⁸⁹Zr-3,2-HOPO-mesothelin antibody PET imaging reflects tumor uptake of mesothelin targeted ²²⁷Th-conjugate therapy in mice

Authors: Linda N. Broer¹, Daan G. Knapen¹, Frans V. Suurs¹, Ingrid Moen², Danique Giesen¹,
Stijn J. H. Waaijer¹, Baard Indrevoll², Christine Ellingsen², Alexander Kristian², Alan S.
Cuthbertson², Derk-Jan A. de Groot¹, Patricia E. Cole³, Elisabeth G. E. de Vries¹, Urs B.
Hagemann⁴, Marjolijn N. Lub-de Hooge^{5,6*}.

Affiliations: ¹Department of Medical Oncology, University Medical Center Groningen, University
of Groningen, Groningen, the Netherlands; ²Bayer AS, Oslo, Norway; ³Bayer U.S., LLC,
Whippany, NJ; ⁴Bayer AG, Berlin, Germany; ⁵Department of Clinical Pharmacy and
Pharmacology, ⁶Department of Nuclear Medicine and Molecular Imaging, University Medical
Center Groningen, University of Groningen, Groningen, the Netherlands.

*Corresponding Author: M.N. Lub-de Hooge, PharmD, PhD, PO Box 30.001, 9700 RB
Groningen, The Netherlands +31 50 36 14071 (phone) +31 50 36 14087 (fax)
m.n.de.hooge@umcg.nl (e-mail). ORCID iD: <u>https://orcid.org/0000-0002-5390-2791</u>.

First author: Linda N. Broer, PharmD, Groningen, The Netherlands +31 50 36 11817 (phone),
 <u>l.n.broer@umcg.nl</u> (e-mail).

Data and Materials Availability: Data that support the findings of this study are available from
Marjolijn N. Lub-de Hooge upon request.

19 Running title: PET Imaging for Targeted ²²⁷Th Therapy

Keywords: PET imaging, Zirconium-89, Targeted Thorium-227 Therapy, Antibody Conjugate,
Mesothelin

Financial support and Disclosure of Potential Conflicts of Interest: This study was supported 1 2 by a research grant from Bayer provided to E. G. E. de Vries. Payments were made available to her 3 institution (UMCG). Bayer developed and owns the intellectual property rights of 3,2-HOPO-MSLN and ²²⁷Th-MSLN. E.G.E. de Vries reports institutional financial support for a consulting 4 5 and advisory role from Sanofi, Daiichi Sankyo, NSABP, Crescendo Biologics and Cyprus Cancer 6 Research Institute, and institutional financial support for clinical trials or contracted research from 7 Amgen, Genentech, Roche, AstraZeneca, Synthon, Regeneron, Chugai Pharma, CytomX 8 Therapeutics, Servier, Nordic Nanovector, G1 Therapeutics, Radius Health; all outside the 9 submitted work. No other potential conflicts of interest relevant to this article exist.

1 ABSTRACT

Rationale: Mesothelin targeted thorium-227 conjugate (²²⁷Th-MSLN) is a novel targeted alpha
therapy developed to treat mesothelin overexpressing cancers. We radiolabeled the same antibodychelator conjugate with zirconium-89 (⁸⁹Zr-MSLN) to evaluate if positron emission tomography
(PET) imaging with ⁸⁹Zr-MSLN matches with ²²⁷Th-MSLN tumor uptake, biodistribution, and
antitumor activity.

Experimental design: Serial PET imaging with protein doses of 4, 20, or 40 µg ⁸⁹Zr-MSLN and
⁸⁹Zr-control was performed up to 168 h post tracer injection (pi) in high (HT29-MSLN) and low
(BxPc3) mesothelin expressing human tumor-bearing nude mice. ⁸⁹Zr-MSLN and ²²⁷Th-MSLN *ex vivo* tumor uptake and biodistribution were compared at 6 time-points in HT29-MSLN and in
medium mesothelin expressing (OVCAR-3) tumor-bearing mice. ⁸⁹Zr-MSLN PET imaging was
performed before ²²⁷Th-MSLN treatment in HT29-MSLN and BxPc3 tumor-bearing mice.

Results: ⁸⁹Zr-MSLN PET imaging showed mean standardized uptake value (SUV_{mean}) in HT29-MSLN tumors of 2.2 \pm 0.5. *Ex vivo* tumor uptake was 10.6% \pm 2.4% injected dose per gram (%ID/g) at 168 h. ⁸⁹Zr-MSLN tumor uptake was higher than uptake of ⁸⁹Zr-control (*P* = 0.0043). ⁸⁹Zr-MSLN and ²²⁷Th-MSLN showed comparable tumor uptake and biodistribution in OVCAR-3 and HT29-MSLN tumor-bearing mice. Pre-treatment SUV_{mean} was 2.2 \pm 0.2 in HT29-MSLN tumors, that decreased in volume upon ²²⁷Th-MSLN treatment. BxPc3 tumors showed SUV_{mean} of 1.2 \pm 0.3 and remained similar in size after ²²⁷Th-MSLN treatment.

20 Conclusion: ⁸⁹Zr-MSLN PET imaging reflected mesothelin expression and matched with

- 1 ²²⁷Th-MSLN tumor uptake and biodistribution. Our data support the clinical exploration of ⁸⁹Zr-
- 2 MSLN PET imaging together with ²²⁷Th-MSLN therapy, both using the same antibody-chelator
- 3 conjugate.

1 INTRODUCTION

Despite anticancer therapy advancements, several unmet medical needs remain. For
instance, patients with mesothelioma and high-grade serous ovarian cancer would benefit from
novel treatment options (1,2).

5 Recently, targeted alpha therapy has emerged as a potential cancer treatment option. Alpha-6 particle emitting radionuclides targeted to the tumor enable potent antitumor activity while limiting toxicity to healthy tissues due to their high linear energy transfer and short range in tissue (3,4). 7 Currently, radium-223 (²²³Ra) dichloride for metastatic castration-resistant prostate cancer is the 8 only approved targeted alpha therapy (5,6). Unlike ²²³Ra, its progenitor thorium-227 (²²⁷Th) forms 9 a stable complex with a 3,2-HOPO chelator conjugated to tumor-associated antigen targeting 10 antibodies (7-9). Targeted ²²⁷Th conjugates showed efficacy in mice, including those targeting 11 12 mesothelin, prostate-specific membrane antigen, CD33, and CD70 (10-14). Tumor-associated antigen binding of targeted ²²⁷Th conjugates enables local tumor cell killing via double-strand DNA 13 breaks caused by 227 Th decay (9). 14

Mesothelin is a glycosyl-phosphatidylinositol cell membrane-anchored protein involved in cell-cell adhesion and metastatic spread (15-17). Mesothelin expression by healthy tissues is limited to the peritoneum, pleura, and pericardium. However, it is overexpressed by several human cancers, such as mesothelioma and ovarian cancer (18). Therefore, mesothelin is attractive of targeted cancer therapy, such as antibody-drug conjugates, chimeric antigen receptor T-cells, and targeted radionuclide therapy, currently tested in (pre-)clinical studies (19-22).

Targeted ²²⁷Th conjugate, ²²⁷Th-MSLN, comprises chelator N-Methyl-3-hydroxypyridine-22 2-one (3,2-HOPO), covalently attached to fully human anti-mesothelin monoclonal antibody 23 anetumab, stably complexed with alpha particle emitter ²²⁷Th (13). The conjugate is only reactive

to human mesothelin. Understanding ²²⁷Th-MSLN tumor uptake and biodistribution may be 1 2 valuable to guide clinical development. Positron emission tomography (PET) can non-invasively visualize biodistribution of monoclonal antibodies, also targeting mesothelin (23-25). We 3 developed a PET-tracer complexing the 3.2-HOPO-MSLN conjugate with ⁸⁹Zr. By using the same 4 5 antibody-chelator conjugate we aim to avoid chelator driven differences in pharmacokinetic properties. In mice bearing human mesothelin overexpressing tumors, we evaluated if ⁸⁹Zr-MSLN 6 PET was able to specifically visualize mesothelin, if this imaging could predict ²²⁷Th-MSLN tumor 7 uptake and biodistribution, and whether ⁸⁹Zr-MSLN tumor uptake matches with ²²⁷Th-MSLN 8 9 antitumor activity.

10 MATERIALS AND METHODS

11 Radiolabeling and Quality Control of ²²⁷Th-MSLN, ⁸⁹Zr-MSLN, and ⁸⁹Zr-control

Radionuclides ²²⁷Th and ⁸⁹Zr were coupled to fully human IgG1 anti-mesothelin monoclonal 12 13 antibody and an IgG1-isotype control with 3,2-HOPO. This chelator is an octadentate with four 14 bidentate 3,2-HOPO metal-complexation units and a carboxylic arm for monoclonal antibody conjugation, via amide coupling (8). Bayer AG provided conjugates 3,2-HOPO-MSLN and 3,2-15 HOPO-control with chelator-to-antibody ratios of 0.5. ²²⁷Th radiolabeling of 3,2-HOPO-MSLN, 16 resulting in ²²⁷Th-MSLN, and quality control was performed as described previously (13). For PET 17 studies, 3,2-HOPO-MSLN and 3,2-HOPO-control were radiolabeled with ⁸⁹Zr-oxalate (Perkin 18 Elmer) in HEPES 0.5 M, pH 6.7, for 1-2 h at 37 °C. ⁸⁹Zr-MSLN tended to form radioactive dimers. 19 For the 4 µg dose, the radioactive dimer formation was 10% at a 0.1 mg/mL antibody concentration, 20 21 with protein desalting purification in 10 mM histidine and 130 mM glycine at pH 7.4 in water. The 22 20 and 40 µg dose preparation required higher concentrations of 0.2 and 0.4 mg/mL antibody

during radiolabeling, resulting in 30% and 60% radioactive dimers, respectively. The effect of 60% 1 and 10% radioactive dimer content on ⁸⁹Zr-MSLN biodistribution was compared at the 4 µg dose. 2 3 To induce 60% dimers at this dose, an additional radiolabeling was performed at 0.4 mg/mL antibody with purification via Vivaspin centrifugation in 0.9% NaCl. For ⁸⁹Zr-MSLN guality 4 5 control, size exclusion ultra-performance liquid chromatography was used with a TSK-Gel SW 6 column G3000SWXL 5 µm, 7.8 mm (Joint Analytical Systems), elution buffer phosphate-buffered saline (140.0 mM NaCl, 9.0 mM Na₂HPO₄, 1.3 mM NaH₂PO₄) and 0.7 mL/min flow rate 7 8 (absorbance detection: 280 nm; radioactivity detection). Radiochemical purity was assessed by 9 trichloroacetic acid precipitation assay (26). To determine the immunoreactive fraction a 10-fold 10 molar excess recombinant mesothelin extracellular domain (R&D Systems, #3265-MS-050) was added to ⁸⁹Zr-MSLN, assessed by radioactivity chromatogram overlay peak intersection of bound 11 ⁸⁹Zr-MSLN vs. unbound ⁸⁹Zr-MSLN. 12

13 Cell Lines

14 BxPc3 human pancreatic and OVCAR3 human ovarian cancer cells were obtained from 15 American Type Culture Collection and HT29-MSLN mesothelin transfected human colon cancer 16 cells were obtained from Bayer AG, generated at Natural and Medical Sciences Institute (respectively 4,200; 37,877 and 242,413 mesothelin molecules per cell) (13). All cell lines were 17 18 mycoplasma negative. The genetic origin of the cell lines was authenticated by BaseClear using 19 short tandem repeat profiling. BxPc3 and OVCAR-3 cells were cultured in DMEM/Ham's F12 20 and HT29-MSLN cells in RPMI, 600 µg/mL hygromycin B. All cells were cultured in 10% fetal 21 calf serum, 1% penicillin/streptomycin, and incubated at 37 °C, with 5% CO₂ in a humidified 22 incubator.

1 Animal Studies

2 Animal experiments were performed conform animal welfare laws in the Netherlands and Norway. Female nude mice, 4-10 weeks of age and 25-35 g, received 200 µg irrelevant IgG2A 3 (Sigma-Aldrich) within 24 h before ⁸⁹Zr-MSLN, ⁸⁹Zr-control, or ²²⁷Th-MSLN injection to limit 4 5 unspecific uptake in liver and spleen (27). A 20 µg dose was used as standard dose, in line with published data (13). To investigate ⁸⁹Zr-MSLN dose-effect, 4 and 20 µg ⁸⁹Zr-MSLN were 6 7 applied, equalling 0.14 mg/kg and 0.75 mg/kg in (13) with an additional dose of 40 μ g. Only a 20 8 µg nonspecific ⁸⁹Zr-control was used, not expecting a dose-effect. Tumor volumes were 9 measured with caliper and calculated with formula 'long side*short side $^{2/2}$ ', expressed as mm³. 10 Mice with similar tumor sizes were balanced out between groups. Comparison of ex vivo tissue uptake between ⁸⁹Zr-MSLN and ²²⁷Th-MSLN was performed in Female Balb/c nude-11 Foxn1^{nu}(Janvier France). In this experiment inclusion of 25-30 mm³ tumor sizes was accepted 12 given the challenging tumor growth of the OVCAR-3 model. For PET experiments, Female 13 NMRI-Foxn1^{nu} mice (Taconic Europe) were used, enabling direct comparison with published 14 data (13). To reliably quantify PET data, the inclusion criterion for the imaging studies was a 15 tumor size of >150 mm³. Therefore, the OVCAR-3 tumor model was excluded for PET imaging. 16 To investigate ⁸⁹Zr-MSLN tumor and healthy tissue uptake, dose-effect and radioactive 17 dimers, NMRI-Foxn1^{nu} mice were inoculated with 1.0 x 10⁶ HT29-MSLN cells 14 days or 2.5 x 18 10⁶ BxPc3 cells 21 days before start of PET studies. HT29-MSLN tumor-bearing mice received 20 19 μg^{89} Zr-MSLN or ⁸⁹Zr-control (3-4 MBq, n = 6). BxPc3 tumor-bearing mice received 4 μg , 20 μg , 20 or 40 μ g ⁸⁹Zr-MSLN, or 20 μ g ⁸⁹Zr-control (1-5 MBq, n = 6). Given radioactive dimer formation, 21 22 we did not exceed 40 µg. Only 20 µg and 40 µg dose groups could undergo PET imaging 24, 72, and 168 h post-injection (pi). Ex vivo biodistribution was performed for all groups at 168 h pi. The 23 effect of radioactive dimers on tissue uptake was tested at 4 μ g ⁸⁹Zr-MSLN with 10% vs 60% 24

radioactive dimers in BxPc3 tumor-bearing mice. Female Balb/c nude-Foxn1^{nu} mice were 1 inoculated with 1.0 x 10⁶ HT29-MSLN cells 5 days or 5.0 x 10⁶ OVCAR-3 cells 28 days before 2 comparison of ex vivo tissue uptake of ⁸⁹Zr-MSLN vs ²²⁷Th-MSLN. Mice received 20 µg ⁸⁹Zr-3 MSLN (0.20 MBq) or 20 µg²²⁷Th-MSLN (0.015 MBq), and sacrificed 0.5, 2, 6, 24, 72 and 168 h 4 pi (n = 4-5). To study if ⁸⁹Zr-MSLN PET tumor uptake coincided with ²²⁷Th-MSLN antitumor 5 activity, BxPc3 and HT29-MSLN tumor-bearing NMRI-Foxn1^{nu} mice underwent ⁸⁹Zr-MSLN PET 6 imaging 168 h pi (4 MBq, 20 µg) and received 0.75 mg/kg, 500 kBq/kg²²⁷Th-MSLN 5 days after 7 imaging (n = 7-8), no treatment: n = 2). In this time frame no changes in mesothelin tumor 8 9 expression were to be expected. Tumor sizes were measured untill 21 days after treatment.

Mice were imaged with a Focus 220 PET scanner (CTI Siemens). PET data was reconstructed, corrected for decay, random coincidences, scatter, and attenuation. Tumor and heart uptake were quantified with PMOD software version 4.004, as mean standardized uptake value (SUV_{mean}). *Ex vivo* blood and tissues were weighed and radioactivity measured in a Wizard gamma counter (PerkinElmer, UMCG) or germanium detector (Ortex, Bayer AS). *Ex vivo* uptake was expressed as percentage injected dose per gram (%ID/g).

16 Ex vivo Analysis of Plasma and Tumor

Tracer integrity of ⁸⁹Zr-MSLN in plasma of mice sacrificed at 168 h pi was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mini-Protean® TGXTM precast protein gels 4-15% (BioRad) were loaded with 80 μ g plasma protein. A control sample including intact tracer and free ⁸⁹Zr was generated by storing ⁸⁹Zr-MSLN at room temperature (RT) for a week. Gels ran for 30-45 min at 100 V. Formalin-fixed tumor tissues were paraffin-embedded and sliced into 4 μ m sections. Gels and tumor sections were exposed overnight to a multipurpose phosphor plate (Perkin Elmer) at -20 °C and captured with Cyclone® phosphor imager (Perkin Elmer).

1	Mesothelin immunohistochemistry was executed on the autoradiography tumor sections, as
2	described earlier (28). Ventana Discovery autostainer was used with DAB detection chemistry with
3	anti-rabbit-HQ and anti-MSLN antibody (clone SP74, Spring Biosciences) at 0.25 μ g/mL. Sections
4	were fixed at 4°C for 5 min, air-dried, and washed with double-distilled H ₂ O before incubation
5	with DAKO blocking solution (10 min, RT). After washing, primary antibody was detected with
6	HRP-labeled-anti-mouse polymer (Dako) and DAB solution. Hematoxylin-eosin staining was
7	performed on adjacent tumor sections. Digital scans were acquired by a Hamamatsu NanoZoomer
8	2.0-HT multi-slide scanner and analyzed with NanoZoomer Digital Pathology viewer software.
9	Statistical Analysis
10	Similarity between two groups was analyzed using a Mann-Whitney U test. In case of multiple
11	groups or time-points, a Bonferroni multiple comparison correction was applied. All data are
12	presented \pm standard deviation. All statistical tests were performed in GraphPad Prism 8, and P-

13 values < 0.05 were considered significant.

14 **RESULTS**

15 Quality control ⁸⁹Zr-MSLN

⁸⁹Zr-MSLN was produced with a radiolabeling efficiency of $64\% \pm 10\%$, a radiochemical purity of $98\% \pm 1\%$, and with $4\% \pm 1\%$ antibody dimers and $15\% \pm 2\%$ radiolabeled dimers (n = 6) (Suppl. Fig. 1A). The immunoreactive fraction was 0.8 (Suppl. Fig. 1B). We observed by radioactive detection that ⁸⁹Zr-MSLN tended to dimerize, not observed at 280 nm. Favorable and unfavorable conditions are shown in Suppl. Table 1. Radiolabeling conditions and quality control results of the experiments are shown in Suppl. Fig. 1C,D and Suppl. Table 2.

1 Tumor Uptake and Biodistribution of ⁸⁹Zr-MSLN

PET evaluation of ⁸⁹Zr-MSLN in HT29-MSLN tumor-bearing mice showed 1.8-fold higher ⁸⁹Zr-2 MSLN tumor uptake and tumor-to-blood ratio than 89 Zr-control (SUV_{mean} of 2.2 ± 0.5 vs. 1.2 ± 3 0.2, 168 h pi; P = 0.0043; Fig. 1A,B). Ex vivo biodistribution confirmed PET data, showing 2.5-4 fold higher tumor uptake of ⁸⁹Zr-MSLN than ⁸⁹Zr-control at 168 h ($10.6\% \pm 2.4\%$ vs $4.2\% \pm 0.7\%$ 5 ID/g; P = 0.0043), while uptake in all other tissues was similar (Fig. 2). No low molecular weight 6 species of ⁸⁹Zr-MSLN or free ⁸⁹Zr were present in blood 168 h pi (Suppl. Fig. 1E). Autoradiography 7 showed mesothelin specific ⁸⁹Zr-MSLN tumor uptake compared with ⁸⁹Zr-control (Fig. 3, Suppl. 8 Fig. 2A,B). 9

10 Dose-Effect of ⁸⁹Zr-MSLN on Tumor Uptake and Biodistribution

In vivo, ⁸⁹Zr-MSLN BxPc3 tumor uptake and tumor-to-blood ratios were lower than in HT29-11 MSLN tumors. ⁸⁹Zr-MSLN BxPc3 tumor uptake and tumor-to-blood ratios were similar between 12 20 μ g and 40 μ g (SUV_{mean} 1.6 \pm 0.2 vs. 1.9 \pm 0.3) and higher than 20 μ g ⁸⁹Zr-control (SUV_{mean} 1.1 13 \pm 0.2, Fig. 4 A,B). *Ex vivo*, ⁸⁹Zr-MSLN tumor and liver uptake were higher at 40 vs 4 µg 168 h pi. 14 In addition, 60% vs 10% radioactive dimers at 4 μg^{89} Zr-MSLN showed higher tumor (10.0% ± 15 2.2% vs $6.1\% \pm 1.7\%$ ID/g) and liver uptake ($8.8\% \pm 1.4\%$ vs $4.9\% \pm 1.2\%$ ID/g). Excretion rate 16 17 was not affected by radioactive dimers. Bone uptake was mainly in cortical bone and not in bone 18 marrow (Suppl. Fig. 3A-D).

19 ⁸⁹Zr-MSLN vs ²²⁷Th-MSLN Tumor Uptake and Biodistribution

20 *Ex vivo* OVCAR3 and HT29-MSLN tumor uptake of ⁸⁹Zr-MSLN and ²²⁷Th-MSLN was 21 comparable except at 168 h pi, revealing lower ⁸⁹Zr-MSLN HT29-MSLN tumor uptake (33.1% \pm 22 9.0% vs. 89.8% \pm 26.3%ID/g, *P* = 0.016, Fig. 5A). Tumor-to-blood ratios were similar for ⁸⁹ZrMSLN and ²²⁷Th-MSLN in both models (Fig. 5B). ⁸⁹Zr-MSLN liver uptake was higher than ²²⁷ThMSLN up to 24 h in HT29-MSLN tumor-bearing mice, but not at 72 and 168 h, the clinically
relevant timepoints. ⁸⁹Zr-MSLN uptake in femur was higher than ²²⁷Th-MSLN from 24 to 168 h in
both models, e.g., 12.3% ± 1.3% ID/g vs 4.9% ± 0.6% ID/g, 168 h pi in the HT29-MSLN tumorbearing mice, resulting in lower blood and kidney levels at 72 h and 168 h (Suppl. Fig. 4A-B).

6 ⁸⁹Zr-MSLN PET before ²²⁷Th-MSLN Treatment

⁸⁹Zr-MSLN PET imaging before ²²⁷Th-MSLN treatment revealed 1.8-fold higher tumor SUV_{mean} 7 in HT29-MSLN than in BxPc3 tumors $(2.2 \pm 0.2 \text{ vs } 1.2 \pm 0.3; P = 0.0003, \text{Fig. 6A,B})$. Due to 8 ²²⁷Th's 18.7 days half-life, treatment effect is not observed in the first 9 days. From day 9 until day 9 21 after ²²⁷Th-MSLN administration, HT29-MSLN tumors decreased 0.7 \pm 0.1-fold in volume 10 (from $432.4 \pm 131.2 \text{ mm}^3$ to $317.4 \pm 130.1 \text{ mm}^3$). Tumors of untreated mice grew individually 1.3-11 fold and 1.7-fold. In the same time frame, BxPc3 tumors did not grow after ²²⁷Th-MSLN 12 administration $(1.0 \pm 0.3 \text{-}\text{fold}, 310.2 \pm 166.5 \text{ mm}^3 \text{ at day } 9 \text{ and } 288.3 \pm 112.3 \text{ mm}^3 \text{ at day } 21)$ while 13 tumors of untreated animals individually grew each 1.4-fold (Fig. 7A,B). Absolute tumor growth 14 is shown in Suppl. Fig. 5. BxPc3 tumors of untreated- vs ²²⁷Th-MSLN-treated animals were slightly 15 larger at day 0. Therefore, tumor sizes were normalized to the size at day 0 (29). ²²⁷Th-MSLN 16 17 treatment increased DNA double-strand breaks compared to tumors of untreated mice, confirming the molecular mode of action of ²²⁷Th-MSLN (Suppl. Fig. 6 A,B). 18

19 DISCUSSION

This study shows that ⁸⁹Zr-MSLN PET imaging reflects ²²⁷Th-MSLN tumor uptake and biodistribution in mice bearing human mesothelin overexpressing tumors. We show the dual-use of an antibody-chelator conjugate, 3,2-HOPO-MSLN, radiolabeled with ⁸⁹Zr for PET imaging, and with ²²⁷Th for targeted alpha therapy as a theranostic. Even though some studies show direct

molecular imaging of ²²⁷Th, this remains a challenge due to the low abundance of measurable 1 photons in ²²⁷Th's decay chain (30). Studies in patients and mice showed ⁸⁹Zr PET's theranostic 2 potential for beta particle emitting therapeutic radionuclides, such as lutetium-177 and yttrium-90 3 (31,32). Therefore, we hypothesized that ⁸⁹Zr might serve as a PET surrogate radioisotope for alpha 4 particle emitter ²²⁷Th as well. Estimating ²²⁷Th-MSLN whole-body distribution with ⁸⁹Zr-MSLN 5 6 PET before treatment may be of value to guide clinical development. In addition, this study encourages ⁸⁹Zr-MSLN PET exploration to select patients, and predict ²²⁷Th-MSLN efficacy. 7 Moreover, PET imaging with ⁸⁹Zr may be amenable to other targeted alpha therapies. 8

⁸⁹Zr-MSLN tumor uptake might correlate with response to ²²⁷Th-MSLN. However, we did not use the isogenic cell systems required to exclude differences in sensitivity to ²²⁷Th-MSLN. We did not perform tumor biopsies to assess whether changes in mesothelin expression occurred in the 5-day time frame between PET scan and start of treatment. A change is unlikely as tumor growth was relatively consistent. We observed a trend in antitumor activity of ²²⁷Th-MSLN comparable with the earlier *in vivo* study (13). A firm conclusion on predicting ²²⁷Th-MSLN antitumor activity is precluded given the low number of animals in the control groups.

Variability in ⁸⁹Zr-MSLN and ²²⁷Th-MSLN tumor uptake may have been a result of small 16 tumors in the ex vivo biodistribution comparison. Higher ⁸⁹Zr-MSLN bone uptake might be 17 explained by dissociated ⁸⁹Zr from 3.2-HOPO, tending to accumulate in growing bone cone in 18 young mice, not seen in humans (33,34). *Ex vivo* blood samples at 168 h showed intact ⁸⁹Zr-MSLN, 19 indicating that the tracer available in the circulation for tissue uptake is intact. This suggests that 20 free ⁸⁹Zr clears from the blood immediately into cortical bone. Although desferrioxamine-based 21 chelators are commonly used to complex ⁸⁹Zr with, HOPO-based chelators are a proven alternative 22 (35,36). To avoid chelator-driven discrepancies in pharmacokinetics between ⁸⁹Zr-MSLN and 23 24 ²²⁷Th-MSLN (37,38) we developed the PET-tracer using the same 3,2-HOPO-MSLN conjugate with the additional advantage of having the intermediate product clinical-grade right at hand. We
showed in mice that ⁸⁹Zr-MSLN uptake can predict tumor targeting of ²²⁷Th-MSLN. In patients,
⁸⁹Zr-MSLN PET imaging might detect mesothelin-positive lesions in mesothelioma, ovarian and
pancreatic cancer and clarify if the antibody can reach these lesions. Yet, calculating an exact ²²⁷Th
radiation dose per organ is limited by the observed ⁸⁹Zr-MSLN bone uptake. For potential
dosimetry purposes, we should aim to improve *in vivo* stability of HOPO-based ⁸⁹Zr chelators.

Higher liver uptake of high radioactive dimer content ⁸⁹Zr-MSLN indicates faster clearance 7 of dimers and aggregates than monomers (39). Higher tumor uptake could be explained by 8 9 increased retention at the target-binding site due to an avidity effect (40) combined with enhanced 10 permeability and retention effect (41). Higher tumor uptake at 40 vs 4 µg total antibody dose may, therefore, most likely be a dimer- instead of a dose-effect. Dimerization appears specific for ⁸⁹Zr-11 3,2-HOPO, since the control antibody revealed similar radioactive dimer content, not observed in 12 combination with ²²⁷Th to the same extent (13). In a clinical setting, the specification should be set 13 14 at < 15%. This is feasible with the optimized radiolabeling procedure that we describe.

15 CONCLUSION

In conclusion, our study reveals the potential of ⁸⁹Zr-MSLN PET to predict ²²⁷Th-MSLN
 tumor uptake and biodistribution. Furthermore, it addresses the potential of ⁸⁹Zr-MSLN PET as a
 tool to estimate ²²⁷Th-MSLN antitumor activity. Our data support clinical investigation of ⁸⁹Zr MSLN PET imaging in combination with ²²⁷Th-MSLN therapy.

20 ACKNOWLEDGMENTS

We would like to thank Manuela Brand for the immunohistochemistry and immunofluorescent
staining (Bayer AG) and Linda Pot-de Jong for assisting with the animal experiments (Department
of Medical Oncology, University Medical Center Groningen).

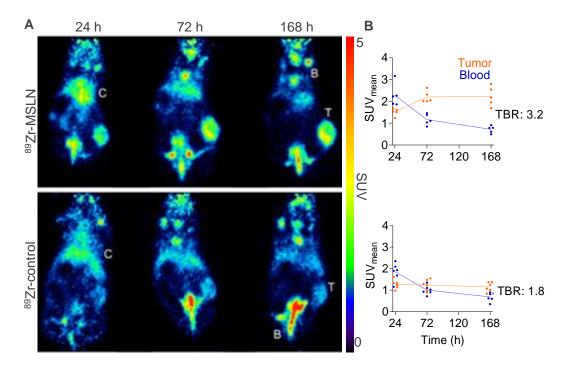
1 KEY POINTS

- 2 Question: Could ⁸⁹Zr-MSLN PET imaging predict ²²⁷Th-MSLN behavior?
- 3 **Pertinent findings:** ⁸⁹Zr-MSLN PET imaging shows similar tumor uptake and biodistribution as
- 4 ²²⁷Th-MSLN in mesothelin expressing tumor-bearing nude mice.
- 5 Clinical implications: These data support theranostic potential of ⁸⁹Zr-MSLN PET imaging to
- 6 guide ²²⁷Th-MSLN therapy in patients.

1 REFERENCES

2	1. Christoph DC	, Eberhardt WE. Systemic	treatment of malign	ant pleural mesothelioma: ne	эw
3	agents in clini	cal trials raise hope of rele	vant improvements. C	Curr Opin Oncol. 2014;26:17	1-
4	181.				

- 5 2. Herzog TJ, Monk BJ. Bringing new medicines to women with epithelial ovarian cancer: what
 6 is the unmet medical need? *Gynecol Oncol Res Pract*. 2017;4:13.
- 7 3. Parker C, Lewington V, Shore N, et al. Targeted alpha therapy, an emerging class of cancer
 8 agents: A review. *JAMA Oncol.* 2018;4:1765–1772.
- Guerra Liberal FDC, O'Sullivan JM, McMahon SJ, Prise KM. Targeted alpha therapy: Current
 clinical applications. *Cancer Biother Radiopharma*. 2020;35:404-417.
- 5. Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic
 prostate cancer. *N Engl J Med.* 2013;369:213–223.
- Kratochwil C, Haberkorn U, and Giesel FL. Radionuclide therapy of metastatic prostate cancer.
 Sem Nucl Med. 2019; 49:313-325.
- 15 7. Ramdahl T, Bonge-Hansen HT, Ryan OB, et al. An efficient chelator for complexation of
 16 thorium-227. *Bioorg Med Chem Lett.* 2016;26:4318–4321.
- Deblonde G, Lohrey T, Booth C, et al. Solution thermodynamics and kinetics of metal
 complexation with a hydroxypyridinone chelator designed for thorium-227 targeted alpha
 therapy. Inorg Chem. 2018;57:14337–14346.
- 20 9. Hagemann UB, Wickstroem K, Hammer S, et al. Advances in precision oncology: Targeted
- thorium-227 conjugates as a new modality in targeted alpha therapy. *Cancer Biother Radiopharm.* 2020;00:1-14.

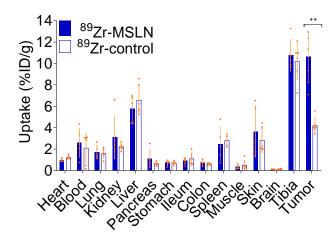

1	10. Dahle J, Borrebaek J, Jonasdottir TJ, et al. Targeted cancer therapy with a novel low-dose rate
2	alpha-emitting radioimmunoconjugate. Blood. 2007;110:2049-2056.
3	11. Hagemann UB, Wickstroem K, Wang E, et al. In vitro and in vivo efficacy of a novel CD33-
4	targeted thorium-227 conjugate for the treatment of acute myeloid leukemia. Mol Cancer Ther.
5	2016;15:2422–2431.
6	12. Hagemann UB, Mihaylova D, Uran SR, et al. Targeted alpha therapy using a novel CD70
7	targeted thorium-227 conjugate in in vitro and in vivo models of renal cell carcinoma.
8	Oncotarget. 2017;8:56311–56326.
9	13. Hagemann UB, Ellingsen C, Schuhmacher J, et al. Mesothelin-targeted thorium-227 conjugate
10	(MSLN-TTC): preclinical evaluation of a new targeted alpha therapy for mesothelin-positive
11	cancers. Clin Cancer Res. 2019;25:4723-4734.
12	14. Hammer S, Hagemann UB, Kolbe-Zitzmann S, et al. Preclinical efficacy of a PSMA-targeted
13	thorium-227 conjugate (PSMA-TTC), a targeted alpha therapy for prostate cancer. Clin Cancer
14	Res. 2020;28:198596.
15	15. Bera TK, Pastan I. Mesothelin is not required for normal mouse development or reproduction.
16	Mol Cell Biol. 2000;20:2902–2906.
17	16. Chen SH, Hung WC, Wang P, Paul C, Konstantopoulos K. Mesothelin binding to
18	CA125/MUC16 promotes pancreatic cancer cell motility and invasion via MMP-7 activation.
19	Sci Rep. 2013;3:1870.
20	17. Rump A, Morikawa Y, Tanaka M, et al. Binding of ovarian cancer antigen CA125/MUC16 to
21	mesothelin mediates cell adhesion. J Biol Chem. 2004;279:9190-9198.
22	18. Hassan R, Thomas A, Alewine C, Le TL, Jaffee EM, Pastan I. Mesothelin immunotherapy for
23	cancer: ready for prime time? J Clin Oncol. 2016 Dec;34:4171-4179.

1	19. Morello A, Sadelain M, Adusumilli PS. Mesothelin-targeted CARs: driving T cells to solid
2	tumors. <i>Cancer Discov</i> . 2016;6:133–146.

- 20. Zhao XY, Subramanyam B, Sarapa N, Golfier S, Dinter H. Novel antibody therapeutics
 targeting mesothelin in solid tumors. *Clin Cancer Drugs*. 2016; 3:76–86.
- 21. Quanz M, Hagemann U, Zitzmann-Kolbe S, et al. Anetumab ravtansine inhibits tumor growth
 and shows additive effect in combination with targeted agents and chemotherapy in mesothelinexpressing human ovarian cancer models. *Oncotarget*. 2018;9: 34103–34121.
- 8 22. Hassan R, Blumenschein GR Jr, Moore KN, Santin AD, Kindler HL. First-in-human,
 9 multicenter, phase I dose-escalation and expansion study of anti-mesothelin antibody-drug
 10 conjugate anetumab ravtansine in advanced or metastatic solid tumors. *J Clin Oncol.*11 2020;38:1824-1835.
- 12 23. Gebhart G, Lamberts LE, Wimana Z, et al. Molecular imaging as a tool to investigate
 13 heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under
 14 trastuzumab emtansine (T-DM1): The ZEPHIR trial. *Ann Oncol.* 2016;27:619–624.
- 15 24. Lamberts LE, Menke-van der Houven van Oordt CW, ter Weele EJ, et al. ImmunoPET with
 anti-mesothelin antibody in patients with pancreatic and ovarian cancer before anti-mesothelin
 antibody-drug conjugate treatment. *Clin Cancer Res.* 2016;22:1642-1652
- 25. Bensch F, van der Veen EL, Lub-de Hooge MN, et al. ⁸⁹Zr-atezolizumab imaging as a noninvasive approach to assess clinical response to PD-L1 blockade in cancer. *Nat Med.*2018;24:1852–1858.
- 26. Nagengast WB, de Vries EG, Hospers GA, et al. In vivo VEGF imaging with radiolabeled
 bevacizumab in a human ovarian tumor xenograft. *J Nucl Med.* 2007;48:1313-1319.

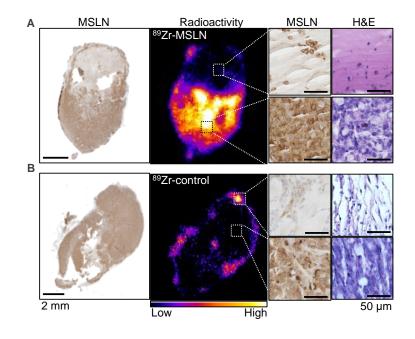
1	27. Reddy N, Ong GL, Behr TM, Sharkey RM, Goldenberg DM, Mattes MJ. Rapid blood clearance
2	of mouse IgG2a and human IgG1 in many nude and nu/p mouse strains is due to low IgG2a
3	serum concentrations. Cancer Immunol Immunother. 1998;46:25-33.
4	28. Golfier S, Kopitz C, Kahnert A, et al. Anetumab ravtansine: A novel mesothelin-targeting
5	antibody-drug conjugate cures tumors with heterogeneous target expression favored by
6	bystander Effect. Mol Cancer Ther. 2014;13:1537-1548.
7	29. Hather G, Liu R, Bandi S, et al. Growth rate analysis and efficient experimental design for
8	tumor xenograft studies Cancer Informatics 2014;13: 65-72.
9	30. Murray I, Rojas B, Gear J, Callister R, Cleton A, Flux GD. Quantitative dual-isotope planar
10	imaging of thorium-227 and radium-223 using defined energy windows. Cancer Biother
11	Radiopharm. 2020; 35: 530–539.
12	31. Perk LR, Visser GWM, Vosjan MJWD, et al. ⁸⁹ Zr as a PET surrogate radioisotope for scouting
13	biodistribution of the therapeutic radiometals ⁹⁰ Y and ¹⁷⁷ Lu in tumor-bearing nude mice after
14	coupling to the internalizing antibody cetuximab. J Nucl Med. 2005;46:1898–1906.
15	32. Rizvi SNF, Visser OJ, Vosjan MJWD, et al. Biodistribution, radiation dosimetry and scouting
16	of ⁹⁰ Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin's lymphoma
17	using ⁸⁹ Zr-ibritumomab tiuxetan and PET. Eur J Nucl Med Mol Imaging. 2012;39:512–520.
18	33. Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET imaging with ⁸⁹ Zr: from radiochemistry
19	to the clinic. Nucl Med Biol. 2013;40:3-14.
20	34. Bensch F, Smeenk MM, van Es SC, et al. Comparative biodistribution analysis across four
21	different ⁸⁹ Zr-monoclonal antibody tracers-The first step towards an imaging warehouse.
22	Theranostics. 2018;8:4295-304.
23	35. Tinianow JN, Pandya DN, Pailloux SL, et al. Evaluation of a 3-hydroxypyridin-2-one (2,3-
24	HOPO) based macrocyclic chelator for ⁸⁹ Zr ⁴⁺ and its use for immunoPET imaging of HER2
	19

1	positive model of ovarian carcinoma in mice. <i>Theranostics</i> . 2016;6:511–521.
2	36. Deri MA, Ponnala S, Kozlowski P, et al. HOPO p-SCN-Bn-HOPO: A superior bifunctional
3	chelator for ⁸⁹ Zr immunoPET. <i>Bioconjug Chem.</i> 2015;26:2579–2591.
4	37. Bhatt NB, Pandya DN, Wadas TJ. Recent advances in zirconium-89 chelator development.
5	Molecules. 2018;23: 638.
6	38. Heskamp S, Raavé R, Boerman O, Rijpkema M, Goncalves V, and Denat F. ⁸⁹ Zr-immuno-
7	positron emission tomography in oncology: state-of-the-art ⁸⁹ Zr radiochemistry. <i>Bioconjugate</i>
8	<i>Chem.</i> 2017;28:2211–2223.
9	39. Hotzel I, Theil FP, Bernstein LJ, et al. A strategy for risk mitigation of antibodies with fast
10	clearance. MAbs. 2012;4:753-760.
11	40. Kortt AA, Dolezal O, Power BE, Hudson PJ. Dimeric and trimeric antibodies: high avidity
12	scFvs for cancer targeting. Biomol Eng. 2001;18:95-108.
13	41. Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade R. Employment of enhanced
14	permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of
15	therapeutic and diagnostic agent in cancer. Mater Sci Eng C. 2019;98:1252–1276.



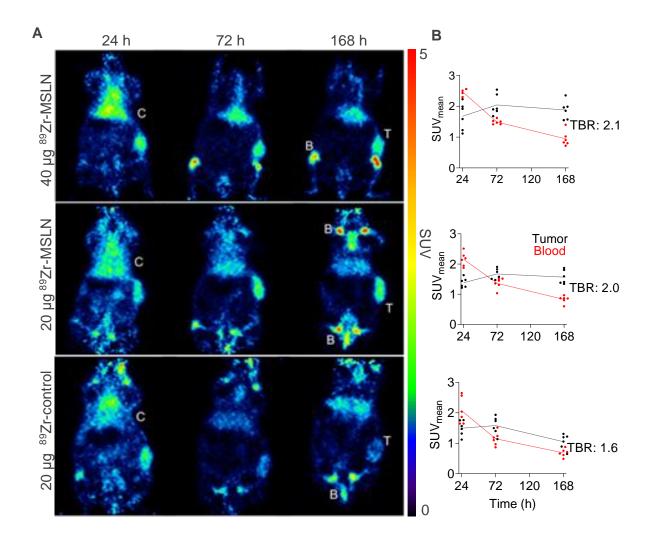
2

FIGURE 1. *In vivo* tumor uptake and biodistribution of ⁸⁹Zr-MSLN


3 HT29-MSLN tumor-bearing mice (n = 6 per group) **A** representative coronal PET images at 24 h, 4 72 h, and 168 h after 20 µg ⁸⁹Zr-MSLN and 20 µg ⁸⁹Zr-control (3-4 MBq). Uptake is presented as 5 standardized uptake value (SUV). **B** PET quantification of ⁸⁹Zr-MSLN and ⁸⁹Zr-control uptake in 6 tumor and blood at 24 h, 72 h and 168 h pi. ⁸⁹Zr-MSLN and ⁸⁹Zr-control uptake are shown as mean 7 standardized uptake value (SUV_{mean}) ± standard deviation (SD). Tumor-to-blood ratio is indicated 8 at 168 h. C: circulation, B: bone, T: tumor.

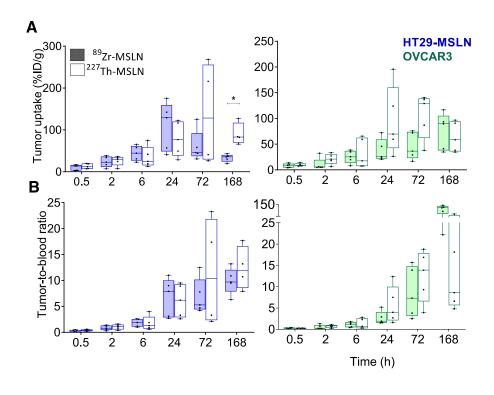
1

2 FIGURE 2. *Ex vivo* Tumor uptake and biodistribution of ⁸⁹Zr-MSLN

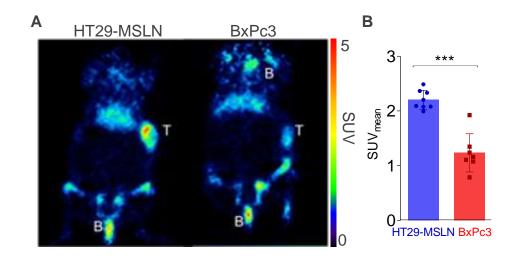

HT29-MSLN tumor-bearing mice (n = 6 per group) *Ex vivo* tumor and healthy tissue uptake of 20 µg ⁸⁹Zr-MSLN and 20 µg ⁸⁹Zr-control at 168 h pi. Data is presented as percentage injected dose
per gram tissue (%ID/g), as mean ±SD, The ⁸⁹Zr-MSLN and ⁸⁹Zr-control batches each contained
30 % radioactive dimers. **: P < 0.01, *: P < 0.05, ns: not significant. C: circulation, B: bone, T:
tumor, L: liver.

2 FIGURE 3. Intratumoral ⁸⁹Zr-MSLN distribution

1

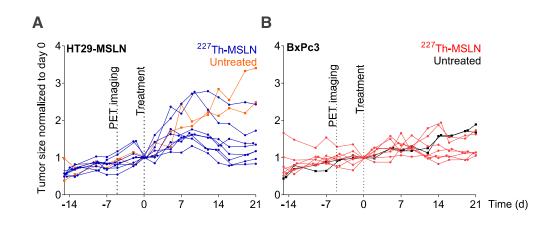

Mesothelin immunohistochemistry, autoradiography, and hematoxylin/eosin of HT29-MSLN and formalin-fixed, paraffin-embedded tumor sections, that received A ⁸⁹Zr-MSLN or B ⁸⁹Zr-control. Mesothelin immunohistochemistry and autoradiography are performed on the same and hematoxylin/eosin on an adjacent tumor section. Radioactivity in A and B is simultaneously scaled, shown from high to low ⁸⁹Zr signal intensity. Representative data shown (n = 3-5, rest is shown in Suppl. Fig. 2).

1

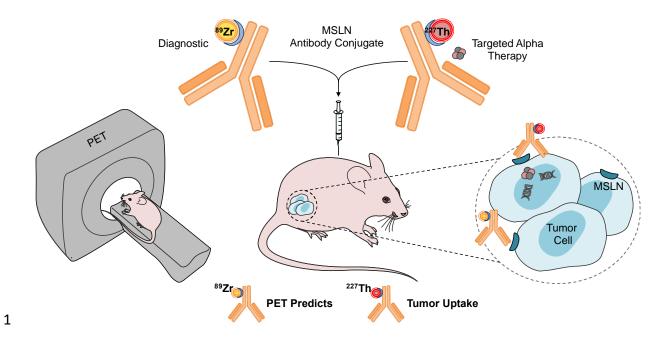

BxPc3 tumor-bearing mice (n = 5-6 per group) **A** representative coronal PET images of 40 µg and 20 µg ⁸⁹Zr-MSLN and 20 µg ⁸⁹Zr-control at 24 h, 72 h, and 168 h pi. Uptake is presented as standardized uptake value (SUV) and **B** quantification of tumor and blood at 24 h, 72 h and 168 h pi, shown as mean standardized uptake value (SUV_{mean}) ± standard deviation (SD). Tumor-to-blood ratio is indicated at 168 h. Tumor-to-blood ratio is indicated at 168 h, pi: post injection, C: circulation, B: bone, T: tumor.

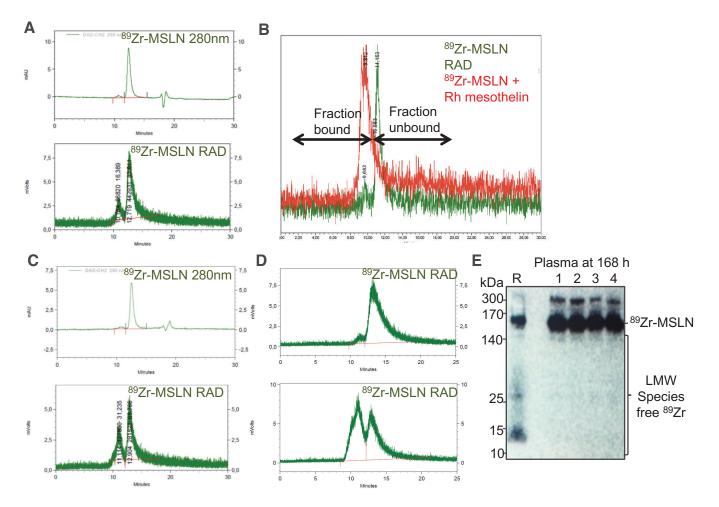
2 FIGURE 5. Tumor uptake of ⁸⁹Zr-MSLN compared with ²²⁷Th-MSLN

1


A HT29-MSLN tumor uptake and B OVCAR3 Tumor uptake and C + D respective tumor-toblood ratios, of 20 μg ⁸⁹Zr-MSLN (0.20 MBq) vs 20 μg ²²⁷Th-MSLN (0.015 MBq) total antibody
dose at 0.5, 2, 6, 24, 72, and 168 h. Data is presented as median percentage injected dose per gram
tissue (%ID/g) and interquartile range including single data points. *: *P* < 0.05 with Bonferroni
correction.

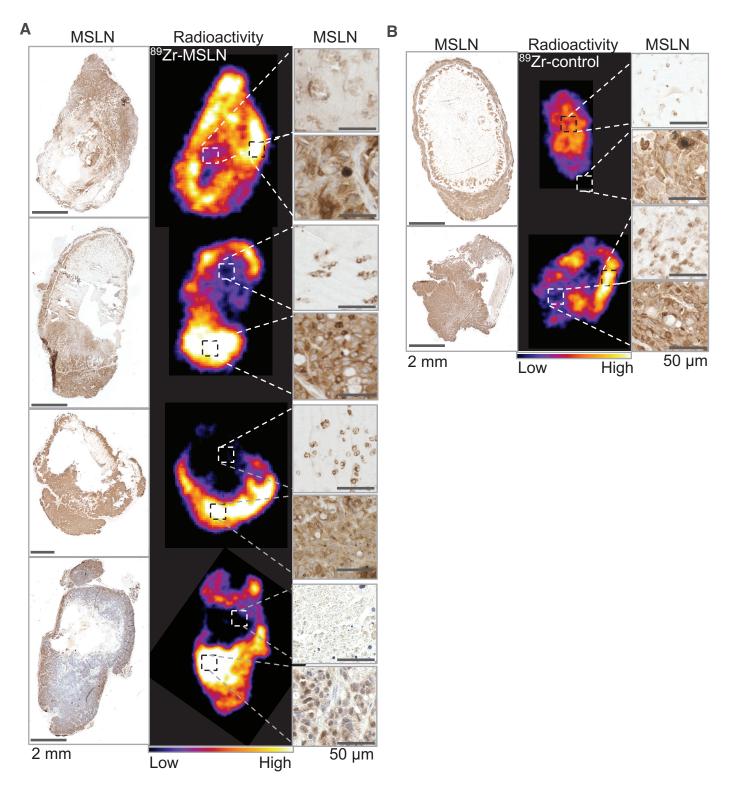
2 FIGURE 6. ⁸⁹Zr-MSLN PET before ²²⁷Th-MSLN treatment


A Representative coronal PET images of HT29-MSLN and BxPc3 tumor-bearing mice 168 h after
20 μg ⁸⁹Zr-MSLN, tumor uptake presented as standardized uptake value (SUV). B Quantification
of ⁸⁹Zr-MSLN in HT29-MSLN and BxPc3 tumors at 168 h pi (n = 7-8 per group). ⁸⁹Zr-MSLN
uptake is shown as mean standardized uptake value (SUV_{mean}) ± standard deviation (SD), including
single data points. ***: P < 0.001. B: bone, T: tumor, L: liver.

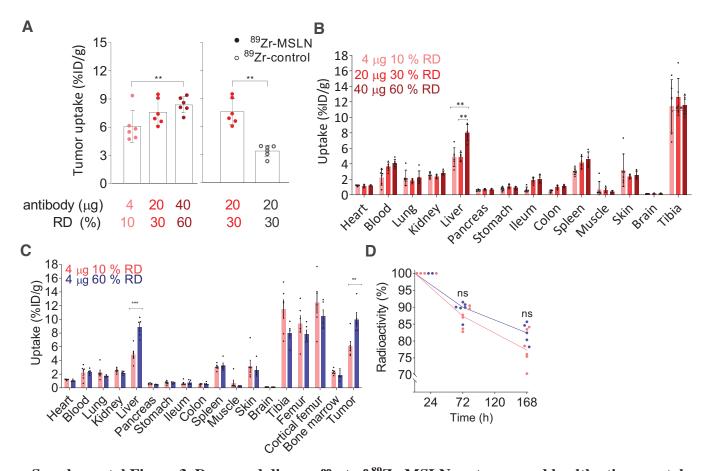

2 FIGURE 7. Tumor growth after ²²⁷Th-MSLN treatment

- 3 A Tumor growth after ²²⁷Th-MSLN treatment, 0.75 mg/kg, 500 kBq/kg of HT29-MSLN tumor-
- 4 bearing mice (n = 8) B and BxPc3 tumor-bearing mice (n = 7) and per model n = 2 untreated mice,
- 5 normalized to day 0. For absolute tumor sizes, see Suppl. Fig. 5.

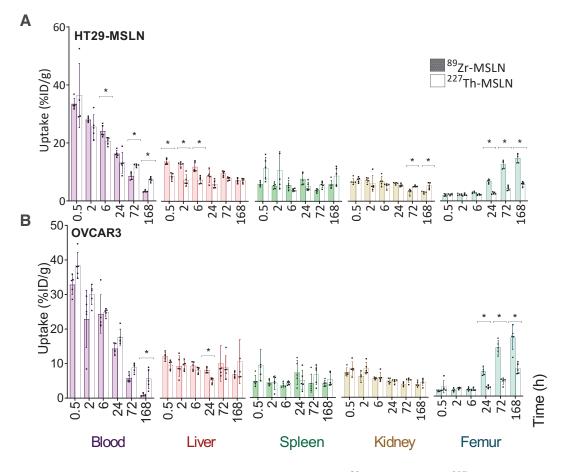
6



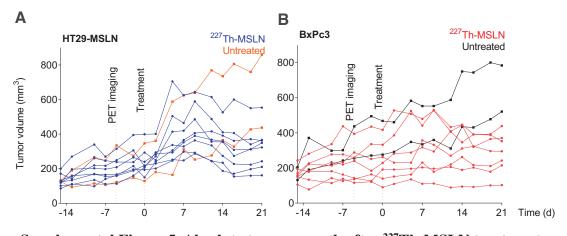
- 2 GRAPGICAL ABSTRACT MSLN: mesothelin, ⁸⁹Zr: zirconium-89, ²²⁷Th: thorium-227, PET:
- 3 positron emission tomography


Supplemental Figure 1. 89Zr-MSLN quality control

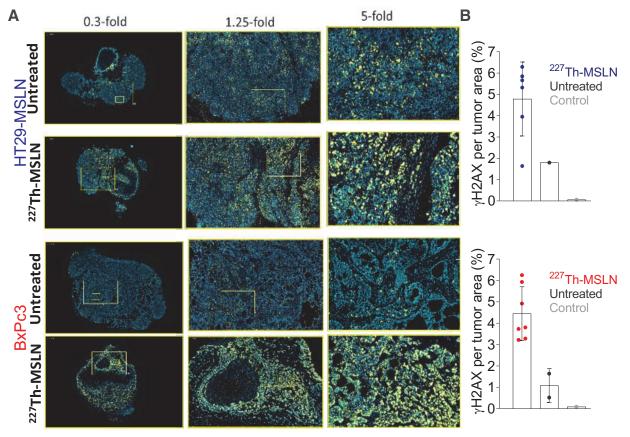
Ultra-performance liquid chromatography data of **A** optimized ⁸⁹Zr-MSLN, $4\% \pm 1\%$ antibody dimers and $15\% \pm 2\%$ radiolabeled dimers (n = 6) **B** immunoreactive fraction: 0.8 **C** 20 μ g ⁸⁹Zr-MSLN preparation with 30% radioactive dimers **D** ⁸⁹Zr-MSLN with 10% vs 60% radioactive dimers (at 280 nm \leq 5 % data not shown). On y-axis arbitrary units at 280 nm and millivolts at radioactivity detection. **E** *Ex vivo* tracer integrity of ⁸⁹Zr-MSLN in plasma 168 h pi (n = 4), determined by SDS PAGE, detected by autoradiography, R is ⁸⁹Zr-MSLN 7 days at RT, including free ⁸⁹Zr. LMW: low molecular weight. R: reference RAD: radioactivity detection Rh: recombinant human.


Supplemental Figure 2. Intratumoral ⁸⁹Zr-MSLN distribution

Mesothelin immunohistochemistry and autoradiography of HT29-MSLN formalin-fixed, paraffinembedded tumor sections, that received A ⁸⁹Zr-MSLN or B ⁸⁹Zr-control. Mesothelin immunohistochemistry and autoradiography are performed on the same tumor section. Radioactivity is simultaneously scaled in A and B from high to low ⁸⁹Zr signal intensity. MSLN, Mesothelin.


Supplemental Figure 3. Dose- and dimer-effect of ⁸⁹Zr-MSLN on tumor and healthy tissue uptake

In BxPc3 tumor-bearing mice at 168 h pi **A** *Ex vivo* tumor uptake of 4 µg 10% RD, 20 µg 30% RD, 40 µg 60% RD ⁸⁹Zr-MSLN and 20 µg 30% ⁸⁹Zr-control. **B** *Ex vivo* biodistribution of 4 µg 10% RD, 20 µg 30% RD and 40 µg 60% RD ⁸⁹Zr-MSLN. **C** *Ex vivo* biodistribution of 4 µg ⁸⁹Zr-MSLN and **D** *in vivo* tracer kinetics, expressed as radioactivity, corrected for decay, with 10% and 60% radioactive dimers. Uptake in tumor and healthy tissues is presented as percentage of injected dose per gram tissue (%ID/g), shown as mean ±SD, including single data points. ***: *P* <0.001 **: *P* < 0.01, with Bonferroni conrrection when comparing doses (A). RD: radioactive dimers.



Supplemental Figure 4. Ex vivo biodistribution ⁸⁹Zr-MSLN vs ²²⁷Th-MSLN

in A HT29-MSLN tumor-bearing mice and **B** OVCAR3 tumor-bearing mice. Blood levels and uptake in kidney, liver, spleen and intact femur of 20 μ g ⁸⁹Zr-MSLN (0.20 MBq) vs 20 μ g ²²⁷Th-MSLN (0.015 MBq) at 0.5, 2, 6, 24, 72, and 168 h. Data is presented as mean percentage injected dose per gram tissue (%ID/g) ±SD, including single data points. *: *P* < 0.05 with Bonferroni correction.

Supplemental Figure 5. Absolute tumor growth after ²²⁷Th-MSLN treatment of A HT29-MSLN tumor-bearing mice (n = 8) and B BxPc3 tumor-bearing mice (n = 7) treated with 0.75 mg/kg 500 kBq/kg ²²⁷Th-MSLN and n = 2 untreated mice per model. Tumor volumes expressed as mm³.

Supplemental Figure 6. γ H2AX expression in tumors of mice treated with ²²⁷Th-MSLN A γ H2AX immunofluorescence, marking double-strand DNA breaks, in HT29-MSLN and BxPc3 tumors of 0.75 mg/kg 500 kBq/kg ²²⁷Th-MSLN treated (n = 6-7 per group) and untreated mice (n = 1-2 per group) harvested 21 days after injection **B** and quantification expressed as % γ H2AX per tumor area. Data are mean ±SD, including single data points. Control: monoclonal mouse IgG2a antibody staining control. γ H2AX: gamma H2A histone family member X.

γH2AX immunofluorescence

DNA double-strand breaks were detected with immunofluorescence using a human-specific gamma H2A histone family member X (γH2AX) antibody (Cell Signaling, Clone JBW301, mouse), and a monoclonal mouse IgG2a antibody, clone DAK-GO5 (DAKO) was used as control (dilution 1:2000). Sections were exposed to a Cy3-labeled anti-murine-reactive antibody (Perkin Elmer; Opal[™] 4-Color Fluorescent IHC Kit). Tumor sections were counterstained using DAPI. γH2AX foci were quantified using the HS Analysis Webkit tool (HS Analysis; Karlsruhe Institute of Technology, Germany).

Supplemental Table 1: ⁸⁹Zr-MSLN development for *in vivo* studies: critical conditions

Optin	mal conditions ⁸⁹ Zr-MSLN production:			
Buffer exchange method	PD gravity filtration with HEPES 0.5 M pH 6.7			
⁸⁹ Zr labeling conditions	0.1 mg/mL MSLN-3,2-HOPO concentration			
-	250-500 MBq/mg specific activity			
	In HEPES buffer			
Purification method	PD10 gravity filtration purification, elution with:			
	10 mM histidine 130 mM glycine buffer pH 7.4			
<u>Avoid</u> the followi	ing conditions to limit radioactive dimer formation:			
Buffer exchange method	Ultracentrifugation (Vivaspin) or NaCl 0.9%			
⁸⁹ Zr labeling condition	> 0.1 mg/mL MSLN-HOPO concentration			
-	< 200 MBq/mg specific activity			
	Buffers:			
	Ammonium acetate pH 7			
	• Ammonium acetate pH 5.5			
	• Citrate buffer 30 mM			
	Addition of cold ⁸⁹ Zr			
Purification method	Purification by ultracentrifugation (Vivaspin)			
	PD purification with:			
	• NaCl 0.9%			
	• HEPES 0.5 M pH 7			
	EDTA addition before purification			
	Gentisic acid			
	• Tris buffer pH 8.5			
	Sodium phosphate buffer pH 7			
	 Sodium phosphate buffer pH 8.5 			
	• Histidine glycine 10/130 mM pH 8.5			
	• Glucose 5%			
	• Arginine glycine 50/50 mM pH 8.5			

PD: protein desalting, EDTA: ethylenediamine tetraacetic acid.

Supplemental Table 2: ⁸⁹Zr-MSLN and ²²⁷Th-MSLN batches for *in vivo* studies

		⁸⁹ Zr-MSLN			⁸⁹ Zr-control	²²⁷ Th-MSLN
Antibody dose (µg)	4	4	20	40	20	20
Radioactive dose (MBq)	1	1	3	3	4	0.015
Radiolabeling efficiency (%)	60	60	64	92	76	99
Antibody concentration (mg/ml)	0.1	0.1	0.2	0.4	0.2	0.2
Specific activity (MBq/mg)	400	400	250	125	250	0.7
Radiochemical purity (%)	99	99	97	99	98	99
Radioactive dimers (%)	10	60	30	60	30	<10
Total antibody dimers (%)	<5	5	5	5	5	<5

Batches of 4 μ g and 40 μ g ⁸⁹Zr-MSLN were injected in the BxPc3 tumor-bearing mice (Suppl. Fig. 3), 20 μ g ⁸⁹Zr-MSLN and ⁸⁹Zr-control were injected in HT29-MSLN tumor-bearing mice (Fig. 1). The 20 μ g ²²⁷Th-MSLN was injected in HT29-MSLN tumor-bearing mice (Fig. 5).