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ABSTRACT 1 

Rationale: 2 

Artificial intelligence may improve accuracy of myocardial perfusion imaging (MPI) but will 3 

likely be implemented as an aid to physician interpretation rather than an autonomous tool. Deep 4 

learning (DL) has high standalone diagnostic accuracy for obstructive coronary artery disease 5 

(CAD), but its influence on physician interpretation is unknown. We assessed whether access to 6 

explainable DL predictions improves physician interpretation of MPI. 7 

Methods:  8 

We selected a representative cohort of patients who underwent MPI with reference invasive 9 

coronary angiography. Obstructive CAD, defined as stenosis ≥ 50% in the left main artery or ≥70% 10 

in other coronary segments, was present in half of patients. We utilized an explainable DL model 11 

(CAD-DL), which was previously developed in a separate population from different sites. Three 12 

physicians interpreted studies first with clinical history, stress, and quantitative perfusion, then 13 

with all the data plus the DL results. Diagnostic accuracy was assessed using area under the 14 

receiver-operating characteristic curve (AUC). 15 

Results:  16 

In total, 240 patients were included with median age 65 (IQR 58 – 73). The diagnostic accuracy 17 

of physician interpretation with CAD-DL (AUC 0.779) was significantly higher compared to 18 

physician interpretation without CAD-DL (AUC 0.747, p=0.003) and stress total perfusion deficit 19 

(AUC 0.718, p<0.001). With matched specificity, CAD-DL had higher sensitivity when operating 20 

autonomously compared to readers without DL results (p<0.001), but not compared to readers 21 

interpreting with DL results (p=0.122). All readers had numerically higher accuracy with the use 22 

of CAD-DL, with AUC improvement 0.02 to 0.05, and interpretation with DL resulted in overall 23 

net reclassification improvement of 17.5% (95% CI 9.8% – 24.7%, p<0.001). 24 

Conclusion:  25 

Explainable DL predictions lead to meaningful improvements in physician interpretation; 26 

however, the improvement varied across the readers reflecting the acceptance of this new 27 

technology.  This technique could be implemented as an aid to physician diagnosis, improving 28 

the diagnostic accuracy of MPI. 29 

 30 

KEYWORDS: Artificial intelligence, deep learning, implementation 31 
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ABBREVIATIONS 1 

AI: artificial intelligence 2 

AUC: area under the ROC curve 3 

CAD: coronary artery disease 4 

LAD: left anterior descending coronary artery 5 

LCx: left circumflex coronary artery 6 

MPI: myocardial perfusion imaging 7 

RCA: right coronary artery 8 

SPECT: single photon emission computed tomography 9 

SSS: summed stress score 10 

TPD: total perfusion deficit 11 

 12 

 13 
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INTRODUCTION 1 

Coronary artery disease (CAD) is a major cause of death in the United States (1), making 2 

accurate diagnosis critically important. Myocardial perfusion imaging (MPI) is frequently used 3 

to diagnose obstructive CAD(2), predict cardiovascular risk(3), or guide treatment 4 

decisions(4,5). Artificial intelligence (AI) may be able to improve the diagnostic(6-9), and 5 

prognostic accuracy of myocardial perfusion imaging (MPI)(10,11); however, it is not feasible or 6 

desirable to implement it without physician oversight (12-15). As a result, for the foreseeable 7 

future, AI will most likely be implemented as an aid to physician interpretation rather than 8 

operating autonomously (12-15). 9 

We recently demonstrated an approach for automated interpretation of MPI by a general 10 

purpose deep-learning (CAD-DL) model which incorporated two methods to explain predictions 11 

to physicians(9). These methods for explainability allow physicians to ensure AI findings are 12 

clinically relevant and potentially identify errors in either AI or physician interpretations. 13 

Explainable AI is critical to overcoming the “black-box” perception of AI (16,17), and is 14 

recognized as an important advancement in a recent AI best practice statement (12). In our initial 15 

study, autonomous CAD-DL score had higher diagnostic accuracy for obstructive CAD 16 

compared to expert visual interpretation and quantitative assessment of myocardial perfusion(9). 17 

However, it remains to be shown if explainable DL predictions, utilized as an aid during clinical 18 

interpretation, can improve physician interpretation of MPI, which is the likely method for 19 

clinical implementation (12). 20 

Accordingly, we performed a prospective study to assess the potential improvement in 21 

accuracy of physician interpretation of SPECT MPI that could be achieved by utilizing the 22 
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explainable DL model as an aid during clinical interpretation, using an external population from 1 

sites not used for model training.  2 

 3 

MATERIALS AND METHODS 4 

Study Population 5 

We included 240 patients who underwent single photon emission computed tomography 6 

(SPECT) MPI with reference coronary angiography within 180 days.  Patients were included 7 

from two sites, Columbia University (n=125) and Cardiovascular Imaging Technologies LLC 8 

(n=115). No data from these sites were used in the development of CAD-DL. Patients were 9 

randomly selected to include a representative patient population with prevalence of obstructive 10 

CAD of 50%. Patients underwent imaging with either conventional Anger camera systems 11 

(n=80) or solid-state camera systems (n=160). Patients underwent stress-rest (n=158), rest-stress 12 

(n=61) or stress-only (n=21) imaging protocols with either exercise stress with a symptom-13 

limited Bruce protocol (n=98) or pharmacologic stress with adenosine (n=31) or regadenoson 14 

(n=111). Patients underwent either a standard single-isotope (n=205) or dual-isotope (n=35) 15 

SPECT MPI protocol as previously described (2,18). For comparison, CAD-DL was trained in a 16 

population imaged with 58% solid-state camera systems and 42% conventional camera systems, 17 

with 69% of patients undergoing pharmacologic stress. The institutional review board at each 18 

site approved this study with either signed informed consent or waiver of informed consent. 19 

The study protocol complied with the Declaration of Helsinki and was approved by the 20 

institutional review boards at each participating institution. The overall study was approved by 21 

the institutional review board at Cedars-Sinai Medical Center. To the extent allowed by data 22 
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sharing agreements and institutional review board protocols, the data from this manuscript will 1 

be shared upon written request. 2 

Details regarding invasive coronary angiography and image quantification are available 3 

in the supplement (19,20). 4 

Deep Learning Model Architecture 5 

The architecture for CAD-DL has previously been described in detail (9). In brief, CAD-6 

DL was trained using raw polar maps, pre-processed using Z-normalization (mean of 0 and 7 

standard deviation of 1), of myocardial perfusion, wall motion, and thickening(21), as well as 8 

age, sex, left ventricular end-systolic volume and end-diastolic volumes which were all obtained 9 

automatically from image data. CAD-DL was trained in a separate population of 3,578 patients, 10 

with obstructive CAD present in 63% of patients. CAD-DL was implemented using Python 3.7.3 11 

and Tensorflow 1.14. The training was performed using Titan RTX graphics card (Nvidia, Santa 12 

Clara, CA). The model was trained using 5-fold cross-validation in the previous study, which did 13 

not include any data from the 2 sites in the present study.  14 

CAD-DL includes two methods to explain predictions: attention maps and probability 15 

maps. Attention maps utilize Gradient-weighted Class Activation Mapping (22) to highlight 16 

myocardial regions which contributed most to the prediction. Using these attention maps, each 17 

segment from the standard 17-segment American Heart Association model can be assigned to 5 18 

categories to generate the segmental CAD probability map. The CAD probability map marks the 19 

degree to which the segments contribute the CAD-DL prediction, to give further insight for the 20 

clinical reader. 21 

  22 
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Physician Interpretation 1 

Three physicians with a range of clinical experience (2 years to >20 years in clinical 2 

practice) interpreted all cases in duplicate.  Initially, readers interpreted myocardial perfusion 3 

images in the conventional manner and were supplied by the following: age, sex, body mass 4 

index (BMI), past medical history, test indication, electrocardiographic stress response, and 5 

images. Readers had access to all image data sets including stress and rest as well as supine and 6 

upright when available and gated imaging for all studies(23). Raw data was available for quality 7 

control and standard quantitative measures of function and perfusion were available for all 8 

studies. Readers interpreted the overall study with a 5-point scale (normal, probably normal, 9 

equivocal, probably abnormal, and definitely abnormal). Readers also interpreted studies with 10 

semi-quantitative scoring to generate summed stress score (SSS), summed rest score (SRS) and 11 

summed difference score (SDS) using the standard 17-segment model. 12 

After the initial interpretation, readers interpreted the study in conjunction with CAD-DL. 13 

The clinical prototype of CAD-DL developed previously, with attention and probability maps, 14 

was integrated within standard clinical nuclear cardiology software (QPS/QGS Cedars-Sinai 15 

Medical Center, Los Angeles, CA). Physicians repeated the interpretation process when 16 

informed by CAD-DL results. This process was designed to simulate the use of CAD-DL in 17 

clinical practice, where it would be incorporated as an expert second reader. Physicians were 18 

trained on how to generate CAD-DL results but were not given specific thresholds for CAD-DL 19 

global score, attention map, or CAD-DL probability scores to apply in their new interpretation. 20 

No specific instructions were given for adjusting reader interpretations based on CAD-DL 21 

results. This was done purposefully so the results would reflect clinical practice whether other 22 
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factors (e.g., reader confidence in original interpretation, belief in AI interpretation) would 1 

influence the degree to which readers alter their interpretation.  2 

Statistical Analysis 3 

In the primary analysis, the diagnostic performance of SSS without DL, SSS with DL, 4 

and stress TPD was evaluated using the analysis and pairwise comparisons of the areas under the 5 

receiver operating characteristic (ROC) curve (AUC) according to DeLong et al.(24) in order to 6 

allow comparisons with automated perfusion assessment. However, in order to more fully assess 7 

the impact of DL predictions on reader diagnostic accuracy we performed an analysis to account 8 

for the multiple reader, multiple case (MRMC) design which accounts for variation related to 9 

case variation, reader certainty, and reader skill. In this analysis, a random-effects ROC analysis 10 

was used to compare the reader-averaged nonparametric AUC with and without access to DL 11 

predictions as previously described(25,26).  Additional details are available in the supplement.  12 

 13 

RESULTS 14 

Clinical Characteristics and Angiographic Characteristics 15 

In total, 240 patients were included in this study with median age 65 (IQR 58 – 73) and 16 

156 (65.0%) male.  Invasive angiography was performed at a median of 11 days (IQR 3 – 27 17 

days) post SPECT MPI. Obstructive CAD was present in 120 (50.0%) patients including: 11 18 

patients with left main, 84 with LAD, 55 with LCx and 63 with RCA disease. Characteristics in 19 

patients with and without obstructive CAD are shown in Table 1. Characteristics stratified by 20 

camea type are shown in Supplemental Table 1. Median age was similar in patients imaged with 21 

a conventional or solid-state camera system (median 66 vs 65, p=0.858). 22 
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Per Patient Diagnostic Accuracy 1 

ROC curves for identification of obstructive CAD based on stress perfusion assessment 2 

(SSS) are shown in Figure 1. The AUC of physician interpretation with DL (AUC 0.779, 95% CI 3 

0.738 – 0.850) was significantly higher compared to both physician interpretation without DL 4 

(AUC 0.747, 95% CI 0.685 – 0.809, p=0.003) and stress TPD (AUC 0.718, 95% CI 0.653 – 5 

0.782, p<0.001). The diagnostic accuracy of physician interpretation with DL was similar to 6 

CAD-DL operating autonomously (AUC 0.793, 95% CI 0.736-0.849, p=0.536). 7 

 Diagnostic accuracy for each reader separately is shown in Supplemental Figure 1. There 8 

was a trend towards improvement in accuracy for two readers (Reader 2 AUC 0.750 vs 0.730, 9 

p=0.115 and Reader 3 AUC 0.751 vs. 0.733, p=0.068). Reader 1 demonstrated significantly 10 

improved accuracy with access to CAD-DL predictions (AUC 0.805 vs. 0.756, p=0.005). 11 

Readers 1 and 2 were less experienced (4 and 2 years, respectively) compared to Reader 3 (>20 12 

years). For comparison, the AUC of DL operating autonomously was 0.793 (95% CI 0.736-13 

0.849). In the MRMC analysis, reader accuracy was also significantly improved with access to 14 

CAD-DL predictions (AUC 0.769 vs. 0.740, p=0.019).  15 

Figure 2 shows reader sensitivity and specificity, using a threshold of SSS>3, with and 16 

without DL.  All test characteristics numerically improved when readers had access to 17 

explainable DL results, with improvement in both sensitivity and specificity when considering 18 

all readers together (both p<0.01). With matched specificity, CAD-DL had higher sensitivity 19 

when operating autonomously compared to readers without access to explainable DL results 20 

(p<0.001). However, this difference was not significant when readers had access to DL 21 

predictions during interpretation (p=0.122). 22 
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Our study was powered to detect a difference in accuracy for the overall population. 1 

However, there was a trend towards improved physician diagnostic performance with DL 2 

compared to without DL for both camera systems (solid-state AUC 0.799 vs 0.774, p=0.095; 3 

conventional AUC 0.740 vs 0.691, p=0.014) across imaging protocols (stress-rest AUC 0.775 vs 4 

0.738, p=0.009; rest-stress AUC 0.710 vs 0.690, p=0.464; and stress only AUC 0.891 vs 0.881, 5 

p=0.665), in men (AUC 0.792 vs 0.772, p=0.096) and women (AUC 0.714 vs 0.658,) p=0.028, 6 

and in patients undergoing exercise (AUC 0.816 vs 0.795, p=0.250) or pharmacologic stress 7 

(AUC 0.728 vs 0.692,p=0.020). Reader interpretation of ischemia with DL (based on SDS) also 8 

demonstrated significantly higher AUC compared to reader interpretation without DL or 9 

ischemic TPD (Figure 3).  10 

Lastly, reader diagnosis, using a 5-point scale, with DL also demonstrated significantly 11 

higher accuracy compared to reader diagnosis without DL (Supplemental Figure 2).  The re-12 

classification of patients according to reader diagnosis for the three readers is shown in Table 2. 13 

There was an overall net reclassification improvement of 17.2% (95% CI 9.2% – 24.4%, 14 

p<0.001), with improved classification of patients with CAD of 6.1% (95% CI 1.4% - 10.3%) 15 

and patients without CAD of 11.1% (95% CI 4.8% - 16.8%).  When interpreting with DL 16 

compared to without DL, there was no difference in the proportion of cases interpreted as 17 

equivocal (9.6% vs.8.6%, p=0.529). Similarly, there was no difference in the proportion of cases 18 

with CAD interpreted as definitely abnormal (59% vs 58%, p=0.803) or patients without CAD 19 

interpreted as definitely normal (26% vs 23%, p=0.464). 20 

One case where all 3 physicians increased their segmental scores in a patient with 21 

obstructive CAD is shown in Supplemental Figure 3. One case where all 3 physicians decreased 22 

their segmental scores in a patient without obstructive CAD is shown in Supplemental Figure 4. 23 
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A description of all cases in which all readers increased or decreased their scores is available in 1 

Supplemental Table 2. An example of a case with high CAD-DL score which was not 2 

consistently scored as abnormal is shown in Supplemental Figure 5. 3 

Per Vessel Diagnostic Accuracy 4 

AUCs for identification of obstructive CAD for each vessel is shown in Supplemental 5 

Figure 6. Reader diagnostic accuracy with DL (AUC 0.723, 95% CI 0.652 – 0.793) was 6 

significantly better compared to accuracy without DL (0.697, 95% CI 0.626 – 0.768, p=0.041) 7 

for LAD disease. Reader interpretation with DL had higher AUC compared to reader 8 

interpretation without DL and stress TPD for left anterior descending disease (p=0.041 and 9 

p=0.022 respectively). Reader interpretation with DL was not significantly higher compared to 10 

reader interpretation without DL for left circumflex (AUC 0.727 vs. 0.715, p=0.529) or right 11 

coronary artery disease (AUC 0.776 vs 0.779, p=0.597). Reclassification according to vascular 12 

territory is shown in Supplemental Table 3. 13 

 14 

DISCUSSION 15 

We performed a prospective study in an external population to determine the potential 16 

influence of utilizing an explainable DL model as an interpretation aid on physician diagnostic 17 

accuracy. We demonstrated that overall physician interpretation significantly improved by 18 

utilizing the DL predictions compared to the same physicians interpreting without DL. 19 

Additionally, with the aid of DL physician interpretation had higher diagnostic accuracy 20 

compared to quantitative assessment of perfusion. There was a trend towards higher diagnostic 21 

performance for every reader, and results were consistent across camera systems, imaging 22 



13 
 

protocols and patient subgroups. There was some heterogeneity in improvement in physician 1 

diagnostic performance; however, there was more uniformity in sensitivity and specificity across 2 

readers when interpreting with DL results. All of these advancements were demonstrated despite 3 

the relative novelty of the DL tool and lack of physician experience with using the new DL 4 

module. Our results suggest that implementing DL as an aid to physician interpretation could 5 

significantly improve diagnostic accuracy of MPI. 6 

Several studies have previously demonstrated that AI algorithms can be used to achieve 7 

high diagnostic accuracy of SPECT MPI. Arsanjani et al. demonstrated that a support vector 8 

machines model, improved diagnostic accuracy for obstructive CAD compared to quantitative 9 

assessment of perfusion with TPD(27). Betancur et al. demonstrated that a different DL model 10 

improved detection of obstructive CAD compared to quantitation of perfusion with TPD on both 11 

a regional and per-patient basis, in a study that included 1638 patients from 9 centers.(6) With 12 

matched specificity, DL improved the per-vessel sensitivity to 70% compared to 64% with TPD 13 

(p<0.01).(6) Subsequently our group demonstrated that a DL algorithm utilizing both upright and 14 

supine imaging data improved diagnostic accuracy compared to combined TPD analysis.(7)  15 

Spier et al. demonstrated that a convolutional neural network could classify stress polar maps as 16 

normal or abnormal with excellent agreement with expert interpretation (91.1%) (28). More 17 

recently we demonstrated that the current model, CAD-DL, had higher diagnostic accuracy for 18 

obstructive CAD compared to physician interpretation or quantitative assessment of 19 

perfusion(9). However, all of these studies demonstrated only standalone performance, without 20 

physician oversight, which is not practical clinically. 21 

In the current study we addressed an important knowledge gap by determining to what 22 

extent access to explainable DL predictions could influence or improve physician interpretation. 23 
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We demonstrated, in an external population suggesting broader generalizability (12), that overall 1 

physician interpretation significantly improved with the aid of CAD-DL compared to the same 2 

physicians interpreting without CAD-DL. All readers demonstrated numerically higher AUC 3 

with the use of DL, with one reader improving significantly. Importantly, readers had access to 4 

the same clinical and imaging information (including quantitative results) during each 5 

interpretation, with the only difference being the AI predictions. Overall reader sensitivity and 6 

specificity both improved, achieving similar results to CAD-DL operating autonomously. Using 7 

CAD-DL as an aid also significantly improved classification of the overall population, patients 8 

with CAD, and patients without CAD. Per-vessel diagnostic accuracy was significantly higher 9 

for the left anterior descending and similar in other vascular territories. There was also net 10 

improvement in classification across all territories. This result was obtained using a patient 11 

population separate from the original population used for training, with different population 12 

characteristics and prevalence of obstructive CAD suggesting good generalizability of the 13 

results. Importantly, the DL model was incorporated into standard clinical interpretation software 14 

which was used by all readers and generated results in <10 seconds. However, we did not 15 

measure the average interpretation time for readers when interpreting with and without the 16 

explainable DL predictions which may be an important consideration for clinical 17 

implementation. Overall, our findings suggest that our model could be implemented into clinical 18 

practice as an aid to physician interpretation in order to improve the diagnostic accuracy of 19 

SPECT MPI. 20 

While the potential benefits of AI for improving diagnostic accuracy are becoming 21 

readily apparent, practical questions about clinical implementation have remained.  One step 22 

towards clinical implementation is the development of models capable of explaining results to 23 
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the physician. The CAD-DL model user interface includes two methods to explain predictions to 1 

the clinicians with the attention and probability maps. In order to replicate future clinical 2 

implementation, we instructed physicians on how to access predictions but did not explicitly 3 

instruct them on how to incorporate this information.  This approach to utilizing DL predictions 4 

mirrors future clinical use where factors such as physician experience, confidence in original 5 

interpretation, belief in AI, and anchoring bias would influence thresholds for changing 6 

interpretation and magnitude of change (29). As a result, and as was seen in our study, the degree 7 

to which CAD-DL influences interpretation varies between physicians (Figure 3). Although there 8 

was no clear relationship between reader experience and improvement in accuracy in our study, 9 

it is likely that less experienced readers would derive more benefit. One recent study suggested 10 

that a deep-learning algorithm could be used by novice physicians to attain similar interpretation 11 

of myocardial perfusion to experts(30). Additionally, further improvements may be possible if 12 

physicians develop more experience with incorporating the DL predictions. In spite of this 13 

variation, access to DL results led to more uniform sensitivity and specificity across readers. 14 

Additionally, as physician experience with DL increases, diagnostic accuracy may improve 15 

further. Incorporating AI as an aid to physician interpretation avoids potential medicolegal issues 16 

related to using these technologies because the final responsibility for interpretation still lies with 17 

the physician.  18 

Our study has a few important limitations.  The explainable DL model incorporates several 19 

methods of explaining results (attention maps, probability maps, per-vessel probabilities) which 20 

are presented simultaneously in the clinical module. We did not elucidate which aspect of the 21 

explainable DL predictions lead to improved accuracy since they are designed to be interpreted 22 

collectively. The per-vessel probabilities convey the likelihood of CAD to physicians while the 23 
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attention and probability maps direct the physician’s attention to allow them to validate the 1 

accuracy of those predictions. Additionally, we did not measure subjective changes in reader 2 

confidence but did not identify a change in proportion of studies interpreted as equivocal or 3 

definitely normal or abnormal. We used patients from two separate sites who underwent a range 4 

of stress and imaging protocols. While this increases the generalizability of our results it 5 

decreases the precision of our estimate regarding the increase in accuracy for any one 6 

combination of camera system and imaging protocol. The MRMC analysis accounts for case 7 

variation as well as variations in reader certainty, reader skill, and reader response to AI but more 8 

precise evaluation of the impact of explainable AI on physician interpretation could be made in a 9 

population imaged with a single camera system and imaging protocol. Additionally, we would be 10 

able to make more definitive conclusions about the influence of explainable DL results on reader 11 

interpretation if additional readers were involved and all readers interpreted a greater number of 12 

studies. As will be the case in clinical practice, interpreters in the study had variable exposure 13 

and belief in AI models prior to the study. It is possible that additional experience with utilizing 14 

CAD-DL may lead to further improvements in accuracy. 15 

 16 

CONCLUSION 17 

We demonstrated that overall physician interpretation significantly improved by utilizing the DL 18 

predictions compared to the same physicians interpreting without DL. Implementing DL as an 19 

aid to physician interpretation significantly improves diagnostic accuracy of myocardial 20 

perfusion imaging. 21 

  22 
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KEY POINTS 6 

QUESTION:  7 

Does an explainable deep learning model, when used as an aid during interpretation, improve 8 

physician diagnostic accuracy? 9 

PERTINENT FINDINGS: 10 

In this multiple reader, multiple case interpretation study, access to explainable deep learning 11 

results lead to meaningful but variable improvements in the accuracy of physician interpretation 12 

of myocardial perfusion imaging. Overall diagnostic performance improved when physicians had 13 

access to DL predictions and readers demonstrated improved classification of patients with and 14 

without coronary artery disease. 15 

IMPLICATIONS FOR PATIENT CARE: 16 

Explainable deep learning could be implemented as an aid to physician interpretation in order to 17 

improve diagnostic accuracy potentially improving patient management and subsequent 18 

outcomes. 19 

  20 
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FIGURES 1 

 2 

 3 

Figure 1: Diagnostic accuracy of stress perfusion for obstructive coronary artery disease (CAD).  4 

Summed stress scores for all readers were averaged to determine reader accuracy with and 5 

without deep learning (DL). CAD-DL are results from the DL model when operating 6 

autonomously. AUC – Area under receiver operating characteristic curve, TPD – total perfusion 7 

deficit. 8 

 9 

  10 
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 1 

 2 

Figure 2: Sensitivity and specificity of reader interpretation with and without deep learning (DL). 3 

Summed stress score >3 was considered abnormal. Two thresholds were established for CAD-4 

DL to match the sensitivity of average reader specificity with (dark bars) and without (light bars) 5 

access to DL predictions. * - p<0.05 reader with DL compared to reader without DL, # - p<0.001 6 

CAD-DL operating autonomously compared to all readers. 7 
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 1 

Figure 3: Diagnostic accuracy of ischemia for obstructive coronary artery disease (CAD).  2 

Summed difference scores for all readers were averaged to determine reader accuracy with and 3 

without deep learning (DL). AUC – Area under receiver operating characteristic curve, SDS – 4 

summed difference score, TPD – total perfusion deficit. 5 

  6 
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TABLES 1 

 No obstructive CAD 

(n=120) 

Obstructive CAD 

(n=120) 

p-value 

Age (years) 62(55 – 69) 70(62 – 76) <0.001 

Male Sex 65(54.2) 91(75.8) 0.001 

BMI (kg/m2) 28.2(24.8 – 31.8) 27.0(24.0 – 31.3) 0.278 

Past Medical History    

Hypertension 78(65.0) 93(77.5) 0.045 

Diabetes 36(30.0) 40(33.3) 0.677 

Dyslipidemia 54(45.0) 84(70.0) <0.001 

Family History 33(27.5) 33(27.5) 1.000 

Smoking 21(17.5) 23(19.2) 0.868 

Exercise Stress 53(44.2) 45(37.5) 0.358 

Imaging Protocol   0.878 

Stress-Rest 77(64.2) 81(67.5)  

Rest-Stress 32(26.7) 29(24.2)  

Stress Only 11(9.2) 10(8.3)  

Left Ventricular ejection fraction (%) 63(54 – 72) 63(53 – 69) 0.356 

Stress TPD (%) 3.5(1.8 – 7.2) 8.4(4.3 – 16.3) <0.001 

Table 1: Population characteristics stratified by presence of obstructive coronary artery disease 2 

(CAD). Categorical values are shown as number (frequency) and continuous values are shown as 3 

median (interquartile range). TPD – total perfusion deficit. 4 

 5 
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 1 

Table 2: Net-reclassification of patients with the use of CAD-DL (explainable deep learning model) compared to the same readers 2 

without CAD-DL. Blue indicates studies were re-classified in the correct direction and red indicates studies were reclassified in the 3 

incorrect direction. CAD – coronary artery disease, CI – confidence interval, NRI – net reclassification index. 4 

  5 

  Reclassified 5-point scale likelihood with CAD-DL    Reclassified likelihood (%) 

5-point scale likelihood 

without CAD-DL 
Normal 

Probably 

normal 
Equivocal 

Probably 

Abnormal 

Definitely 

Abnormal 
  

Increased  

likelihood 

Decreased  

likelihood 

Net correctly  

Reclassified 

Obstructive CAD (n=360)                   

Normal 22 4 2 0 0   

47 (13.1%) 25 (6.9%)  
6.1% 

 (95% CI 1.4% - 10.3%)  
Probably normal 4 34 10 3 3   

Equivocal 0 6 10 14 0   

Probably Abnormal 0 1 4 24 11         

Definitely Abnormal 0 0 0 10 198         

No Obstructive CAD (n=360)     

Normal 64 11 0 0 0   

40 (11.1%) 80 (22.2%) 
11.1%  

 (95% CI 4.8% - 16.8%) 
Probably normal 18 84 11 5 2   

Equivocal 1 13 11 6 1   

Probably Abnormal 0 9 15 29 4         

Definitely Abnormal 1 2 6 15 52   NRI +17.2% (95% CI 9.2% – 24.4%, p<0.001) 
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GRAPHICAL ABSTRACT 1 

 2 



SUPPLEMENTAL MATERIAL 1 

SUPPLEMENTAL METHODS 2 

Invasive Coronary Angiography 3 

Invasive coronary angiography was performed according to standard clinical protocols. All 4 

coronary angiograms were visually interpreted by an on-site cardiologist. Stenosis ≥ 50% in the 5 

left main artery, or ≥70% in the left anterior descending artery (LAD), left circumflex artery 6 

(LCx), or right coronary artery (RCA), was considered significant and used as the gold standard 7 

for obstructive CAD. For per-vessel analyses, left main stenosis was attributed to both LAD and 8 

LCx vessels. 9 

Automated Image Quantification  10 

Quality control for all image data sets was performed by experienced core laboratory 11 

technologists without knowledge of the clinical data. Automatically generated myocardial 12 

contours by Quantitative Perfusion SPECT (QPS) software (Cedars-Sinai Medical Center, Los 13 

Angeles, CA) were evaluated. Stress and rest images in the supine positions were analyzed as 14 

previously described(19) using total perfusion deficit (TPD)(20), with normal limits matched to 15 

camera type and protocol. Global TPD was used for per-patient analysis, and per-vessel TPD 16 

was used for the per-vessel analysis.  17 

 18 

Statistical Analysis 19 

Categorical variables are presented as number (frequency) and continuous variables as 20 

mean ± SD or median (interquartile range [IQR]) as appropriate. Categorical variables were 21 



compared with chi-square or Fisher exact test as appropriate. Continuous variables were 1 

compared with t-tests if normally distributed and with Wilcoxon rank sum test otherwise.  2 

In secondary analyses, we also assessed diagnostic accuracy of SDS and overall reader 3 

diagnosis with and without DL. Categorical net reclassification improvement (NRI) was calculated 4 

based on overall physician diagnosis. All tests were two-sided and a p-value <0.05 was considered 5 

significant. Analyses were performed with Stata version 14 (Stata Corp, College Station, TX) and 6 

the PredictAbel package (version 1.2-4) and iMRMC package (version 1.2.3) in R (version 4.0.5). 7 
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SUPPLEMENTAL FIGURES 1 

 2 

 3 

Supplemental Figure 1: Diagnostic accuracy for obstructive coronary artery disease (CAD) for 4 

each reader with and without deep learning (DL).   5 



 1 

 2 

Supplemental Figure 2: Diagnostic accuracy for obstructive coronary artery disease (CAD).  3 

Each reader was treated as a separate observation with final diagnosis, using a 5-point scale, 4 

compared with and without access to deep-learning (DL) results. AUC – Area under receiver 5 

operating characteristic curve, TPD – total perfusion deficit. 6 

 7 

 8 
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 1 

 2 

Supplemental Figure 3: Case example. Example of a case where all 3 physicians increased their 3 

segmental scores in a 72-year-old man with obstructive coronary artery disease (CAD). Stress 4 

and rest myocardial perfusion are shown in short and long-axis (A) and polar maps (B). The 5 

attention map (C) shows that the DL prediction identified an abnormality in the inferior wall, 6 

with a correspondingly high likelihood of CAD in the RCA distribution on the CAD probability 7 

map (D). The patient had an 80% distal RCA and 70% mid-LAD lesion. 8 
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 2 

Supplemental Figure 4: Case Example. Example of a case where all 3 physicians decreased their 3 

segmental scores in a 69-year-old woman without obstructive coronary artery disease (CAD). 4 

Stress and rest myocardial perfusion are shown in short and long-axis (A) and polar maps (B). 5 

The attention map (C) does not highlight any areas because the predicted likelihood of 6 

obstructive CAD was low. This corresponds to a low likelihood of obstructive CAD in all 7 

segments on the CAD probability map (D). The patient had non-obstructive CAD. 8 
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 2 

Supplemental Figure 5: Example of a case where deep-learning (DL) probability was high 3 

without consistently high physician summed stress score. Stress and rest myocardial perfusion 4 

are shown in short and long-axis (A) and polar maps (B). The attention map (C) shows that the 5 

DL prediction identified an abnormality in the apex, with a correspondingly high likelihood of 6 

CAD in the LAD distribution on the CAD probability map (D). The patient had an 80% distal-7 

LAD lesion. Physician summed stress scores with DL were 4, 2, and 2. 8 
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Supplemental Figure 6: Diagnostic accuracy for obstructive coronary artery disease per vessel. 3 

DL – deep learning, LAD – left anterior descending, LCx – left circumflex, RCA – right 4 

coronary artery, TPD – total perfusion deficit. 5 

 6 
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Conventional Camera 

System 

(n=80) 

Solid-State Camera 

System 

(n=160) 

p-value 

Age (years) 66 (59 – 72) 65 (58 – 73) 0.858 

Male Sex 50 (62.5) 106 (66.3) 0.569 

BMI (kg/m2) 29.8 (24.6 – 34.5) 26.7 (24.0 – 30.5) <0.001 

Past Medical History    

Hypertension 59 (73.8) 112 (70.0) 0.650 

Diabetes 30 (37.5) 46 (28.8) 0.187 

Dyslipidemia 45 (56.3) 93 (58.1) 0.784 

Family History 19 (23.8) 47 (29.4) 0.443 

Smoking 24 (30.0) 20 (12.5) 0.001 

Exercise Stress 25 (31.3) 73 (45.6) 0.037 

Imaging Protocol   <0.001 

Stress-Rest 25 (31.3) 133 (83.1)  

Rest-Stress 53 (66.3) 8 (5.0)  

Stress Only 2 (2.5) 19 (11.9)  

Left Ventricular Ejection Fraction (%) 63 (54 – 72) 63 (53 – 69) 0.365 

Stress TPD (%) 4.2 (1.8 – 9.7) 6.0 (2.8 – 11.5) 0.036 

Obstructive CAD 40 (50.0) 80 (50.0) 1.000 

 2 

Supplemental Table 1: Population characteristics stratified by camera system. Categorical values 3 

are shown as number(frequency) and continuous values are shown as median (interquartile 4 

range). CAD – coronary artery disease, TPD – total perfusion deficit.   5 



 1 

Patients with scores increased by all readers 

Camera Age Sex Stress 

TPD 

Global 

CAD-DL  

score 

Highest 

regional CAD-

DL score 

CAD Description 

Conventional 60 Male 4.9 0.48 0.41 (LAD) 70% LAD 

Conventional 59 Male 5.4 0.87 0.61 (RCA) 100% LCx, 50% RCA 

CZT 78 Male 6.3 0.74 0.46 (LAD) 80% LAD, 80% LCx, 

90% RCA 

CZT 72 Male 10.5 0.81 0.72 (RCA)  80% RCA and 70% 

LAD 

CZT 48 Male 4.6 0.63 0.41 (LCx) 100% LAD, 100% 

LCx, 80% RCA 

CZT 69 Female 1.0 0.55 0.44 (RCA) 80% LAD 

CZT 78 Male 10.1 0.87 0.64 (LAD) 70% LAD, 90% D2 

CZT 68 Male 24.6 0.96 0.82 (LAD) 90% LAD, 90% LCx, 

70% RCA 

Conventional 63 Male 3.3 0.62 0.56 (LAD) Minimal luminal 

irregularities 

CZT 47 Male 8.7 0.71 0.58 (RCA) No CAD 

CZT 74 Male 2.3 0.37 0.27 (LAD) 30% LAD 

Patients with scores decreased by all readers 

Camera Age Sex Stress 

TPD 

Global 

CAD-DL  

score 

Highest 

regional CAD-

DL score 

CAD Description 

Conventional 59 Male 2.0 0.21 0.13 (LAD) Minimal luminal 

irregularities 

Conventional 56 Female 0.0 0.33 0.21 (LCx) No CAD 

CZT 60 Female 3.7 0.41 0.26 (RCA) No CAD 

CZT 63 Female 2.3 0.28 0.15 (LAD) No CAD 



CZT 73 Male 3.6 0.47  0.29 (RCA) Minimal luminal 

irregularities 

CZT 59 Male 5.4 0.29 0.17 (LAD) None 

Conventional 69 Male 2.0 0.21 0.13 (LAD) Minimal luminal 

irregularities 

CZT 67 Female 8.4 0.36 0.21 (RCA) Minimal luminal 

irregularities 

Conventional 63 Female 3.3 0.36 0.28 (LAD) No CAD 

CZT 69 Female 12.1 0.31 0.24 (LAD) 40% LAD 

CZT 34 Female 18.9 0.26 0.18 (RCA) 100% RPL 

CZT 64 Female 7.6 0.37 0.21 (RCA) 100% RCA 

CZT 74 Female 8.3 0.26 0.16 (LAD) 50% LM, 90% LAD, 

90% LCX, 100% RCA 

 1 

Supplemental Table 2: Summary of cases where all readers changed scores when interpreting 2 

with CAD-DL predictions. CAD – coronary artery disease, CZT – cadmium zinc telluride, D2 – 3 

second diagonal, LAD – left anterior descending, LCx – left circumflex, LM – left main, RCA – 4 

right coronary artery, RPL – right posterolateral. 5 

 6 
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 LAD Reclassified Score in Vascular Territory  Reclassified likelihood (%) 

5-point scale likelihood 

without CAD-DL 

0 1 or 2 3 or 4 ≥ 5 
Increased  

likelihood 

Decreased  

likelihood 

Net 

correctly  

Reclassified 

Obstructive LAD (n=252)               

0 70 14 1 0 26 (10.3%) 9 (3.6%) 6.7% 

1 or 2 1 39 11 0    

3 or 4 0 6 20 10    

≥ 5 0 0 2 78    

No Obstructive LAD (n=468)        

0 237 32 2 1 50 (10.6%) 40 (8.5%) -2.1% 

1 or 2 16 85 10 1    

3 or 4 1 14 29 4    

≥ 5 0 3 6 27 NRI + 4.6% 

 LCx Reclassified Score in Vascular Territory  Reclassified likelihood (%) 

5-point scale likelihood 

without CAD-DL 

0 1 or 2 3 or 4 ≥ 5 
Increased  

likelihood 

Decreased  

likelihood 

Net 

correctly  

Reclassified 

Obstructive LCx (n=165)               

0 71 6 0 0 12 (7.3%) 9 (5.5%) 1.8% 

1 or 2 4 19 4 0    

3 or 4 0 1 4 2    

≥ 5 0 1 3 50    

No Obstructive LCx (n=555)        

0 419 15 1 0 21 (3.8%) 32 (5.8%) 2.0% 

1 or 2 16 57 3 1    

3 or 4 4 10 11 1    

≥ 5 0 1 1 15 NRI + 3.8% 

RCA Reclassified Score in Vascular Territory  Reclassified likelihood (%) 



 

 

 

 

 

 

 

 

 

Supplemental Table 3: Net-reclassification by vascular territory. CAD-DL – explainable deep learning model, LAD – left anterior 

descending, LCx – left circumflex, NRI – net reclassification index, RCA – right coronary artery. 

 

5-point scale likelihood 

without CAD-DL 

0 1 or 2 3 or 4 ≥ 5 
Increased  

likelihood 

Decreased  

likelihood 

Net 

correctly  

Reclassified 

Obstructive LCx (n=165)               

0 71 6 0 0 12 (7.3%) 9 (5.5%) 1.8% 

1 or 2 4 19 4 0    

3 or 4 0 1 4 2    

≥ 5 0 1 3 50    

No Obstructive LCx (n=555)        

0 419 15 1 0 21 (3.8%) 32 (5.8%) 2.0% 

1 or 2 16 57 3 1    

3 or 4 4 10 11 1    

≥ 5 0 1 1 15 NRI + 3.8% 


