∑𝑝𝑧


2


𝑁𝑧


𝑗=1


86. Zone Percentage (ZP)


𝑍𝑃 =
𝑁𝑠
𝑁𝑝


87. Low intensity Emphasis (LIE)


𝐿𝐼𝐸 =
1


𝑁𝑠
∑


𝑝𝑔


𝑖2


𝑁𝑔


𝑖=1


88. High intensity Emphasis (HIE)


𝐻𝐼𝐸 =
1


𝑁𝑠
∑𝑖2𝑝𝑔


𝑁𝑔


𝑖=1


89. Low intensity small area Emphasis (LISAE)


𝐿𝐼𝑆𝐴𝐸 =
1


𝑁𝑠
∑∑


𝑝(𝑖, 𝑗)


𝑖2𝑗2


𝑁𝑧


𝑗=1


𝑁𝑔


𝑖=1


90. High intensity small area Emphasis (HISAE)


𝐻𝐼𝑆𝐴𝐸 =
1


𝑁𝑠
∑∑


𝑝(𝑖, 𝑗)𝑖2


𝑗2


𝑁𝑧


𝑗=1


𝑁𝑔


𝑖=1


91. Low intensity large area Emphasis (LILAE)


𝐿𝐼𝐿𝐴𝐸 =
1


𝑁𝑠
∑∑


𝑝(𝑖, 𝑗)𝑗2


𝑖2


𝑁𝑧


𝑗=1


𝑁𝑔


𝑖=1







92. High intensity large area Emphasis (HILAE)


𝐻𝐼𝐿𝐴𝐸 =
1


𝑁𝑠
∑∑𝑝(𝑖, 𝑗)𝑖2𝑗2


𝑁𝑧


𝑗=1


𝑁𝑔


𝑖=1


 


93. Intensity variance (IV)


𝐼𝑉 =∑∑(𝑖 − 𝜇𝑔)
2𝑝𝑛(𝑖, 𝑗)


𝑁𝑧


𝑗=1


𝑁𝑔


𝑖=1


94. Size-zone variance (SZV)


𝑆𝑍𝑉 =∑∑(𝑗 − 𝜇𝑧)
2𝑝𝑛(𝑖, 𝑗)


𝑁𝑧


𝑗=1


𝑁𝑔


𝑖=1


95. Zone entropy (ZE)


𝑍𝐸 = −∑∑𝑝𝑛(𝑖, 𝑗)log2[ 𝑝𝑛(𝑖, 𝑗)]


𝑁𝑧


𝑗=1


𝑁𝑔


𝑖=1


 







Gray-Level distance-zone matrix based features (GLDZM)


A gray level distance-zone matrix describes the amount of homogeneous connected areas within the 


volume, of a certain intensity and distance to the shape border. The shape border is defined by 6-


connectedness in 3D (i.e. a voxel is on the border, if at least one face is exposed). Here, the minimum 


distance to the border is 1 (i.e. voxels on the border have a distance of 1), to allow for correct 


feature calculations. The (𝑖, 𝑗)th entry of the GLDZM 𝑝(𝑖, 𝑗) is the number of connected areas of 


gray-level (i.e. intensity value) 𝑖 and minimum distance 𝑗 to the shape border. GLSZM features 


therefore describe the radial distribution of homogeneous areas within the tumor volume. Let: 


𝑝(𝑖, 𝑗) be the (𝑖, 𝑗)th entry in the given GLDZM 𝑝, 


𝑁𝑔 the number of discrete intensity values in the image, 


𝑁𝑑 the largest distance of a homogeneous region in the volume of interest to the shape border, 


𝑁𝑠 the total number of homogeneous regions (zones), where 𝑁𝑠 = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑑
𝑗=1


𝑁𝑔


𝑖=1
, 


𝑝𝑑 the sum distribution of the number of zones with distance 𝑗, where 𝑝𝑧(𝑗) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔


𝑖=1
, 


𝑝𝑔 the sum distribution of the number of zones with gray level 𝑖, where 𝑝𝑔(𝑖) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑧
𝑗=1 , 


𝑁𝑝 the number of voxels in the image, where 𝑁𝑝 = ∑ 𝑗𝑝𝑑
𝑁𝑑
𝑗=1 ,


𝑝𝑛(𝑖, 𝑗) the normalized size-zone matrix, where  𝑝𝑛(𝑖, 𝑗) ⁡=
𝑝(𝑖,𝑗)


𝑁𝑠
, 


𝜇𝑑 the mean distance, where 𝜇𝑑 = ∑ ∑ 𝑗𝑝𝑛(𝑖, 𝑗|𝜃)
𝑁𝑑
𝑗=1


𝑁𝑔


𝑖=1
, 


𝜇𝑔 the mean gray level, where 𝜇𝑔 = ∑ ∑ 𝑖𝑝𝑛(𝑖, 𝑗|𝜃)
𝑁𝑑
𝑗=1


𝑁𝑔


𝑖=1
. 


96. Small distance Emphasis (SDE)


𝑆𝐷𝐸 =
1


𝑁𝑠
∑


𝑝𝑑
𝑗2


𝑁𝑑


𝑗=1







97. Large distance Emphasis (LDE)


𝐿𝐷𝐸 =
1


𝑁𝑠
∑𝑗2𝑝𝑑


𝑁𝑑


𝑗=1


98. Intensity Non-Uniformity (IN)


𝐼𝑁 =
1


𝑁𝑠
∑𝑝𝑔


2


𝑁𝑔


𝑖=1


99. Intensity Non-Uniformity Normalized (INN)


𝐼𝑁𝑁 =
1


𝑁𝑠
2∑𝑝𝑔


2


𝑁𝑔


𝑖=1


100. Distance-zone Non-Uniformity (DZN)


𝐷𝑍𝑁 =
1


𝑁𝑠
∑𝑝𝑑


2


𝑁𝑑


𝑗=1


101. Distance-zone Non-Uniformity Normalized (DZNN)


𝐷𝑍𝑁𝑁 =
1


𝑁𝑠
2∑𝑝𝑑


2


𝑁𝑑


𝑗=1


102. Zone Percentage (ZP)


𝑍𝑃 =
𝑁𝑠
𝑁𝑝


103. Low intensity Emphasis (LIE)


𝐿𝐼𝐸 =
1


𝑁𝑠
∑


𝑝𝑔


𝑖2


𝑁𝑔


𝑖=1


104. High intensity Emphasis (HIE)


𝐻𝐼𝐸 =
1


𝑁𝑠
∑𝑖2𝑝𝑔


𝑁𝑔


𝑖=1


105. Low intensity small distance Emphasis (LISDE)


𝐿𝐼𝑆𝐴𝐸 =
1


𝑁𝑠
∑∑


𝑝(𝑖, 𝑗)


𝑖2𝑗2


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1







106. High intensity small distance Emphasis (HISDE)


𝐻𝐼𝑆𝐴𝐸 =
1


𝑁𝑠
∑∑


𝑝(𝑖, 𝑗)𝑖2


𝑗2


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1


107. Low intensity large distance Emphasis (LILDE)


𝐿𝐼𝐿𝐴𝐸 =
1


𝑁𝑠
∑∑


𝑝(𝑖, 𝑗)𝑗2


𝑖2


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1


108. High intensity large distance Emphasis (HILDE)


𝐻𝐼𝐿𝐴𝐸 =
1


𝑁𝑠
∑∑𝑝(𝑖, 𝑗)𝑖2𝑗2


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1


 


109. Intensity variance (IV)


𝐼𝑉 =∑∑(𝑖 − 𝜇𝑔)
2𝑝𝑛(𝑖, 𝑗)


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1


110. Distance-zone variance (DZV)


𝑆𝑍𝑉 =∑∑(𝑗 − 𝜇𝑑)
2𝑝𝑛(𝑖, 𝑗)


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1


111. Distance-zone entropy (DZE)


𝐷𝑍𝐸 = −∑∑𝑝𝑛(𝑖, 𝑗)log2[ 𝑝𝑛(𝑖, 𝑗)]


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1


 







Intensity histogram features 


Intensity histogram features describe the distribution of grey values within the volume, after 


discretization into intensity level bins was applied. Let:  


𝑋𝑑 = {𝑋𝑑,1, 𝑋𝑑,2, … , 𝑋𝑑,𝑁𝑣
} be the set of discretized intensity values of the 𝑁𝑣 voxels in the volume of


interest,  


𝐻 = {𝑛1, 𝑛2, … } be the histogram with frequency count 𝑛𝑖 of each discretized intensity level 𝑖 in 𝑋𝑑, 


𝑁𝑔 be the number of discretized intensity values (bins) in the volume of interest,  


𝑝𝑖  be the occurrence probability for each bin 𝑖 of the histogram 𝑁𝑔, where 𝑝𝑖 = 𝑛𝑖/𝑁𝑣.  


112. Coefficient of variance (cov)


𝑐𝑜𝑣 = ⁡
standard⁡deviation


mean


113. Energy


𝑒𝑛𝑒𝑟𝑔𝑦 =∑𝑋𝑑(𝑗)
2


𝑁𝑣


𝑗=1


Energy is also known as the sum of squares. 


114. Entropy


𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −⁡∑𝑃(𝑖) log2 𝑃(𝑖)


𝑁𝑔


𝑖=1


 


115. Interquartile range (iqr)


𝐼𝑄𝑅 = 𝑃75 − 𝑃25 


where 𝑃25 and 𝑃75 are the 25th and 75th percentile of 𝑋𝑑, respectively. 


116. Kurtosis







𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =


1
𝑁𝑣


∑ (𝑋𝑑(𝑗) − 𝑋̅𝑑)
4𝑁𝑣


𝑗=1


(
1
𝑁𝑣


∑ (𝑋𝑑(𝑗) − 𝑋̅𝑑)
2𝑁𝑣


𝑗=1 )
2


where 𝑋̅𝑑 is the mean of 𝑋𝑑. 


117. Maximum


The maximum discretized intensity value of 𝑋𝑑. 


𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = max(𝑋𝑑) 


118. Maximum histogram gradient (maxgrad)


𝑚𝑎𝑥𝑔𝑟𝑎𝑑 = max(𝐻′) 


Where 𝐻′ is the histogram gradient, defined as: 


𝐻′ = {𝐻(2) − 𝐻(1), … ,
𝐻(𝑖 + 1) − 𝐻(𝑖 − 1)


2
,… ,𝐻(𝑁𝑔) − 𝐻(𝑁𝑔 − 1)} 


119. Maximum histogram gradient intensity level (maxgradi)


The discretized intensity level 𝑖 corresponding to the maximum histogram gradient. 


120. Mean


The mean discretized intensity value of 𝑋𝑑. 


𝑚𝑒𝑎𝑛 =⁡
1


𝑁𝑣
∑𝑋𝑑(𝑗)


𝑁𝑣


𝑗=1


 


121. Mean absolute deviation (meand)


The mean of the absolute deviations of all discretized intensity levels around the mean of 𝑋𝑑. 







𝑚𝑒𝑎𝑛𝑑 = ⁡
1


𝑁𝑣
∑|𝑋𝑑(𝑗) − 𝑋𝑑̅̅̅̅ |


𝑁𝑣


𝑗=1


where 𝑋̅𝑑 is the mean of 𝑋𝑑. 


122. Median


The sample median of 𝑋𝑑 or the 50th percentile of 𝑋𝑑. 


123. Median absolute deviation (mediand)


The dispersion from the median of 𝑋𝑑. 


𝑚𝑒𝑑𝑖𝑎𝑛𝑑 = ⁡
1


𝑁𝑣
∑|𝑋𝑑(𝑗) − 𝑀|


𝑁𝑣


𝑗=1


 


where 𝑀 is the median of 𝑋𝑑. 


124. Minimum


The minimum discretized intensity value of 𝑋𝑑. 


𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = min(𝑋𝑑) 


125. Minimum histogram gradient (mingrad)


𝑚𝑖𝑛𝑔𝑟𝑎𝑑 = min(𝐻′) 


Where 𝐻′ is the histogram gradient, defined as: 


𝐻′ = {𝐻(2) − 𝐻(1), … ,
𝐻(𝑖 + 1) − 𝐻(𝑖 − 1)


2
,… ,𝐻(𝑁𝑔) − 𝐻(𝑁𝑔 − 1)} 


126. Minimum histogram gradient intensity level (mingradi)


The discretized intensity level 𝑖 corresponding to the minimum histogram gradient. 







127. Mode


The mode of 𝑋𝑑 is the most frequently occurring discretized image level present. In case multiple 


bins have the highest count 𝑛𝑖, the mode is the smallest of those values.  


128. Uniformity


𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 = ⁡∑𝑃(𝑖)2


𝑁𝑔


𝑖=1


 


129. Range


The range of bins in the histogram, i.e. the width of the histogram. 


𝑟𝑎𝑛𝑔𝑒 = max(𝑋𝑑) − min⁡(𝑋𝑑) 


130. Root mean square (RMS):


𝑅𝑀𝑆 = √
∑ 𝑋𝑑(𝑗)


2𝑁𝑣
𝑗=1


𝑁𝑣


131. Robust mean absolute deviation (rmeand)


Similar to mean absolute deviation, but in this case only considering the set of intensity levels in the 


range between the 10th and 90th percentile of 𝑋𝑑.  


𝑟𝑚𝑒𝑎𝑛𝑑 = ⁡
1


𝑁10−90
∑ |𝑋𝑑,10−90(𝑗) − 𝑋̅𝑑,10−90|


𝑁10−90


𝑗=1


 


where 𝑋10−90 represents the set of 𝑁10−90 voxels in 𝑋𝑑 whose discretized intensity levels fall within 


the range of the 10th till the 90th percentile of 𝑋𝑑.  


132. Skewness







𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =


1
𝑁𝑣


∑ (𝑋𝑑(𝑗) − 𝑋̅𝑑)
3𝑁𝑣


𝑗=1


(√
1
𝑁𝑣


∑ (𝑋𝑑(𝑗) − 𝑋̅𝑑)
2𝑁𝑣


𝑗=1 )


3


133. Standard deviation


𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑⁡𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (
1


𝑁𝑣 − 1
∑(𝑋𝑑(𝑗) − 𝑋̅𝑑)


2


𝑁𝑣


𝑗=1


)


1 2⁄


134. Variance


The variance of 𝑋𝑑. 


𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ⁡
1


𝑁𝑣 − 1
∑(𝑋𝑑(𝑗) − 𝑋𝑑̅̅̅̅ )


2


𝑁𝑣


𝑗=1


where 𝑋𝑑̅̅̅̅  is the mean of 𝑋𝑑.


135. 10th percentile


The 10th percentile of 𝑋𝑑. 


136. 90th percentile


The 90th percentile of 𝑋𝑑 . 


137. Quartile coefficient of dispersion (qcod)


The quartile coefficient of dispersion is a robust alternative to the coefficient of variance. 


𝑞𝑐𝑜𝑑 = ⁡
𝑃75 − 𝑃25
𝑃75 + 𝑃25


where 𝑃25 and 𝑃75 are the 25th and 75th percentile of 𝑋𝑑, respectively. 







Intensity volume histogram (IVH) features


A set of metrics derived from intensity volume histogram (IVH) representations, which 


summarize the complex three dimensional (3D) data contained in the image into a single curve, 


allowing for a simplified interpretation. The following definitions of IVH features were used: 


138. AVAIy


Volume (AV) [ml] above (i.e. with at least) an intensity (AI)


139. RVAIy


Relative volume (RV) [%] above (i.e. with at least) an intensity (AI)


140. AVRIx


Volume (AV) [ml] above (i.e. with at least) a relative intensity (RI)


141. RVRIx


Relative volume (RV) [%] above (i.e. with at least) a relative intensity (RI)


142. AIAVz


Intensity thresholds (AI) [SUV] for the Z ml highest intensity volume (AV)


143. AIRVx


Intensity thresholds (AI) [SUV] for the X% highest intensity volume (RV)


144. MIAVz


Mean intensity (MI) [SUV] in the Z ml highest intensity volume (AV)


145. MIRVx


Mean intensity (MI) [SUV] in the X% highest intensity volume (RV)


146. TLGAIy


TLG for volume (TLG) above (i.e. with at least) an intensity (AI)


147. TLGRIx


TLG for volume (TLG) above (i.e. with at least) a relative intensity (RI)


Relative steps in volume and intensity (x) are taken in 10% increments; X={10%, 20%,…, 90%}. 


Absolute steps in intensity (y) are taken in absolute [SUV] increments, e.g. 0.5; Y={0.5, 1,…, SUVmax}, 


where SUVmax is the maximum image intensity value. Absolute steps in volume (z) are taken in 0.5 ml 


increments; Z={0.5 ml, 1 ml,…, V}, where V is the tumor volume. 







Local Intensity features 


Local Intensity (LocInt) features are defined based on local intensity values around a center voxel. 


148. Local intensity peak


Mean intensity level in a 1 cm3 spherical volume, centered on the voxel with the maximum intensity 


level in the volume of interest. In case multiple voxels contain the maximum intensity level, the 


highest mean intensity level of all spherical volumes is used.  


149. Global Intensity peak


Similar to local intensity peak, but in this case the mean intensity level in a 1 cm3
 spherical volume is 


calculated for every voxel in the volume of interest. The highest mean intensity level of all spherical 


volumes is selected as the global intensity peak feature.  







Neighborhood gray tone difference matrix based features (NGTDM)


The 𝑖th entry of the NGTDM 𝑠(𝑖|𝑑) is the sum of gray level differences of voxels with 


intensity 𝑖 and the average intensity 𝐴𝑖 of their neighboring voxels within a distance   𝑑. Here, a 


complete neighborhood is not required and 𝐴𝑖 is determined over the valid voxels.    


Let: 


𝑛𝑖 be the number of voxels with gray level   𝑖, 


𝑁𝑣 = ∑ 𝑛𝑖, the total number of voxels,


𝑠(𝑖) = {
∑ |𝑖 − 𝐴𝑖|𝑛𝑖 for⁡𝑛𝑖 > 0


0 otherwise⁡
, generalized for any distance 𝑑, 


𝑁𝑔 be the maximum discrete intensity level in the image, 


𝑝(𝑖) =
𝑛𝑖


𝑁𝑣
, the probability of gray level 𝑖, 


𝑁𝑝, the total number of gray levels present in the image. 


150. Coarseness


𝑐𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 = ⁡
1


𝜀 + ∑ 𝑝(𝑖)𝑠(𝑖)
𝑁𝑔


𝑖=𝑖


Where 𝜀 is a small number to prevent coarseness becoming infinite. 


151. Contrast


𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = (
1


𝑁𝑝(1 − 𝑁𝑝)
∑∑𝑝(𝑖)𝑝(𝑗)(𝑖 − 𝑗)2


𝑁𝑔


𝑗=1


𝑁𝑔


𝑖=1


)(
1


𝑁𝑣
∑𝑠(𝑖)


𝑁𝑔


𝑖=𝑖


) 


152. Busyness


𝑏𝑢𝑠𝑦𝑛𝑒𝑠𝑠 =
∑ 𝑝(𝑖)𝑠(𝑖)
𝑁𝑔


𝑖=𝑖


∑ ∑ |𝑖𝑝(𝑖) − 𝑗𝑝(𝑗)|
𝑁𝑔


𝑗=𝑖


𝑁𝑔


𝑖=𝑖


, 𝑝(𝑖) ≠ 0,⁡⁡⁡𝑝(𝑗) ≠ 0 


153. Complexity


𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
1


𝑁𝑣
∑∑|𝑖 − 𝑗|


𝑝(𝑖)𝑠(𝑖) + 𝑝(𝑗)𝑠(𝑗)


𝑝(𝑖) + 𝑝(𝑗)


𝑁𝑔


𝑗=𝑖


𝑁𝑔


𝑖=𝑖


, 𝑝(𝑖) ≠ 0,⁡⁡⁡𝑝(𝑗) ≠ 0 


154. Strength


𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
∑ ∑ [𝑝(𝑖) + 𝑝(𝑗)](𝑖 − 𝑗)2


𝑁𝑔


𝑗=𝑖


𝑁𝑔


𝑖=𝑖


𝜀 + ∑ 𝑠(𝑖)
𝑁𝑔


𝑖=𝑖


, 𝑝(𝑖) ≠ 0,⁡⁡⁡𝑝(𝑗) ≠ 0 







Neighboring gray level dependence matrix based features (NGLDM)


NGLDM features are invariant under spatial rotation. The (𝑖, 𝑗)th entry of the NGLDM    𝑝(𝑖, 𝑗|𝑑, 𝑎) 


describes the number of neighborhoods with center voxel gray-level (i.e. intensity value) 𝑖 and 


dependence (i.e. number of dependent voxels) 𝑘 = 𝑗 − 1. A neighborhood are all voxels within a 


distance 𝑑 from the center voxel. The center voxel and a neighboring voxel are dependent if their 


absolute gray value difference ≤ 𝑎, the dependency coarseness parameter. T


Let:


𝑝(𝑖, 𝑗) be the (𝑖, 𝑗)th entry in the given NGLDM 𝑝, generalized for any 𝑑 and 𝑎, 


𝑁𝑔 the number of discrete intensity values in the image, 


𝑁𝑑 the maximum dependence value, 


𝑁𝑠 the total number of neighborhoods, where 𝑁𝑠 = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑧
𝑗=1


𝑁𝑔


𝑖=1
, 


𝑝𝑑 the sum distribution of the number of neighborhoods with dependence 𝑗 = 𝑘 + 1, where 𝑝𝑑(𝑗) = 


∑ 𝑝(𝑖, 𝑗)
𝑁𝑔


𝑖=1
, 


𝑝𝑔 the sum distribution of the number of neighborhoods with center voxel gray level 𝑖, where 𝑝𝑔(𝑖) = 


∑ 𝑝(𝑖, 𝑗)
𝑁𝑑
𝑗=1 , 


𝑝𝑛(𝑖, 𝑗) the normalized NGLDM, where  𝑝𝑛(𝑖, 𝑗) ⁡=
𝑝(𝑖,𝑗)


𝑁𝑠
, 


𝜇𝑑 the mean dependence, where 𝜇𝑟 = ∑ ∑ 𝑗𝑝𝑛(𝑖, 𝑗|𝜃)
𝑁𝑧
𝑗=1


𝑁𝑔


𝑖=1
, 


𝜇𝑔 the mean gray level, where 𝜇𝑔 = ∑ ∑ 𝑖𝑝𝑛(𝑖, 𝑗|𝜃)
𝑁𝑧
𝑗=1


𝑁𝑔


𝑖=1
.


Note: By definition, the number of voxels in the image (𝑁𝑝) equals the total number of neighborhoods 


(𝑁𝑠), since in our implementation every voxel is considered to have a neighborhood. Feature 


“dependence percentage” (
𝑁𝑠


𝑁𝑝
), which is the equivalent to run-length feature “run percentage” (RP;


70), is therefore omitted, because it will always evaluate to 1. 







155. Small Dependence Emphasis (SDE)


𝑆𝐷𝐸 =
1


𝑁𝑠
∑


𝑝𝑑
𝑗2


𝑁𝑑


𝑗=1


This feature is also called Small Number Emphasis. 


156. Large Dependence Emphasis (LDE)


𝐿𝐷𝐸 =
1


𝑁𝑠
∑𝑗2𝑝𝑑


𝑁𝑑


𝑗=1


This feature is also called Large Number Emphasis. 


157. Gray-level Non-Uniformity (GLN)


𝐺𝐿𝑁 =
1


𝑁𝑠
∑𝑝𝑔


2


𝑁𝑔


𝑖=1


158. Gray-level Non-Uniformity Normalized (GLNN)


𝐺𝐿𝑁𝑁 =
1


𝑁𝑠
2∑𝑝𝑔


2


𝑁𝑔


𝑖=1


159. Dependence Non-Uniformity (DN)


𝐷𝑁 =
1


𝑁𝑠
∑𝑝𝑧


2


𝑁𝑑


𝑗=1


This feature is also called Number Nonuniformity. 


160. Dependence Non-Uniformity Normalized (DNN)


𝐷𝑁𝑁 =
1


𝑁𝑠
2∑𝑝𝑧


2


𝑁𝑧


𝑗=1


161. Low Gray-level Emphasis (LGE)


𝐿𝐺𝐸 =
1


𝑁𝑠
∑


𝑝𝑔


𝑖2


𝑁𝑔


𝑖=1







162. High Gray-level Emphasis (HGE)


𝐻𝐺𝐸 =
1


𝑁𝑠
∑𝑖2𝑝𝑔


𝑁𝑔


𝑖=1


163. Low Gray-level small Dependence Emphasis (LGSDE)


𝐿𝐺𝑆𝐷𝐸 =
1


𝑁𝑠
∑∑


𝑝(𝑖, 𝑗)


𝑖2𝑗2


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1


164. High Gray-level small Dependence Emphasis (HGSDE)


𝐻𝐺𝑆𝐷𝐸 =
1


𝑁𝑠
∑∑


𝑝(𝑖, 𝑗)𝑖2


𝑗2


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1


165. Low Gray-level large Dependence Emphasis (LGLDE)


𝐿𝐺𝐿𝐷𝐸 =
1


𝑁𝑠
∑∑


𝑝(𝑖, 𝑗)𝑗2


𝑖2


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1


166. High Gray-level large Dependence Emphasis (HGLDE)


𝐻𝐺𝐿𝐷𝐸 =
1


𝑁𝑠
∑∑𝑝(𝑖, 𝑗)𝑖2𝑗2


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1


 


167. Gray-level variance (GLV)


𝐺𝐿𝑉 =∑∑(𝑖 − 𝜇𝑔)
2𝑝𝑛(𝑖, 𝑗)


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1


168. Dependence variance (DV)


𝐷𝑉 =∑∑(𝑗 − 𝜇𝑑)
2𝑝𝑛(𝑖, 𝑗)


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1


169. Dependence entropy (DE), also called Entropy


𝐷𝐸 = −∑∑𝑝𝑛(𝑖, 𝑗)log2[ 𝑝𝑛(𝑖, 𝑗)]


𝑁𝑑


𝑗=1


𝑁𝑔


𝑖=1


 







170. Second moment (SM)


𝑆𝑀 =
∑ ∑ 𝑝(𝑖, 𝑗)2


𝑁𝑑
𝑗=1


𝑁𝑔


𝑖=1







Filtered features 


Wavelet features 


Wavelet transform effectively decouples textural information by decomposing the original image, in a 


similar manner as Fourier analysis, in low– and high-frequencies. A (undecimated) three dimensional 


wavelet transform decomposes the original image 𝑋 into 8 decompositions. Consider 𝐿 and 𝐻 to be a 


low-pass (i.e. a scaling) and, respectively, a high-pass (i.e. a wavelet) function, and the wavelet 


decompositions of 𝑋 to be labeled as 𝑋𝐿𝐿𝐿, 𝑋𝐿𝐿𝐻,⁡𝑋𝐿𝐻𝐿,⁡𝑋𝐿𝐻𝐻,⁡𝑋𝐻𝐿𝐿,⁡𝑋𝐻𝐿𝐻, 𝑋𝐻𝐻𝐿 and⁡𝑋𝐻𝐻𝐻. For 


example, 𝑋𝐿𝐿𝐻 is then interpreted as the high-pass sub band, resulting from directional filtering of 𝑋 


with a low-pass filter along x-direction, a low pass filter along y-direction and a high-pass filter along 


z-direction and is constructed as:


𝑋𝐿𝐿𝐻(𝑖, 𝑗, 𝑘) = ∑∑∑𝐿(𝑝)𝐿(𝑞)𝐻(𝑟)𝑋(𝑖 + 𝑝, 𝑗 + 𝑞, 𝑘 + 𝑟)


𝑁𝐻


𝑟=1


𝑁𝐿


𝑞=1


𝑁𝐿


𝑝=1


 


Where 𝑁𝐿  is the length of filter 𝐿 and 𝑁𝐻 is the length of filter 𝐻. The other decompositions are 


constructed in a similar manner, applying their respective ordering of low or high-pass filtering in x, y 


and z-direction. If the applied wavelet decomposition is undecimated, the size of each decomposition 


is equal to the original image and each decomposition is shift invariant. Because of these properties, 


original (tumor) segmentations can be applied directly to the decompositions after wavelet 


transform. 







Laplacian of Gaussian features 


The Laplacian of an image brings out areas of rapid intensity change and is usually used for edge 


detection. A Gaussian filter is applied prior to the Laplacian to smooth the image and reduce noise. 


Textural properties representing features of different degrees of coarseness can then be calculated. 


The equation of a Laplacian of Gaussian (LoG) with a 2D kernel:  


LoG(x, y) = −
1


πσ4
[1 −


x2 + y2


2σ2
] e


−
x2+y2


2σ2


Texture size (fine to coarse) is highlighted by modifying the Gaussian radius parameter 𝜎 (e.g., from 


0.5 mm to 5mm, with 0.5 mm increments). Each value of 𝜎 provides a filtered image. For instance 


first-order gray-level statistics (described earlier) can be determined for each filtered image, as well 


as for only the positive part of each filtered image. 









