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Abstract 

Patient-specific dosimetry in radiopharmaceutical therapy (RPT) is impeded by the lack of tools 

that are accurate and practical for the clinic. The aims were to construct and test an integrated 

voxel-level pipeline that automates key components (organ segmentation, registration, dose-

rate estimation, and curve fitting) of the RPT dosimetry process and then to use it to report 

patient specific dosimetry in 177Lu-DOTATATE therapy. Methods. An integrated workflow that 

automates the entire dosimetry process, except tumor segmentation, was constructed. 1) 

Convolutional neural networks (CNNs) are used to auto-segment organs on CT of SPECT/CT; 

2) Local contour intensity-based SPECT-SPECT alignment results in volume-of-interest 

propagation to other timepoints; 3) Dose-rate estimation is performed by explicit Monte Carlo 

(MC) using the fast, Dose-Planning Method code; 4) The optimal function for dose-rate fitting is 

automatically selected for each voxel. When reporting mean dose, partial volume correction is 

applied, and uncertainty is estimated by an empirical approach of perturbing segmentations. 

Results. The workflow was used with 4-timepoint SPECT/CT imaging data from 20 patients 

with 77 neuroendocrine tumors, segmented by a radiologist. CNN-defined kidneys resulted in 

high Dice values (0.91-0.94) and only small differences (2-5%) in mean dose when compared 

with manual segmentation.  Contour intensity-based registration led to visually enhanced 

alignment and the voxel-level fitting had high R2 values. Across patients, dosimetry results were 

highly variable, for example, the average (range) of the mean absorbed dose in Gy/GBq were: 

lesions, 3.2(0.2-10.4); L kidney, 0.49(0.24-1.02); R kidney 0.54(0.31-1.07) and healthy liver, 

0.51(0.27-1.04) Patient results further demonstrated the high variability in the number of cycles 

needed to deliver ‘hypothetical’ threshold absorbed doses of 23 Gy to kidney and 100 Gy to 

tumor. The uncertainty in mean dose, attributable to variability in segmentation, was on average 

(range) 6% (3-17%) for organs and 10% (3-37%) for lesions. For a typical patient, the time for 

the entire process was ~ 25 minutes (~ 2 min manual time) on a desktop computer, including 

time for CNN organ segmentation, co-registration, MC dosimetry and voxel curve fitting. 
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Conclusion. A pipeline integrating novel tools that are fast and automated provides the 

capacity for clinical translation of dosimetry guided RPT.  
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Radiopharmaceutical therapy (RPT) is well-suited for the theranostic treatment approach 

because imaging after one cycle could be used to predict absorbed doses per unit activity that 

will be delivered from subsequent cycles. Thus, the injected activity or number of cycles can be 

modulated on an individualized basis to potentially enhance  therapeutic efficacy while keeping 

organ toxicities at an acceptable level (1-3). Despite this potential, fixed activity protocols 

continue to be used in RPTs like 177Lu-DOTATATE peptide receptor radionuclide therapy 

(PRRT) where the standard practice is to deliver 4 cycles at 7.4 GBq/cycle (1).  

 

In RPT dosimetry, 3-D patient images coupled with voxel-level dose estimation using methods 

such as Monte Carlo (MC) radiation transport can account for spatial and temporal activity 

nonuniformity as well as tissue heterogeneity down to the resolution limit of the imaging system. 

This contrasts with traditional methods that approximate the anatomy by a reference phantom 

model and provide only the average absorbed dose to structures that may not provide sufficient 

information to predict potential biological effects (4).  However, voxel dosimetry can be 

logistically difficult to implement due to: 1) the need for repeated SPECT imaging with relatively 

long acquisitions, typically 20 - 30 min (5), 2) co-registration of sequential images and voxel-

level curve fitting, 3) computational cost of accurate dose-rate estimation using direct MC 

radiation transport. The potential for reducing the imaging burden associated with dosimetry has 

been recently reported (6). However, there is much room to improve the efficiency and accuracy 

of the other steps above as well as volume-of-interest (VOI) segmentation, which is needed to 

report dose metrics to lesions/organs. 

 

Recent advances in automated medical image segmentation using deep learning methods 

mostly focus on external beam radiotherapy applications (7). Despite the potential for 

substantially reducing the variability and labor associated with segmentation, well-validated 

deep learning tools are not yet routinely available with RPT dosimetry software. Although 
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segmentation in RPT dosimetry is often performed on emission images, segmentation on co-

registered morphologic images (CT, MRI), exploits their superior spatial resolution. The non-

contrast low-dose CT of integrated SPECT/CT and PET/CT systems is suitable for segmenting 

some organs and well-defined lesions.  

 

Among voxel dosimetry methods, MC is the consensus reference standard that is superior to 

simpler methods such as dose voxel (or point) kernel convolution (DVK) in the presence of 

tissue heterogeneity. However, RPT dosimetry using general purpose MC codes (e.g., 

GEANT4, MCNP) involve long simulation times, typically hours, to achieve reasonable statistics 

(8). The Dose Planning Method (DPM) MC code, optimized specifically for dose computations in 

voxelated geometries derived from CT scans, was originally developed, benchmarked and 

experimentally validated for fast dose estimation in external beam radiotherapy (9). We 

previously adapted DPM for application in I-131 radioimmunotherapy by sampling decay 

locations internally within the voxelated geometry and benchmarked it (10). Recently we 

performed measurements with radiochromic film to directly validate DPM for 177Lu and 131I (11). 

DPM achieves its significant acceleration via transport mechanics and electron multiple 

scattering distribution functions that permits long transport steps across heterogeneity 

boundaries (9). 

 

Our aim is to construct and test a voxel-dosimetry pipeline that integrates deep learning- based 

segmentation, fast MC dose estimation and other automated processes and to use it to report 

highly patient specific dosimetry using multi-SPECT/CT imaging after 177Lu-PRRT. 
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MATERIALS AND METHODS 

 

Dosimetry pipeline 

 

The dosimetry pipeline (Fig 1) combining automated tools was implemented as a workflow 

within a commercial software platform (MIM Software Inc, Cleveland, Ohio). The only parts of 

the process that are not integrated are lesion segmentation and partial volume correction (PVC), 

which is applied as a post-processing step when reporting mean absorbed dose only. The 

workflow is currently in a beta testing stage. Following regulatory review and licensing 

agreements between The University of Michigan and MIM Software, a MC-based dosimetry 

workflow as described in this work will be made available for clinical use via MIM. 

 

     Segmentation. Organ segmentation is performed on the CT portion of the SPECT/CT at the 

reference timepoint, which is the timepoint where the CT was performed at a higher x-ray tube 

current and exposure (mAs) than at the other time points. For kidney and liver, we constructed 

convolutional neural networks (CNNs) based on RefineNet (12), which is based on the U-Net 

architecture with 3D convolution blocks to better leverage contextual information from all 

directions. The CNNs for kidney and liver were trained with 65 and 108 manually contoured data 

sets, respectively, with 5-fold cross validation. The previously evaluated Dice scores from these 

tests averaged 0.93 ± 0.04 and 0.97 ± 0.05 for the kidneys (13) and liver (14), respectively. In 

the current study, we test the CNN for liver by visual assessment and for kidney by calculating 

geometric similarity measures (Dice and mean distance to agreement (MDA)) and comparing 

dose estimates relative to manual segmentations performed by an experienced technologist 

(JN), checked by a radiologist (JM). The Dice is a spatial overlap index and MDA is a spatial 

distance-based metric; both are widely used to assess the reliability of segmentations.  
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Auto-segmentation of lesions such as neuroendocrine tumor (NET) is not yet sufficiently 

developed/validated. Therefore, lesions (up to 5) were manually segmented by a radiologist on 

the patient’s diagnostic quality baseline CT or MRI and then transferred to the reference 

SPECT/CT following co-registration. If mis-registration was evident, the location was manually 

adjusted based on SPECT uptake. Lesions clearly visible on the CT of the reference SPECT/CT 

were directly defined there. Only lesions that were well-defined and > 2 mL in volume were 

segmented to avoid large uncertainties.  The healthy liver was defined as the liver minus any 

segmented lesions and therefore included any unsegmented lesions.  

 

     Local contour-intensity guided registration. To co-register sequential images, contour 

intensity-based SPECT-SPECT alignment was used. SPECT images are first rigidly registered 

to the reference SPECT as a gross alignment. The SPECT intensity information of voxels within 

each selected VOI plus a surrounding 7cm expansion zone is then used to perform multiple 

local rigid registrations between the images. These locally focused alignments are rigidly spliced 

together to generate a composite image aligned and tri-linearly interpolated to the grid of the 

reference SPECT. In this process, VOIs are automatically propagated from the reference to 

other timepoints. We tested this automated method previously in a subset of patients by 

comparing time-integrated activity values relative to rigidly transferring VOIs with visual fine-

tuning and reported good agreement: 0.3% (95% CI: [-8.0%, 8.7%]) for kidneys and 1.9% (95% 

CI: [-17.8%, 21.7%]) for tumors (15). 

 

     Voxel dose-rate estimation: Details of the MC transport mechanics and physics data that is 

based on PENELOPE can be found in the original paper on DPM development (9) and our 

subsequent paper (10) on extension to RPT. For the current work, the 177Lu decay and 

spectral information came from NuDat 3.0 (16) and BetaShape 2.2 (17).  The cutoff for photon 

and electron transport were set to 4 kev and 59 keV, respectively, below which energy was 
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locally deposited in the voxel.  This is a reasonable considering that the range of a 59 keV 

electron in tissue (~ 0.07 mm) and the mean free path of a 4 keV photon in tissue (~ 0.1 mm) 

are much smaller than the voxel size of the dose-rate map indicated below. For a typical case 

(patient 12), we tested this assumption by running DPM with lower cutoffs (photons 2 kev, 

electrons 20 kev), which results in a 20% increase in run time, but the average difference in 

voxel dose-rate in a VOI was only 0.5%.  

 

Dose-rate estimation by DPM MC and DVK convolution with soft tissue kernels pre-calculated 

using DPM were integrated as options within the dosimetry workflow to enable comparison. 

Exploiting the high speed of Fast Fourier Transform convolution, we chose to work with a large 

kernel (267x267x267, 3x3x3 mm3) to ensure capturing of photon dose contribution from decays 

anywhere within the SPECT field-of-view. The mass density map for MC transport or for density 

scaling of the DVK results is generated via a CT-to-density calibration curve, that we determined 

specifically for our system. The co-registered quantitative SPECT image and the reference 

timepoint density map are the inputs to the dose-rate calculation, which is repeated at each 

timepoint. Images are re-sampled to 167x167x131 (3x3x3 mm3) for DVK and to 128x128x100 

(3.91x3.91x3.91 mm3) for MC. For MC, based on testing of statistical uncertainty, 108 histories 

were simulated. 

 

     Voxel-level curve fitting to generate dose maps. First, at each voxel, dose-rate, 𝐷,̇  as a 

function of time is fit by a mono-exponential and a 3-parameter bi-exponential of the form 

�̇�(𝑡) = 𝐶1(𝑒
−𝜆1𝑡 − 𝑒−𝜆2𝑡) using standard least-squares optimization. Next, the best fit function is 

automatically selected independently for each voxel based on the Akaike information criterion 

as proposed by Sarrut et al (18). Other options such as trapezoidal approximation as well as a 

4-parameter bi-exponential, suitable when more time points are available, were implemented, 
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but not used in the current study. Dose-rate functions are integrated analytically to generate the 

dose-map.  

 

     Mean absorbed dose and dose-volume histogram (DVH) metrics. The segmented contours 

are applied to the absorbed dose map to generate the mean absorbed dose and other DVH 

metrics. Absorbed dose estimates derived from SPECT images are degraded by partial volume 

errors associated with limited spatial resolution.  For mean value partial volume correction 

(PVC), we determined recovery coefficients (RCs) defined as the ratio of SPECT measured 

activity to true activity (19) within CT-defined sphere VOIs of a multi-sphere phantom with 

sphere-to-background ratio of 6.2:1 and sphere sizes in the range 2 to 113 mL. The same 

SPECT/CT system and imaging/reconstruction parameters used in patient studies described 

below were used for this phantom experiment. The fit to our RC vs. volume data was:             

RC=1-1/(1+(v/3.673)^0.948), where v is the volume in mL. This function was used to determine 

volume-dependent RCs for lesions/organs and were applied (scaling by 1/RC) when reporting 

mean absorbed doses only. 

 

Patient characteristics and SPECT/CT imaging 

 

     Patient studies. Data corresponds to 20 patients (Supplemental Table 1) with NETs who 

completed 4-timepoint SPECT/CT imaging after cycle 1 of standard 177Lu-DOTATATE PRRT 

performed at the University of Michigan Medical Center between August 2018 and July 2021.  

The research imaging was approved by the Institutional Review Board, and all patients provided 

written informed consent. 

 

     Quantitative SPECT/CT. The SPECT/CT system was a Siemens Intevo Bold equipped with a 

ME collimator and a 15 mm crystal. The 4 SPECT acquisitions (25sec/view) were performed at 



 10 

day 0 (directly after completion of amino acid infusion), day 1, day 4 - 5, and day 5 - 8. 

Manufacture recommended settings of a 20% acquisition window at 208 keV with adjacent 10% 

scatter windows, 256 x 256 matrix and 120 views were used. Siemens xSPECT Quant software 

was used to directly generate reconstructed images in Bq/mL units.  Here, a National Institute of 

Standards and Technology traceable 75Se calibration source with a 3% uncertainty is used to 

perform a monthly site-specific check of the system sensitivity and associated fine tuning (19). 

SPECT reconstruction parameters were:  48 iterations (1 subset) of OSCG with resolution 

recovery, a 256 x 256 x 199 matrix (1.953 mm3) and no post filtering (19). The non-contrast, free 

breathing CT at the reference timepoint was performed at 120 kVp and 80 mAs, and at 15 mAs 

at other timepoints. The CT reconstruction matrix was 512 x 512 x 130 (0.97 x 0.97 mm2 x 3 

mm). 

 

Uncertainty analysis 

In RPT dosimetry the traditional approach of propagating uncertainties associated with each 

step has identified VOI delineation as the largest source of variability (20). The analytical 

approach proposed for estimating this variability is not well suited when anatomical imaging is 

used for segmentation because factors other than spatial resolution (for example, use of 

contrast agents or mis-alignment with SPECT) can dominate. In addition, the spatial distribution 

of absorbed dose impacts the uncertainty estimate. Hence, we take an empirical approach of 

introducing realistic variabilities to the segmented VOIs and determining the corresponding 

variability in the mean absorbed dose when the perturbed contours are applied to the dose-map 

and the perturbed volumes used to determine RCs. We introduced volume 

expansions/contractions (organs:5%, 10%; lesions:10%, 20%) and 26 translations of 4 mm 

(~ SPECT voxel size) for each perturbation. These levels were selected based on an ongoing 

inter-operator variability study on lesion segmentation at our institution and on the kidney 
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volume differences for CNN vs. manual segmentation in the current study. For each VOI, the 

relative standard deviation (COV) in mean absorbed dose from all perturbations is reported as 

the uncertainty. 

 

 

RESULTS 

 

Results correspond to imaging data after cycle 1 with 18/20 patients treated with the 7.4 GBq 

administration and 2 treated with a reduced level of ~ 3.2 GBq (Supplemental Table 1). 

 

Segmentation 

Example segmentations are shown in Fig. 2. The median (range) of lesion volumes was 22 (2 -

1039) mL and 64/77 were in the liver (Supplemental Table 1). In most cases, the CNN-organ 

segmentation was accepted by the radiologist. When manual adjustment was needed, it took 

only 30 s to 3 m per organ. The fine tuning was mostly related to inclusion of bowel loops with 

liver and cysts with kidney (Fig. 2B).  Comparing manual vs. CNN defined kidney, Dice scores 

were on average (range) 0.91 (0.77-0.94) without and 0.93 (0.91-0.94) with manual adjustment 

and differences in mean absorbed doses were 3% (0-21%) without and 2%(0-4%) with 

adjustment (Supplemental Table 2). 

 

Contour intensity-based SPECT-SPECT alignment  

Visual inspection demonstrated well-aligned images (Fig 3) across all time-points with only 

3/164 VOIs needing manual adjustment. These 3 cases were two small lymph node lesions in 

the pelvis and a lesion in the mesentery where there was substantial movement between scans.  
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Voxel-level Curve fitting 

 For a typical patient, a map of the coefficient of determination (R2) that measures the goodness 

of the fit at each voxel and example dose-rate curve fits are shown in Fig. 4. The R2 values 

across all voxels in all patients are summarized in Fig 4B. Summary statistics for the effective 

half-life (Teff) values of the main component of the exponential are presented in Supplemental 

Table 3. 

 

Dosimetry  

Example MC dose maps and DVHs are presented in Fig. 5A.  Individual mean absorbed dose 

values following PVC are presented in Fig 6 and supplemental Figure 1 while summary 

statistics averaged across all patients are presented in Supplemental Table 3. The median 

(range) value of RCs applied were: lesions 0.85 (0.37-1.00); kidney 0.97 (0.95-0.98) and healthy 

liver 1.00 (1.00-1.00). There was a weak correlation between tumor volume and mean absorbed 

dose (R2=0.052, p=0.046). DVH metrics are presented in supplemental Figure 2.  

 

Uncertainty in mean absorbed dose estimates  

With 108 MC histories, the contribution of statistical uncertainty is negligible. For example, the 

COV in VOI dose-rates (from the DPM uncertainty maps) was < 0.2% for the case shown in Fig 

5A.  The uncertainty associated with SPECT-SPECT misalignment can be approximated 

empirically by intentionally mis-aligning the four dose-rate maps and repeating the voxel-level 

auto fitting process. This process is not practical to perform due to the various combination of 

shifts, and we therefore limit this process to one illustrative example (patient #26). This case was 

chosen as the right kidney is in very close proximity to a tumor (Fig 5B) and therefore the impact 

of misalignment can be expected to be higher than typical, while the other structures are 

representative of typical patients. With shifts of +- 4 mm in all directions the estimated COV in 

mean absorbed dose due to mis-registration was: Tumor, 1.8 to 2.6%; L Kidney 1.6%; R Kidney, 
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9.8%; Healthy liver, 1.4%. In general, the 4 mm misalignment has a relatively low impact due to 

the poor resolution of SPECT.  

 

The uncertainty that we report for mean absorbed doses is that associated with 

segmentation, which also impacts the volume-dependent RCs. The COV, represented as error 

bars in Supplemental Figure 1, was on average (range): left kidney, 5%(4-6%); right kidney, 

7%(3-17%); spleen, 5%(4-9%); tumor >10mL, 8%(3-15%); tumor <10mL, 16%(8-37%). For 

organs and large tumor, the major contributor to this uncertainty was the contour variability itself 

while for small tumor it was the sensitivity of RCs to tumor volume uncertainty. For example, for 

tumor volumes < 10 mL, the COV in reported absorbed doses increased by a factor of 2 on 

average when applying RCs while for tumor > 100 cc this factor was only 1.1 on average.  

 

Comparison between MC, DVK and OLINDA  

Mean absorbed doses from MC, DVK and OLINDA 1.0 are compared in Fig. 6D-E and 

demonstrate good agreement. For the OLINDA calculation, the time-integrated activity values 

from the workflow were used. The difference between DVH metrics from MC and DVK are 

presented in Supplemental Figure 2.  

 

Computational Cost 

All processing was performed on a multi-core Mac Pro (3.2 GHz) desktop computer.  For a 

typical patient (128x128x100 matrix), the total run time starting with four SPECT/CT images is ~ 

25 minutes for the MC option and ~ 12 minutes for DVK, of which only ~ 2 min is manual time. 

This includes CNN-organ segmentation (~ 2 min), contour-based SPECT alignment (3 minutes), 

MC dose-rate estimation (4 min/per timepoint), and voxel-level dose-rate fitting and integration 

(3 min). Currently, DPM runs on a single processor but can be accelerated with parallelization.  
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DISCUSSION 

 

A highly automated pipeline for all steps of RPT voxel dosimetry that needs minimal user 

interaction was constructed and tested for the 177Lu PRRT application. The automated tools are 

suitable for other radionuclides and therapies with appropriate testing. 

 

Although activity quantification was not evaluated in the current study, accuracy within 1.2% for 

large objects has been reported (19) with xSPECT Quant software using the same standardized 

calibration process and reconstruction parameters used in the current study. Furthermore, the 

sphere phantom-based RCs reported in that study and in our study are in good agreement. This 

simplistic PVC has limitations because RCs depend on factors other than the volume of the 

object, such as shape and activity distribution. For a 2-compartment kidney model with uniform 

activity in the renal cortex it has been shown that the RC for the cortex is substantially lower 

than that for a sphere of equal volume (21). Generating geometry/distribution specific RCs is 

beyond the scope of the current study and may not be practical due to wide patient-to-patient 

variations. Despite the limitations, the sphere-based RCs used in our study are widely used as a 

mean value correction to mitigate resolution effects in SPECT and PET quantification, including 

in dosimetry applications (22,23).  

 

Ideally, when evaluating 3D dose-distributions PVC should be applied at the voxel-level, but this 

is a challenging and yet unresolved problem (24).Another challenge with voxel dosimetry is that 

iterative reconstruction with resolution modeling leads to edge artefacts that, depending on size 

of the object, can manifest itself as a visible dip or an overshoot at the center (25). This effect 

and partial volume effects leads to differences between SPECT-derived DVHs and histograms 

corresponding to the true activity distribution within an object (26). Despite the challenges, 

capturing non-uniformities in the underlying dose distribution to the extent possible is desired 
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when considering biological effect. There are alternative efforts using deep learning, including 

by our group (27), to mitigate the impact of poor spatial resolution and reconstruction artefacts 

on voxel dosimetry. 

 

There was close agreement between dose estimates corresponding to manual vs. CNN-defined 

kidney, which is consistent with findings for a 177Lu-PSMA therapy cohort (28).  We achieved 

further improvement with quick manual adjustment of the CNN-segmentations. The Dice 

similarity metrics we achieved are comparable to what is reported for inter/intra-operator 

variability in manual organ segmentation (29). A possible refinement is to train the CNN to use 

both CT and SPECT information, which may be beneficial to identify cysts included in kidney 

contours (Fig. 2B) and to reduce effects of mis-registration between CT and SPECT images 

(30). Visually, the local contour intensity-based SPECT-SPECT registration led to improved 

alignments compared with global rigid registration (Fig. 3). The main advantage of SPECT 

intensity-based registration over using CT-based registration to align serial SPECT images is 

that it does not depend on SPECT-CT alignment, which is inconsistent due to respiratory motion 

and patient movement. The automated approach for selecting the optimal fit function led to high 

R2 values and is especially beneficial for voxel-level fitting where selection by visual inspection 

is not feasible. The smooth voxel dose-rate vs. time data, high R2 values and the good 

agreement in Teff when comparing average values from voxel-level vs. organ-level fitting gives 

us confidence in the ability to perform accurate voxel-level fitting. 

 

It is notable that the difference between the mean absorbed dose from OLINDA sphere 

model and MC was < 10% for 73/77 lesions (Fig 6E). This difference can, however, be larger for 

radionuclides with more significant photon yields than 177Lu. The main advantage of MC over 

conventional DVK methods is in regions of heterogeneous tissue and at steep activity gradients, 

which is not fully resolved by simple density scaling. Recently, more sophisticated approaches 
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that utilize multiple kernels to cover media of varying density have been proposed to mitigate 

the limitations of using a single kernel (31). In the current study, lesions in heterogeneous tissue 

such as bone metastases were not considered due to their small size and/or the difficulty 

defining them. Accurate dosimetry of bone lesions and marrow requires modeling the fine 

structure of the spongiosa that can be coupled with MC transport (32). 

 

RPT dosimetry is typically reported without uncertainty estimates due to the complexity 

and limitations of traditional error propagation. Although we did not attempt to assess all 

components of the uncertainty, we captured the main components: the variability associated 

with contour delineation and the volume-based RCs (20). Facilitated by voxel dose maps, our 

empirical approach of introducing perturbations is both practical to implement and is sensitive to 

each patient’s underlying dose distribution, which is not the case with analytical approaches. For 

example, in patient 26 the relative uncertainty for the right kidney was higher than for the left 

due to proximity to a lesion in the liver (Fig 5B), which may also explain the higher values 

reported overall for right vs. left in our study and by others (1,3).  

 

Across patients, the median Teff that we observed for left (51.7h) and right (50.3 h) kidney agree 

closely with previous reports (1,6) for similar cohorts. The median value of absorbed dose to left 

(0.41 Gy/GBq) and right (0.43 Gy/GBq) kidney can be compared with past reported values for 

kidney of 0.61(1), 0.54 (2), 0.47 (33), and 0.38 (average) (34) Gy/GBq. Differences can be 

attributed to differences in patient cohorts and quantification/dosimetry methods, as well as the 

renoprotective amino acid preparation. The median value of the tumor mean absorbed dose in 

our study (17.7 Gy or 2.7 Gy/GBq) is lower than the per cycle median values of 50 Gy (23) and 

4.4 Gy/GBq (2) reported in two other studies. This is not surprising because instead of 

anatomical lesion segmentation used in our study, SPECT thresholding was used in the first 

study while the second used VOIs placed over the area of maximum uptake. 
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Although we do not report biological effective dose, it can be calculated using the dose-

rate maps and fit parameters available from the workflow coupled with published values for the 

radiobiologic parameters as outlined by Baechler et al (35).   Furthermore, since most patients 

in our study are yet to finish their 4-cycle treatment, no attempt was made to evaluate dose-

outcome relationships. PRRT clinical trials where dosimetry is used solely to avoid toxicity to 

critical organs have been reported (1-3). Performing both tumor and organ dosimetry enables 

consideration of both efficacy and toxicity when planning subsequent cycles. As a hypothetical 

example, using the cycle 1 mean dose estimates from our study, we determined the number of 

cycles each patient would need to receive 100 Gy to tumor and 23 Gy to kidney assuming the 

same Gy/per cycle. These thresholds, though somewhat arbitrary, were selected here based on 

a dose-response report (23) and the generally accepted 23 Gy limit for nephrotoxicity in external 

beam radiotherapy, although this limit is likely too low for PRRT.  Most patients could receive 

more than the standard 4 cycles without exceeding 23 Gy to kidney, while most lesions need 

more than 4 cycles to achieve 100 Gy to tumor (Fig. 7). Access to this type of information in real 

time via efficient dosimetry calculations, will enable clinicians to make well-informed treatment 

decisions.  Furthermore, highly patient specific dosimetry results are needed to establish the 

validity of simplified protocols   

 

CONCLUSION 

 

Multiple steps of the dosimetry chain, organ segmentation, co-registration, dose-rate estimation 

by MC, and curve fitting, were automated and integrated to construct an efficient pipeline for 

voxel dosimetry that was tested using imaging data from 177Lu-PRRT patients. Facilitated by 

this efficient workflow, highly patient specific dosimetry results including uncertainty estimates 

were reported. The speed, automation and accuracy that was achieved will facilitate 

implementation of real time dosimetry guided RPT in the clinical setting. 
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KEY POINTS 

Question Can accurate and highly patient specific dosimetry be performed in a clinical setting 

to guide RPT? 

Pertinent findings An automated pipeline that includes CNNs for organ segmentation and a 

fast MC code for dose-estimation was constructed, tested and applied to report dosimetry in 

patients undergoing 177Lu-PRRT. Excluding the time for lesion segmentation, voxel-level MC 

dose estimates were achieved in ~ 25 min. 

Implications for patient care Patient specific real time dosimetry, such as performed in the 

current study after cycle 1, can be used to tailor subsequent cycles based on efficacy and 

toxicity considerations. 

 

 

https://doi.org/10.7302/0n8e-rz46
https://doi.org/10.7302/vhrh-qg23


 19 

REFERENCES 

 

1. Sundlöv A, Sjögreen-Gleisner K, Svensson J, et al. Individualised 177Lu-DOTATATE 

treatment of neuroendocrine tumours based on kidney dosimetry. Eur J Nucl Med Mol 

Imaging. 2017;44(9):1480-1489.  

2. Del Prete M, Buteau, FA, Arsenault F, et al. Personalized 177Lu-octreotate peptide 

receptor radionuclide therapy of neuroendocrine tumours: initial results from the P-PRRT 

trial. Eur J Nucl Med Mol Imaging. 2019;46:728-742.3.  

3. Sandstrom M, Garske-Roman U, Johansson S, et al. Kidney dosimetry during 177Lu-

DOTATATE therapy in patients with neuroendocrine tumors: aspects on calculation and 

tolerance. Acta Oncol. 2018;57:516-521. 

4. O'Donoghue JA. Implications of nonuniform tumor doses for radioimmunotherapy. J Nucl 

Med. 1999;40:1337-41. 

5. Rydén T, Van Essen M, Marin I, Svensson J, Bernhardt P. Deep-Learning generation of 

synthetic intermediate projections improves 177Lu SPECT images reconstructed with 

sparsely acquired projections. J Nucl Med. 2021;62:528-535. 

6. Hanscheid H, Lapa C, Buck AK, Lassmann M, Werner RA. Dose mapping after 

endoradiotherapy with 177Lu-DOTATATE/DOTATOC by a single measurement after 4 

days. J Nucl Med. 2018;59:75-81.7. 

7. Sahiner B, Pezeshk A, Hadjiiski LM, et al. Deep learning in medical imaging and 

radiation therapy. Med Phys. 2019;46:e1-e36. 8.  

8. Huizing DMV, de Wit-van der Veen BJ, Verheij M, Stokkel MPM. Dosimetry methods 

and clinical applications in peptide receptor radionuclide therapy for neuroendocrine 

tumours: a literature review. EJNMMI Res. 2018;8:89. 9.   



 20 

9. Sempau J, Wilderman SJ, Bielajew AF. DPM, a fast, accurate Monte Carlo code 

optimized for photon and electron radiotherapy treatment planning dose calculations. 

Phys Med Biol. 2000;45:2263-91. 10.  

10. Wilderman SJ, Dewaraja YK. Method for fast CT/SPECT-Based 3D Monte Carlo 

absorbed dose computations in internal emitter therapy. IEEE Trans Nucl Sci. 

2007;54:146-151.  

11. Van B, Dewaraja YK, Niedbala J, et al. Reproducible absorbed dose measurements for 

validating dosimetry of short range therapeutic unsealed beta sources including Monte 

Carlo-based calculations. J Nucl Med. 2021;62(suppl 1):1577.  

12. Lin G, Milan A, Shen C, Reid I. RefineNet: Multi-path refinement networks for high-

resolution semantic segmentation. https://arxiv.org/abs/1611.06612. Accessed on 

February 16, 2022. 

13. Cole N, Wan H, Niedbala J, et al. Impact of a 3D convolution neural network method on 

liver segmentation: An accuracy and time-savings evaluation. Annual meeting of the 

AAPM,2020.https://w3.aapm.org/meetings/2020AM/programInfo/programAbs.php?sid=8

489&aid=51984. Accessed on February 16, 2022. 

14. Lamba N, Wan H, Kruzer A, et al. Clinical  utility  of  a  3D  convolutional  neural  

network  kidney segmentation method for radionuclide dosimetry. J Nuc Med. 2019;60 

(suppl 1):267. 

15. Mirando D, Dewaraja YK, Cole N, Nelson AS.  In pursuit of fully automated dosimetry: 

evaluation of an automatic VOI propagation algorithm using contour intensity-based 

SPECT alignments. Eur J Nucl Med Mol Imaging.2020;47(suppl 1):S236 

16. National Nuclear Data Center. https://www.nndc.bnl.gov/nudat3/. Accessed on February 

16, 2022. 

https://arxiv.org/abs/1611.06612
https://w3.aapm.org/meetings/2020AM/programInfo/programAbs.php?sid=8489&aid=51984
https://w3.aapm.org/meetings/2020AM/programInfo/programAbs.php?sid=8489&aid=51984
https://www.nndc.bnl.gov/nudat3/


 21 

17.Laboratorie National Henri Becquerel. http://www.lnhb.fr/rd-activities/spectrum-

processing-software/. Accessed on February 16, 2022. 

18. Sarrut D, Halty A, Badel JN, Ferrer L, Bardiès M. Voxel-based multimodel fitting method 

for modeling time activity curves in SPECT images. Med Phys. 2017;44:6280-6288. 

19. Tran-Gia J, Lassmann M. Characterization of noise and resolution for quantitative 177Lu 

SPECT/CT with xSPECT Quant. J Nucl Med. 2019;60:50-59. 

20. Gear JI, Cox MG, Gustafsson J, et al. EANM practical guidance on uncertainty analysis 

for molecular radiotherapy absorbed dose calculations. Eur J Nucl Med Mol Imaging. 

2018;45:2456-2474. 

21. Tran-Gia J, Lassmann M. Optimizing Image Quantification for 177Lu SPECT/CT based on 

a 3D printed 2-compartment kidney phantom. J Nucl Med. 2018;59:616-624. 

22. Finocchiaro D, Berenato S, Grassi E, et al. Partial volume effect of SPECT images in 

PRRT with 177Lu labelled somatostatin analogues: A practical solution. Phys Med. 

2019;57:153-159. 

23. Ilan E, Sandström M, Wassberg C, et al. Dose response of pancreatic neuroendocrine 

tumors treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE. J 

Nucl Med. 2015;56:177-82.24.  

24. Tran-Gia J, Salas-Ramirez M, Lassmann M. What you see is not what you get: on the 

accuracy of voxel-based dosimetry in molecular radiotherapy. J Nucl Med. 

2020;61:1178-1186. 

25. Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, 

benefits, and pitfalls. Med Phys. 2013;40:064301 

26. Dewaraja YK, Frey EC, Sgouros G,et al. MIRD pamphlet No. 23: quantitative SPECT for 

patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 

2012;53:1310-1325. 

http://www.lnhb.fr/rd-activities/spectrum-processing-software/
http://www.lnhb.fr/rd-activities/spectrum-processing-software/


 22 

27. Li Z, Fessler JA, Mikell JK, Wilderman SJ, Dewaraja YK. DblurDoseNet: A deep residual 

learning network for voxel radionuclide dosimetry compensating for single-photon 

emission computerized tomography imaging resolution. Med Phys. 2022;49:1216-1230. 

28. Jackson P, Hardcastle N, Dawe N, et al. Deep learning renal segmentation for fully 

automated radiation dose estimation in unsealed source therapy. Front Oncol. 

2018;8:215.28.  

29. Daniel AJ, Buchanan CE, Allcock T, et al. Automated renal segmentation in healthy and 

chronic kidney disease subjects using a convolutional neural network. Magn Reson Med. 

2021;86:1125-1136. 

30. Khan J, Rydèn T, Van Essen M, Svensson J, Bernhardt P. Activity concentration 

estimation in automated kidney segmentation based on convolution neural network 

method for 177lu–spect/ct kidney dosimetry, Radiation Protection Dosimetry. 

2021;195:164-171. 

31. Lee MS, Kim JH, Paeng JC,et al. Whole-body voxel-based personalized dosimetry: the 

multiple voxel S-value approach for heterogeneous media with nonuniform activity 

distributions. J Nucl Med. 2018 ;59:1133-1139.   

32. Wilderman SJ, Roberson PL, Bolch WE, Dewaraja YK. Investigation of effect of 

variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-

immunotherapy. Phys Med Biol. 2013;58:4717-31. 

33. Staanum PF, Frellsen AF, Olesen ML, et al. Practical kidney dosimetry in peptide 

receptor radionuclide therapy using [177Lu]Lu-DOTATOC and [177Lu]Lu-DOTATATE with 

focus on uncertainty estimates. EJNMMI Phys. 2021;8:78 

34. Willowson KP, Eslick E, Ryu H, et al. Feasibility and accuracy of single timepoint 

imaging for renal dosimetry following 177Lu-DOTATATE ('Lutate') therapy. EJNMMI Phys. 

2018;5:33. 



 23 

35. Baechler S, Hobbs RF, Prideaux AR, Wahl RL, Sgouros G. Extension of the biological 

effective dose to the MIRD schema and possible implications in radionuclide therapy 

dosimetry. Med Phys. 2008;35:1123-34. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 24 

 

 

FIGURE 1. Overview of the automated dosimetry workflow. At the “reference” timepoint the CT 

of the SPECT/CT was performed at a higher mAs value than at other timepoints. 

 

 

 

 

 
 
 
FIGURE 2. Example segmentations for (A) patient 12 and (B) patient 4. In (A), the CNN defined 
kidney and liver was accepted by the radiologist while in (B) manual adjustment of kidney was 
needed to avoid a cyst. 
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FIGURE 3. The two-stages of the automatic SPECT-SPECT registration demonstrated for 
patient 12 Day0 and Day1 images.  Comparison of magnified inserts show subtle improvement 
in alignment with the contour intensity-based refinement. 
 

 

 

 
 
FIGURE 4. (A) Example dose-rate curve fits shown for all voxels in right kidney and tumor 1 of 
patient 12, color-coded by R2 value of the fit. Note the selection of mono- and bi-exponential 
functions for different voxels. The organ-level fit-curve is shown in black. A coronal slice of the 
R2 map is shown in the insert. (B) The percentage of voxels achieving R2 > 0.5, 0.7 and 0.9 for 
fits across all patients.  
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FIGURE 5. (A) A coronal slice of the MC dose-map and dose volume-histograms for patient 12.  
(B) Examples of contour perturbations applied to dose maps of patient 12 and 26 for estimating 
uncertainty. The COV in right kidney absorbed dose was 4% for patient 12, but 17% for patient 
26 due to proximity to a tumor and liver. 
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FIGURE 6. Violin plots of dosimetry results across all patients. A) Effective half-life. B) Mean 
absorbed dose with voxel-level MC calculation, C) Difference in MC dose estimates with voxel-
level vs. organ-level dose-rate fitting, D) Difference between MC vs. DVK (with density scaling), 
E) Difference between MC vs. OLINDA (with mass scaling). Difference =100*(MC – XX)/MC. 
The circles indicate individual points, x indicates the average, and the dash lines indicate the 
25%th and 75%th percentiles. 
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FIGURE 7. Variation in number of (7.4 GBq) cycles needed to deliver 23 Gy to kidney and 100 
Gy to tumor. 
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Supplemental Material 
Platform for automated patient specific dosimetry combining deep learning segmentation and fast voxel-level tools including Monte Carlo: 
application in 177Lu-PRRT    Yuni K Dewaraja et al 
 

Supplemental Table 1. Patient baseline characteristics and cycle 1 mean absorbed dose estimate from the DPM Monte Carlo calculation with voxel-
level dose-rate fitting. The standard deviation estimated from contour perturbations is in parenthesis. Healthy liver standard deviation is not included 
as not all liver lesions were segmented. Tumor volumes are indicated. Median (range) of organ volumes: L kidney, 162(78-275)mL; R kidney, 163(118-
258)mL; Healthy liver, 1821(1166-3369)mL. 

        Mean Absorbed Dose (Gy) 
Patient 
Code 

Sex Age 
(y) 

Weight 
(kg) 

Grade 
 

Ki-67 eGFR+ 
(mL/min) 

Admin 
Activity 
(GBq) 

L Kidney R Kidney Healthy 
Liver 

Tumor 1 Tumor 2 Tumor 3 Tumor 4 Tumor 5 

2 M 
 

71 
 

96 na 
 

na 
 

82 
 

7.14 
 

2.6 (0.2) 2.8 (0.1) 1.0 52.2(11.0) 
2.9 mL* 

36.1 (5.5) 
4.3 mL* 

31.7 (5.2) 
3.5 mL 

22.3 (5.6) 
2.5 mL 

 

4 M 
 

64 
 

98 na na 81 
 

7.13 
 

2.2 (0.1) 2.2 (0.1) 1.5 23.5 (2.4) 
106.1 mL 

67.8(12.0) 
3.1 mL 

   

5 F 
 

72 
 

55 G2 
 

11% 
 

96 
 

7.34 
 

2.8 (0.1) 3.1 (0.3) 5.4 31.0 (3.1) 
12.1 mL 

13.6 (0.9) 
55.4 mL 

28.4 (2.5) 
11.2 mL 

9.6 (0.7) 
58.2 mL 

9.8 (0.7) 
59 mL 

6 F 
 

62 
 

52 na na 43 
 

7.33 
 

3.7 (0.2) 4.8 (0.3) 1.5 4.2 (0.3) 
11.7 mL 

63.5(13.6) 
3.0 mL 

3.1 (0.2) 
68.1 mL* 

4.7 (0.6) 
22.2 mL** 

 

7 F 
 

39 
 

129 G3 15%-20% 81 
 

7.48 
 

1.8 (0.1) 2.3 (0.3) 7.9 16.0 (0.8) 
373 mL 

17.1 (0.7) 
207 mL 

23.0 (1.4) 
22.7 mL 

19.0 (1.2) 
13.7 mL 

24.8 (2.0) 
10.2 mL 

8 M 
 

56 
 

90 na na 109 
 

7.07 
 

2.2 (0.1) 2.4 (0.1) 0.3 4.1 (0.5) 
569 mL*** 

    

10 F 
 

66 
 

94 na 
 

na 
 

25 
 

3.69++ 

 
3.8 (0.2) 4.0 (0.3) 3.1 16.7 (1.2) 

272 mL*** 
6.6 (0.4) 
128 mL 

9.7 (0.3) 
296 mL 

5.8 (0.5) 
18.5 mL 

12.4 (1.0) 
90 mL 

11 M 
 

70 
 

72 G2 
 

3% 
 

68 
 

7.34 
 

3.1 (0.2) 2.9 (0.2) 6.8 22.1 (1.3) 
155 mL 

21.1 (2.8) 
12.6 mL 

25.2 (1.3) 
49.4 mL 

25.0 (2.2) 
22.8 mL 

21.9 (1.2) 
104 mL 

12 M 
 

57 
 

90 G2 
 

5% 
 

91 
 

7.20 
 

2.2 (0.1) 2.3 (0.1) 1.6 18.5 (2.0) 
142 mL 

9.3 (1.3) 
65.6 mL 

9.2 (0.9) 
10.9 mL 

7.1 (1.1) 
17.8 mL 

14.5 (2.0) 
15.5 mL 

13 M 
 

66 
 

87 G2 
 

10%-15% 
 

91 
 

7.31 
 

2.5 (0.1) 2.7 (0.2) 4.0 7.0 (0.2) 
29.8 mL 

17.7 (1.6) 
10.0 mL 

7.8 (0.6) 
28.3 mL 

10.3 (0.7) 
33.5 mL 

12.1 (1.4) 
5.6 mL* 

14 M 
 

56 
 

113 G1 
 

<2% 
 

67 
 

7.35 
 

5.3 (0.3) 6.3 (0.6) 2.4 19.8 (1.2) 
1039 mL 

1.8 (0.2) 
8.0 mL 

21.5 (2.0) 
22.7 mL 

22.4 (2.6) 
23.4 mL 

15.4 (1.4) 
99.7 mL* 

15 M 
 

72 
 

79 G2 9 per 10 hpf 55 
 

7.14 
 

3.7 (0.2) 4.0 (0.1) 1.7 13.7 (0.9) 
80.0 mL 

30.0 (3.1) 
13.4 mL 

43.2(17.6) 
2.1 mL 

  

16 M 
 

74 
 

86 G1 na 88 
 

7.37 
 

2.2 (0.1) 2.3 (0.1) 2.6 20.1 (1.7) 
91.4 mL 

16.5 (1.8) 
8.3 mL 

41.5 (4.0) 
35.3 mL 

36.0 (9.1) 
2.4 mL 

15.0 (1.3) 
16.5 mL**** 

18 M 
 

71 
 

68 G2 10% 91 
 

3.75++ 

 
1.4 (0.1) 1.6 (0.1) 1.7 12.4 (1.1) 

233 mL 
7.0 (0.5) 
256 mL 

7.4 (0.3) 
268 mL 

11.5 (0.9) 
208 mL 

 

20 M 
 

70 
 

97 G2 12%, 20% 66 
 

7.38 
 

5.5 (0.3) 5.7 (0.3) 1.5 44.9 (4.0) 
28.8 mL 

    

22 M 
 

67 
 

74 G1 <2% 92 
 

7.31 
 

4.4 (0.2) 4.5 (0.3) 1.5 30.5 (2.5) 
9.2 mL 

15.7 (2.3) 
3.9 mL 

75.8 (7.3) 
11.6 mL 

21.2(2.1) 
7.0 mL** 

 

23 F 
 

74 
 

69 G1 <2% 48 
 

7.15 
 

6.5 (0.3) 6.7 (0.2) 1.2      

25 M 
 

66 
 

77 G2 na 91 
 

7.22 
 

2.5 (0.1) 2.7 (0.1) 1.1 8.3 (0.7) 
77.0 mL 

21.96(2.0) 
46.2 mL 

56.8 (4.8) 
7.5 mL* 

31.9 (2.8) 
10.9 mL* 

 

26 F 
 

76 
 

79 G2 5%-10% 55 
 

6.81 
 

3.4 (0.2) 5.1 (0.9) 9.3 34.5 (2.3) 
24.0 mL 

36.6 (2.1) 
20.5 mL 

41.0 (2.6) 
10.3 ml 

36.9 (3.3) 
21.4 mL 

49.6 (4.0) 
9.9 mL 

c02 F 
 

76 
 

89 G2 7% 49 
 

7.30 
 

3.7 (0.1) 4.4 (0.2) 2.4 9.1 (0.7) 
7.3 mL 

12.7 (1.6) 
4.6 mL 

9.7 (1.1) 
3.9 mL 

5.3 (0.6) 
7.1 mL 

5.0 (0.5) 
71.5 mL**** 

+Estimated glomerular filtration rate. Normal eGFR > 59 mL/min 
++ Reduced activity due to concern of renal or marrow toxicity 
*Lymph node lesion; ** Body wall lesion; ***Pancreas lesion; **** Mesenteric lesion; All other lesions are in the liver 
 



Supplemental Table 2. Performance of deep learning kidney segmentation (without and with fine tuning) relative to manual segmentation for the 
first 14 patients (27 kidney*). In general, fine tuning of CNN-generated contours did not result in large changes in similarity measures or absorbed 
dose, but in one case the Dice score improved from 0.77 to 0.91 and mean absorbed dose agreement improved from -21% to 4%. 

 Manual vs. Fully Automated CNN-segmentation Manual vs. CNN Segmentation with Manual Fine Tuning* 
 Volume 

Absolute 
Difference 

Mean Dose 
Absolute 
Difference 

 
Dice 

 
HD 
(mm) 

 
MDA 
(mm) 

Volume 
Absolute  
Difference 

Mean Dose 
Absolute 
Difference 

 
Dice 

 
HD 
(mm) 

 
MDA 
(mm) 

L Kidney           
   Mean 5% 2% 0.92 10.7 0.92 4% 1% 0.93 8.3 0.80 
   Median 4% 1% 0.93 8.5 0.78 3% 1% 0.93 8.2 0.76 
   Min 0% 0% 0.85 6.0 0.68 0% 0% 0.86 6.0 0.68 
   Max 18% 5% 0.94 36.0 2.04 17% 5% 0.94 12.2 1.19 
R Kidney           
   Mean 8% 3% 0.91 11.4 0.99 5% 2% 0.93 9.9 0.81 
   Median 6% 2% 0.93 9.2 0.84 6% 1% 0.93 8.8 0.81 
   Min 0% 0% 0.77 4.5 0.68 0% 0% 0.91 4.5 0.68 
   Max 27% 21% 0.94 24.4 2.05 11% 4% 0.94 24.4 0.99 

*CNN failed to locate right kidney in one case due to unusual location 

 
Supplemental Table 3. Effective half-life and mean absorbed dose statistics across all patients from DPM MC dose estimation with voxel-level 
dose-rate fitting.   

 Tumor L Kidney R Kidney Healthy Liver 
Sample size 77 20 20 20 
Effective Half Life (h)*     

         Average 84.4 (88.6)** 52.4 (55.9) 51.9 (56.2) 67.1 (75.5) 
         Median 80.4 (84.2) 49.1 (51.7) 48.6 (50.3) 64.1 (74.1) 

         Min 8.0 (46.3) 8.0 (42.4) 8.0 (42.7) 8.0 (33.1) 
         Max 159.5 (159.5) 159.5 (108.2) 159.5 (116.4) 159.5 (123.5) 
         STD 20.6 (25.3) 20.6 (15.2) 21.6 (17.0) 36.7 (18.8) 

Mean Absorbed Dose      
       Average         (Gy)                                 

(Gy/GBq) 
21.7 
3.16 

3.3  
0.49 

3.6 
0.54 

2.9 
0.51 

         Median          (Gy) 
(Gy/GBq) 

17.7 
2.72 

3.0 
0.41 

3.0 
0.43 

1.7 
0.41 

           Min.               (Gy) 
                            (Gy/GBq)            

1.8 
0.24 

1.4 
0.24 

1.6 
0.31 

0.3 
0.27 

         Max.              (Gy) 
(Gy/GBq) 

75.8 
10.37 

6.5 
1.02 

6.7 
1.07 

9.3 
1.04 

         STD               (Gy) 
(Gy/GBq) 

15.8 
2.16 

1.3 
0.21 

1.5 
0.23 

2.5 
0.22 

* Corresponding to the main component of the exponential fit 
**Effective half-life values in parenthesis correspond to organ level dose-rate fitting. 
 



 

 

Supplemental Figure 1. Cycle 1 organ and lesion mean absorbed doses for all patients calculated using the MC voxel-level option. The error bars 
indicate 1 standard deviation estimated from the contour perturbation approach. Healthy liver standard deviation is not included as not all liver 
lesions were segmented. See supplemental Table 1 for administered activities. 
 



 

Supplemental Figure 2. DVH statistics A) D10, B) D90 from DPM MC dose estimation. Difference in C) D10 and D) D90 estimated from MC vs. 
DVK convolution. Difference = 100*(MC-DVK)/MC.  These metrics are reported without PVC, because RCs were used only as a mean value 
correction. 


