1	The Overlap Index as a means of evaluating early tau-PET signal reliability
2	Jeyeon Lee ^{1*} , Brian J. Burkett ¹ , Hoon-Ki Min ¹ , Emily S. Lundt ² , Sabrina M. Albertson ² ,
3	Hugo Botha ³ , Matthew L. Senjem ⁴ , Jeffrey L. Gunter ¹ , Christopher G. Schwarz ¹ , David
4	T. Jones ³ , David S. Knopman ³ , Clifford R. Jack Jr. ¹ , Ronald C. Petersen ³ , and Val J.
5	Lowe ¹
6	¹ Department of Radiology, ² Department of Health Sciences Research, ³ Department of
7	Neurology, ⁴ Department of Information Technology, Mayo Clinic
8	
9	Correspondence: Jeyeon Lee, Ph.D., Department of Radiology, Mayo Clinic, 200 First
10	Street SW, Rochester, Minnesota, 55905, USA.
11	E-mail: lee.jeyeon@mayo.edu
12	
13	Running title: OI method for early tau-PET detection
14	Word count: 4998 (all inclusive)
15	
16	
17	
18	
19	Immediate Open Access: Creative Commons Attribution 4.0 International License
20	(CC BY) allows users to share and adapt with attribution, excluding materials credited to
21	previous publications.
22	License: https://creativecommons.org/licenses/by/4.0/.
23	Details: https://jnm.snmjournals.org/page/permissions.

24 Funding

- 25 This research was supported by NIH grants, P50 AG016574, R01 NS89757, R01
- 26 NS089544, R01 DC10367, R01 AG011378, R01 AG041851, R01 AG034676, R01
- 27 AG054449, R01 NS097495, U01 AG006786, R21 NS094489, by the Robert Wood
- 28 Johnson Foundation, The Elsie and Marvin Dekelbourn Family Foundation, the Liston
- 29 Family Foundation and by the Robert H. and Clarice Smith and Abigail van Buren
- 30 Alzheimer's Disease Research Program, the Alexander Family Foundation, the GHR
- 31 Foundation, Foundation Dr. Corinne Schuler and the Mayo Foundation for Medical
- 32 Education and Research.

33 ABSTRACT

34 In tau positron emission tomography (tau-PET), a reliable method to detect early tau 35 accumulation in the brain is crucial. Noise, artifacts, and off-target uptake impede 36 detection of subtle true positive ligand binding. We hypothesize that identifying voxels 37 with stable activity over time can enhance detection of true positive tau. Methods: 339 38 participants in the clinical spectrum ranging from clinically unimpaired to Alzheimer's 39 Disease Dementia underwent ≥2 serial tau-PET scans with flortaucipir. The "overlap 40 index" (OI) method was proposed to detect spatially identical, voxel-wise standardized 41 uptake value ratio (SUVR) elevation when seen sequentially in serial tau-PET scans. The association of OI with tau accumulation, clinical diagnosis, and cognitive findings 42 43 was evaluated. **Results**: OI showed good dynamic range in the low-SUVR window. 44 Only OI was able to identify subgroups with increasing tau-PET signal in low SUVR 45 meta-ROI groups. OI showed improved association with early clinical disease 46 progression and cognitive scores versus meta-ROI SUVR measures. Conclusion: OI 47 was more sensitive to tau signal elevation and longitudinal change than standard ROI 48 measures, suggesting it is a more sensitive method for detecting early, subtle 49 deposition of neurofibrillary tangles.

50

51 Keywords

52 AV-1451; Flortaucipir; Tau PET; Variability; early detection.

54 INTRODUCTION

Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder 55 56 characterized by abnormal extracellular amyloid- β (A β) plaques and intracellular tau 57 neurofibrillary tangles (NFT)(1). The amyloid cascade hypothesis suggests A β as the 58 primary cause of tau NFT formation and ultimately neuronal loss(2). However, it has 59 also been suggested that the aggregation of pathologic A β and tau might be independent etiologies of AD pathology(3). Studies have found a clear association 60 61 between AD severity and increased tau with positron emission tomography (PET)(4) 62 and that tau-PET is a better predictor of AD dementia (ADD) than amyloid status (1,5). Tau is therefore an attractive target as a biomarker for ADD diagnosis and treatment 63 64 outcome measure.

65

Tau-PET uptake patterns have been associated with Braak NFT staging(6) and ADD 66 67 severity (7,8). Tau-PET signal is associated with aging (4) and with reduced glucose metabolism(7) and can distinguish among clinical phenotypes(7). Longitudinal amyloid 68 69 PET has been studied extensively, tracking participants for over a decade(9). 70 Longitudinal tau-PET studies are in the initial stage of optimization (10-12). Global 71 increases in tau accumulation have been reported, rather than the region-specific 72 sequence that would be expected from the neuropathology literature (4, 10). More 73 longitudinal tau studies are needed to better understand AD pathogenesis. 74

Longitudinal tau-PET reliability is limited by inter-scan variability. The
 standardized-uptake-value-ratio (SUVR) is the most common quantitative measure of

77 radiotracer uptake. SUVR annual change in longitudinal studies has been relatively 78 small compared to group averages(10-12). Annual AV-1451 (Flortaucipir) tau-PET 79 SUVR change in patients with amyloid-positivity and cognitive impairment was around 80 0.05 SUVR(10-12), about 3% of the average cross-sectional SUVR (=1.64) for the 81 group(4). The annual increase was similar to the test-retest variability of AV-1451 with 82 48-hour to 4-week intervals (SUVR changes of up to 0.05)(13). Moreover, for cognitively 83 unimpaired (CU) subjects with amyloid positivity, possibly the earliest stage of AD, the 84 mean annual SUVR change has been estimated at 0.006(10).

85

86 It is therefore important to understand the nature of the variability in serial tau-87 PET scans when neuropathologically-related PET signal changes may be small. 88 Variability is especially problematic in the early stages of tau pathology in which the rate 89 of NFT accumulation is slow and thus difficult to discern relative to the range of random 90 fluctuation noise in tau-PET imaging. To address this problem, we developed a 91 measure of consistency across serial scans called the "overlap index" (OI) based on the 92 hypothesis that random noise/artifacts are unlikely to be repeated over serial scans and 93 voxels with stable signal over time more likely represent true NFT-related binding. We 94 evaluated the ability of OI to measure early, subtle tau-PET signal change, compared to 95 standard region-of-interest (ROI)-based measure, and evaluated for correlation with 96 changes in clinical status.

98 MATERIALS AND METHODS

99 **Participants**

100 Eligible participants (n=339) selected from the Mayo Clinic Study of Aging or the 101 Alzheimer's Disease Research Center had ≥2 serial flortaucipir tau-PET scans with 102 MRI, corresponding to 850 tau-PET scans in total(Supplementary Table1)(10). Studies 103 were approved by the Mayo Clinic and Olmsted Medical Center Institutional Review 104 Boards. Written informed consent was obtained. Enrolled participants are determined to 105 be clinically normal or cognitively impaired by a consensus panel consisting of study 106 coordinators, neuropsychologists, and behavioral neurologists. Methods for defining 107 CU, mild cognitive impairment (MCI), and dementia in both studies conform to 108 standards in the field (14-16). To examine the generalizability of the OI, we also included 109 the longitudinal tau-PET data (n=235, Supplementary Table 2-3) from the Alzheimer's 110 Disease Neuroimaging initiative (ADNI) database (adni.loni.usc.edu).

111

112 **Neuroimaging Methods**

113 Tau-PET imaging was performed with F18-flortaucipir and amyloid-PET with 114 Pittsburgh compound B (PiB) as reported previously (17) (see Supplementary 115 Methods(18-25)). Tau- and amyloid-PET SUVR were normalized to the median uptake 116 in the cerebellar crus. The regional tau-PET SUVRs were calculated by measuring 117 median uptake in each ROI, excluding any voxels segmented as cerebrospinal fluid. A 118 meta-ROI for tau-PET included the amygdala, entorhinal cortex (ERC), fusiform, 119 parahippocampal and inferior temporal and middle temporal gyri(10,24). The tau-PET 120 meta-ROI SUVR was calculated as an average of the median SUVR in each region.

Global cortical amyloid-PET SUVR was computed as a voxel-number weighted average of median uptake across a set of ROIs including the prefrontal, orbitofrontal, parietal, temporal, anterior and posterior cingulate, and precuneus ROIs(24). An SUVR>1.29threshold denoted abnormal tau-PET scans(6). The threshold used to define abnormal PiB-PET was SUVR=1.42(24). Meta-ROI $\triangle SUVR$ was calculated as an annualized difference between the baseline SUVR from the follow-up SUVR.

127

128 **Overlap Index Calculation**

129 OI represents the voxel-wise SUVR elevation consistently present on two serial 130 scans(Fig.1). First, we selected the ROI(or meta-ROI) to be evaluated in the calculation. 131 An intensity threshold (SUVR=1.4) -selected from preliminary experimental 132 tests(Supplementary Fig.1)- was applied to each voxel in the ROI(s). Voxels that 133 survived the intensity threshold were binarized (0/1) as masks (M_b and M_f). Clusters 134 with fewer than 20 contiguous voxels (18-connectivity criterion) were excluded. The 135 spatial overlap between masks (Noverlap) was calculated by counting the number of 136 voxels with an intensity of 1 after multiplying the two masks. OI was calculated by 137 dividing N_{overlap} by the number of voxels where the value is 1 in the M_b (N_b).

138
$$Overlap index (OI) = \frac{Noverlap}{Nb}$$

139 Values of 0 indicate no overlap between scans; conversely, values approaching 1

140 indicate consistent elevation of voxels in the follow-up scan.

141

Unlike standard indices that calculate overlap (*e.g.*, Dice coefficient or Jaccard
index), OI is asymmetrically normalized with to the value in only the first scan. Hence,

OI quantifies the extent to which the high-intensity voxels of the first scan are spatially preserved in the second scan. Biologically, the increased topographic extent of tau uptake over time is usually expected. Therefore, we assumed that the index calculated by a standard symmetric measure (*i.e.*, denominator is a union of both scan) could be less sensitive to the detection of early tau where only a small amount of NFT would exist. An overlap size (OS) quantifying a ratio of the overlap area to the size of the total ROI(s), was also defined as following:

151
$$Overlap \ size \ (OS) = \frac{N_{overlap}}{N_{ROI}}$$

NROL is the number of voxels of ROI(s) included for the analysis. The OI and OS werecalculated for each serial scan pair.

154

155 Statistical Analysis

156 To test for significant group differences in OI and SUVR, we ran non-parametric 157 Kruskal-Wallis tests, followed by *post-hoc* Dunn's multiple comparison test. Non-158 parametric tests were applied as they do not require the data to be normally distributed. 159 To address different stages of the typical Alzheimer's continuum, we separated the CU 160 participants using the amyloid positivity: CU individuals with normal amyloid-PET (CUA-, 161 i.e. not in the Alzheimer's continuum) and CU individuals with abnormal amyloid-PET 162 (CUA+, i.e. early in the Alzheimer's continuum). Then, the clinical change seen in 163 participants at the time points of the serial scans were grouped as CUA-toCUA-, CUA-164 toCUA+, CUA+toCUA+ CUtoMCI/AD, MCItoMCI, MCItoAD, and ADtoAD. For more 165 details, please refer to the supplementary data.

167 **RESULTS**

168 Association of OI with SUVR in Single ROI

169 Scatter plots of voxel intensity within 3D space for a specific ROI demonstrate 170 both low and high-OI examples (Fig.2). For low-OI (Fig.2A), inconsistent voxel signal 171 elevation over serial scans can be seen even when median SUVR of the overall region 172 is above the autopsy tau-PET threshold (SUVR=1.29). The median SUVR fluctuated 173 above and below the threshold in these examples. Conversely, high-OI 174 examples(Fig.2B) show consistent high-intensity voxels over serial scans, with voxels 175 clusters gradually enlarging based on visual assessment even when the median SUVR 176 did not numerically increase. Notably, the median SUVRs of Fig.2B was below 177 threshold. More examples for high-OI can be found in Supplementary Fig.2. 178 179 Fig.3 shows the relationship between OI and baseline SUVR for representative 180 ROIs. OI increased exponentially in the low SUVR range and approached 1.0 around 181 SUVR=1.5 (vertical dotted line) for every region. In the SUVR<1.5 range, the SUVR and 182 OI showed a significant linear relationship for all regions (p<0.005). The regional 183 distribution of OI and SUVR for both MCI and AD were calculated by anatomic region, 184 ranked and displayed on a 3D-rendered plot(Supplementary Fig.3A-B), corroborating 185 the statistically significant correlation of regional OI and SUVR (r=0.8489, 186 Supplementary Fig.3C). 187

188 OI Can Characterize Tau Accumulators

189 Meta-ROI also showed a strong linear correlation with baseline SUVR in the low SUVR range (R²=0.3806), reaching values near 1.0 around SUVR=1.5(Fig.4A). Most 190 191 participants (79.65%) had a below-threshold SUVR (<1.5) whereas OI was more evenly 192 distributed (Fig.4A). OI provides a good dynamic range even in this low-SUVR window. 193 This also held true for follow-up scans(Supplementary Fig.4). A relationship between OI 194 and scan interval was tested. High OI values were found even for relatively long scan 195 intervals (>2yrs) in cases where baseline SUVR was high. In contrast, OI was low 196 regardless of the scan interval for low SUVR cases (Supplementary Fig.5). Multivariable 197 linear regression showed that baseline SUVR better explained the OI than the 198 interval(Supplementary table4).

199

200 Next, we investigated an association of meta-ROI OI and \triangle SUVR. If OI is 201 sensitive to tau burden, the metric would show positive correlation with tau 202 accumulation rate, as an increased extent of tau over time is biologically expected (10-203 12). Supplementary Fig.6A shows pairs of meta-SUVR from two sequential scans for 204 each individual subject. Then, the total cohort was separated into low-OI (OI<0.5) and 205 high-OI (OI>0.5) subgroups(Supplementary Fig.6B-C). Importantly, OI discriminates 206 positive tau accumulation (slope>0) from stable tau. Statistically, a significant positive 207 correlation between OI and \triangle SUVR was also demonstrated (R²=0.1603, 208 p<0.0001;Fig.4B). This significance held true for baseline SUVR>1.5(Supplementary Fig.7A; R²=0.1566,p<0.0001). 209

211	Comparison of baseline meta-SUVR value groups (SUVR<1.29,1.29 <suvr<1.5< th=""></suvr<1.5<>
212	and SUVR>1.5) showed increased \triangle SUVR with increased baseline values (p=0.001);
213	however, the comparison between SUVR<1.29 and 1.29 <suvr<1.5 did="" not="" reach<="" td=""></suvr<1.5>
214	significance (Fig.4C;p=0.46). A significant difference in Δ SUVR was detected between
215	low-OI and high-OI groups within the same SUVR range (Fig.4D;p=0.01 and p=0.006
216	for SUVR<1.29 and 1.29 <suvr<1.5, <math="" average="" notably,="" respectively).="" the="">\DeltaSUVR in the</suvr<1.5,>
217	low-OI group was close to zero or even negative (mean=0.002 and -0.048 for
218	SUVR<1.29 and 1.29 <suvr<1.5, a<="" groups="" high-oi="" respectively),="" showed="" td="" whereas=""></suvr<1.5,>
219	positive tendency in Δ SUVR (mean=0.025, 0.019 and 0.041 for SUVR<1.29,
220	1.29 <suvr<1.5 and="" suvr="">1.5, respectively). There was no significant difference</suvr<1.5>
221	among high-OI groups at different SUVR levels. These results imply that the OI can
222	distinguish tau accumulation within meta-SUVR subgroups that cannot be detected by
223	SUVR alone. To test the reliability, we compared the meta-ROI OI from the first and
224	second scans to the second and third scans, when three or more time points were
225	available. The OI of 1-2 and the OI of 2-3 were highly correlated (r=0.8902) meaning OI
226	is consistent over time(Supplementary Fig.7B).

228 Meta-ROI OI Relationship to Demographic Data

A pairwise comparison with CUA-toCUA- as the control group demonstrated that OI can detect significant differences from the other subgroups including the smallest degree of clinical change, CUA-toCUA+(Fig.5). Baseline SUVR, baseline SUVR_{pvc}, and Δ SUVR from meta-ROI also showed significant differences from the MCI groups, however no significant difference was seen in comparison with the earlier disease
progression groups such as CUA-toCUA+, CUA+toCUA+ and CUtoMCI/AD.

236	The relationship of cognitive scores with meta-ROI OI and SUVR was also
237	investigated. We found that the meta-ROI OI and meta-SUVR had a significant linear
238	relationship with the cognitive scores(Supplementary Fig.8A-B;linear regression,
239	p<0.005). However, the cognitive scores associated more strongly with OI than the
240	SUVR for the global, language, and visuospatial domain (for OI, R^2 =0.2209, 0.2054 and
241	0.1288 for global, language, and visuospatial domain, respectively and for meta-SUVR,
242	R ² =0.1731, 0.1275 and 0.0667 for global, language and visuospatial domain,
243	respectively). For the memory and attention domain, both showed a similar result (for
244	OI, R ² =0.1859 and 0.1337 for memory and attention domain, respectively and for follow-
245	up meta-SUVR, R ² =0.1810 and 0.1422 for memory and attention domain, respectively)
246	
246 247	To evaluate the generalizability of OI metric, we tested OI in the ADNI dataset.
	To evaluate the generalizability of OI metric, we tested OI in the ADNI dataset. This validated many of the results seen in the Mayo cohort. For meta-ROI, OI reached
247	
247 248	This validated many of the results seen in the Mayo cohort. For meta-ROI, OI reached
247 248 249	This validated many of the results seen in the Mayo cohort. For meta-ROI, OI reached approached 1.0 around SUVR=1.5(Fig.6A). In addition, meta-ROI OI-based grouping
247 248 249 250	This validated many of the results seen in the Mayo cohort. For meta-ROI, OI reached approached 1.0 around SUVR=1.5(Fig.6A). In addition, meta-ROI OI-based grouping was able to discriminate the positive tau accumulator within the same SUVR
247 248 249 250 251	This validated many of the results seen in the Mayo cohort. For meta-ROI, OI reached approached 1.0 around SUVR=1.5(Fig.6A). In addition, meta-ROI OI-based grouping was able to discriminate the positive tau accumulator within the same SUVR range(Fig.6C; p<0.001 for SUVR<1.29 and p=0.02 for 1.29 <suvr<1.5) meta-<="" td="" while=""></suvr<1.5)>
 247 248 249 250 251 252 	This validated many of the results seen in the Mayo cohort. For meta-ROI, OI reached approached 1.0 around SUVR=1.5(Fig.6A). In addition, meta-ROI OI-based grouping was able to discriminate the positive tau accumulator within the same SUVR range(Fig.6C; p<0.001 for SUVR<1.29 and p=0.02 for 1.29 <suvr<1.5) baseline="" by="" did="" meta-suvr="" not="" reach="" separated="" significance<="" statistical="" subgroups="" suvr="" td="" while=""></suvr<1.5)>

CUA+toCUA+ and CUtoMCI/AD, respectively;Fig.6D). However, fewer significant
 differences were found in SUVR measurements between groups(Fig.6D).

258

259 **DISCUSSION**

In this study, we proposed OI as a means for early detection of tau-PET bindings by evaluating consistency of serial tau-PET scans and tested the ability of OI to identify subtle, but true positive tau binding in serial scans. Participants with high-OI had a larger serial SUVR change than participants with low-OI, a finding which notably was also seen with participants below the tau cut-off (SUVR<1.29). When compared to ROIbased SUVR measurements, OI alone had a significant association with early disease progression.

267

268 Although SUVR and OI showed a significant linear correlation, OI showed better 269 dynamic range in the low-SUVR window. It may be that the typical ROI-based measures 270 that calculate the median SUVR all voxels are less sensitive to the early development of 271 NFT because the local tau-PET signal can be diluted in the process of obtaining the 272 median of the entire ROI(s)(6). In contrast to the ROI method, OI quantifies the spatial 273 consistency only in those voxels with an elevated tau-PET signal. This characteristic of 274 OI is independent of the size of the tau cluster, thus allowing better characterization of 275 small areas of signal elevation in the low SUVR range in which NFT volume is relatively 276 small. In this respect, OI can better detect early stages of tau pathology than the typical 277 ROI-based measurements. In the high SUVR range, this provides less added value 278 because consistency is high when tau is abundant(Supplementary Fig.9). Because AD

279 is a chronic and progressive disease, early detection before devastating symptoms 280 begin is critically important. Tau-PET is in general a promising biomarker, more closely 281 associated with disease severity than other imaging biomarkers; (26) however, inter-282 scan random variability which does not represent true tau pathology presents a 283 significant hurdle(13,27). A recent autopsy study reported that ROI methods be 284 insufficient to detect subtle tau-PET signals in early tau deposition(6), probably 285 reflecting diminished signal-to-noise when a small volume of true radiotracer binding is 286 present(28). Our results suggest that OI may overcome this limitation and be 287 complementary to typical ROI measures for interpreting the early tau-PET signal.

288

289 OI will likely be also useful in distinguishing true tau accumulation from random 290 variability in longitudinal studies. Our results showed that OI can characterize the 291 participants who will accumulate tau amongst those in the low-SUVR and mid-SUVR 292 groups better than meta-ROI. As described earlier, as an increased extent of NFT over 293 time is biologically expected (10-12), OI which is sensitive to subtle tau burden may 294 better identify subjects with true accumulation that was hidden by ROI SUVR washout 295 or random variability. Clearly, there is a wide standard deviation in the high meta-ROI 296 group with some participants showing negative change. This phenomenon of negative 297 change was also observed in previous longitudinal studies reporting some individuals 298 with high baseline SUVR and negative SUVR changes (10-12). The reasons for these 299 negative SUVR changes are not yet well understood. CSF phosphorylated tau level 300 could decrease in the late AD(29) accounting for the negative change. Noise or partial 301 volume effects due to tau aggregation-driven local atrophy may contribute (30, 31).

Further optimization of OI methods to target the high meta-ROI group is an aim of ourongoing work.

304

305 OI was highest in the inferior, middle, and medial temporal lobes including the ERC, and 306 amygdala, areas of elevated tau PET activity described in the literature(8,32). While 307 nonspecific binding related to AV1451 is not well understood in longitudinal data, a 308 possible limitation is that OI may be vulnerable to suprathreshold off-target binding 309 when it consistently occurs in serial scans. For example, the hippocampal OI may be 310 vulnerable to choroid plexus(Supplementary Fig.10). To minimize this, typical non-311 specific binding areas such as basal ganglia and choroid plexus are excluded from 312 meta-ROI analysis. Four cases of non-specific binding in meninges were observed 313 which only affected the OI measurement when meninges had repeated strong signal in 314 the meta-ROI (Supplementary Fig.11). Future work is needed to characterize the effects 315 of off target binding on the SUVR and OI.

316

The difference between OI and SUVR regarding cognitive findings is marginal. This is not unexpected given that our sample population is mixed and comprised of those without significant cognitive impairment (i.e., CU; ~50% of sample), MCI, or early AD (28% of sample) some of whom have little or no cognitive impairment. Our plans are to expand the OI analysis to larger groups of subjects with cognitive impairment to better define clinically utility.

323

324 The statistical significance between early preclinical groups (i.e., CUA-toCUA- vs. 325 CUA-toCUA+) was only demonstrated in the Mayo cohort. Notably, the mean OI values 326 of CUA-toCUA+ group were not different between the cohorts (p=0.9652, mean 327 OI=0.3573 and 0.3558 for Mayo and ADNI, respectively), but the CUA-toCUA- group showed significantly different mean OI between the cohorts (p<0.001, mean OI=0.1832 328 329 and 0.3125 for Mayo and ADNI, respectively). One possible explanation is the relatively 330 smaller number of samples in the CUA-toCUA- group from ADNI cohort (97 for Mayo 331 vs. 26 for ADNI). However, the reason for high OI values in the early preclinical groups 332 should be investigated with neuropathology studies in the future.

333

334 One limitation of this study is the assumption that voxels with artifactual or false-335 positive activity would be less likely to show spatial consistency over-time, an 336 assumption that should be validated with post-mortem neuropathologic data of tau 337 deposition. The SUVR is sensitive to perfusion changes; therefore, interscan 338 comparison may be biased when perfusion differs between the two scans. Despite this 339 limitation, OI performs better for early detection of tau-PET signal and disease 340 progression than the ROI-based SUVR measure. Future investigation with simulation 341 studies will be needed to assess the magnitude of the bias of perfusion on OI. The 342 intensity threshold used in this study was determined observationally. The OI calculation 343 is largely dependent on this threshold level and future work is warranted to determine 344 the optimal threshold among different regions and even at voxel level. Although OI can 345 augment sensitivity to early tau-PET uptake, acquiring two separate PET scans is a 346 disadvantage. Using dynamic scans to derive OI from a single imaging session by

splitting the scan into two segments may address this limitation. Future investigation of
this possible solution is needed, which will require careful optimization given the slow
kinetics of the AV-1451 tracer.

350

351 CONCLUSION

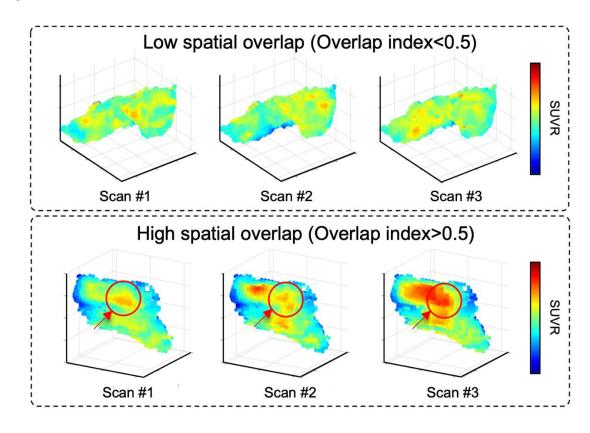
352 By identifying voxels with consistent signal, the OI method could be helpful in 353 measuring early tau-PET signal. This voxel-wise analysis can overcome the limitations 354 of ROI-based measures which had reduced sensitivity to early detection of low levels of 355 tau. The ability of OI to reliably detect true positive binding is likely to have the most 356 impact in the lower SUVR window, reflecting the early stage of neurodegeneration and 357 early tau NFT pathology prior to cognitive decline. Combining the OI method with other 358 methods which minimize inter-scan variability (partial volume correction and optimized 359 reference) may synergistically improve interpretations of longitudinal change in the tau-360 PET signal.

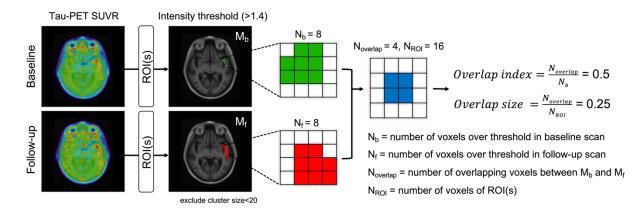
361

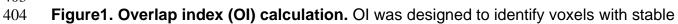
362 ACKNOWLEDGMENTS

363 The authors are grateful to Penelope Duffy, Ph.D. for editorial contributions and review.364

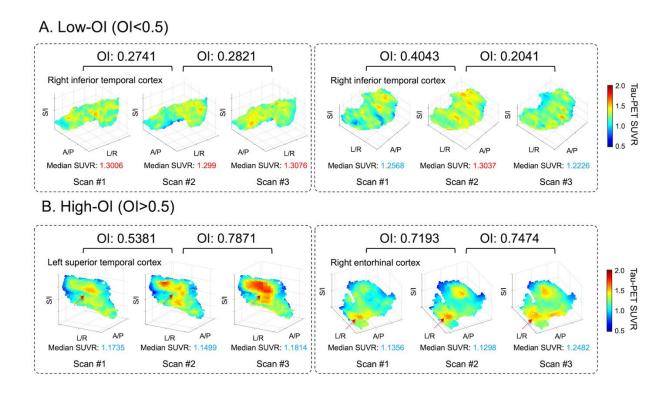
365 **DISCLOSURE**

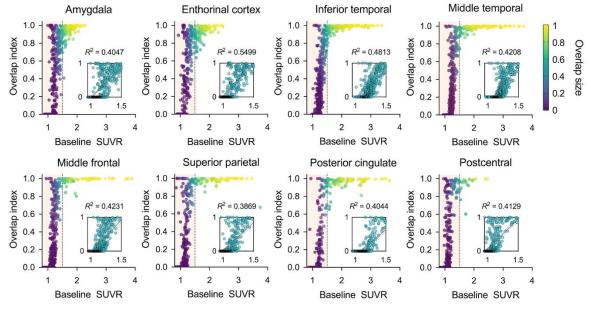

Mr. Senjem has owned stocks and/or options in the following medical-related 366 367 companies: Align Technology, Inovio Biomedical, Johnson & Johnson, Mesa 368 Laboratories, Nvidia, LHC Group, Natus Medical Incorporated, Varex Imaging 369 Corporation, CRISPR Therapeutics, Gilead Sciences, Ionis Pharmaceuticals, and 370 Medtronic. Dr. Gunter reports an abandoned provisional patent for face replacement in 371 MR imaging unrelated to the current publication. Dr. Schwarz has given lectures 372 sponsored by Karolinska Institute unrelated to the current publication. Dr. Knopman 373 served on a data safety monitoring board for the DIAN study, serves on a data safety 374 monitoring board for a Biogen tau therapeutic, and is a site investigator in the Biogen 375 aducanumab trials, an investigator in clinical trials sponsored by Lilly Pharmaceuticals 376 and USC, and a consultant for Samus Therapeutics, Third Rock, Roche and Alzeca 377 Biosciences but receives no personal compensation. Dr. Jack serves on an 378 independent data monitoring board for F. Hoffmann-La Roche, has consulted and 379 spoken for Eisai, and has consulted for Biogen but receives no personal compensation 380 from any commercial entity. Dr. Petersen receives research support from GHR 381 Foundation, has received royalties from Oxford University Press, is a member of a data 382 safety monitoring board for Genentech, and is a consultant for Roche, Merck, Biogen, 383 and Eisai. Dr. Lowe receives research support from GE Healthcare, Siemens Molecular 384 Imaging, and AVID Radiopharmaceuticals, and consults for Bayer Schering, Piramal 385 Life Sciences, Life Molecular Imaging, Eisai, AVID Radiopharmaceuticals, and Merck. 386 No other potential conflicts of interest relevant to this article exist.


387

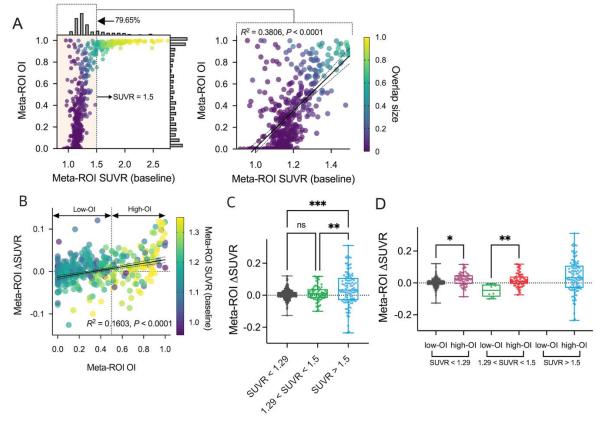

388 KEY POINTS

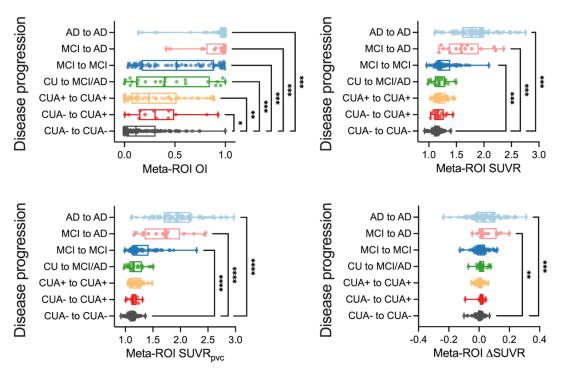
- 389 **Question**: Is identifying voxels with stable signal over time a more sensitive method for
- 390 detecting early, subtle development of neurofibrillary tangles?
- 391 **Pertinent Findings**: Only OI was able to identify subgroups with increasing tau-PET
- 392 signal in low SUVR meta-ROI groups. OI showed improved association with early
- 393 disease progression and cognitive scores vs. meta-ROI SUVR measures.
- 394 **Implications for Patient Care**: Our findings demonstrate that the proposed method
- 395 could be helpful in detecting tau signal elevation and longitudinal changes than standard
- 396 ROI measures, suggesting it is less vulnerable to random variability and more sensitive
- 397 to early, subtle ligand binding.


399 Graphical abstract



405 high activity over time using two consecutive tau-PET scans.


408 Figure 2. Examples for low-OI and high-OI. Three consecutive 3D scatter plots are 409 displayed in each box for four different examples, representing the tau-PET SUVR of each voxel in each scan from an individual subject. (A) shows low-OI and (B) shows 410 411 high-OI cases. Below each rendering, the median SUVR represents a median value for 412 all voxels in each region. The colorbar indicates the intensity of each voxel. Font color of median SUVR is red when >1.29 and blue when <1.29. Red arrows in B indicate the 413 414 regions showing spatial consistency. Various anatomic regions are plotted and labeled 415 in each panel.


Figure 3. Relationship between OI and baseline SUVR in single ROI. Bilateral ROIs

419 were included in the calculations. A small panel inside the figure illustrates an enlarged

420 view of the lower SUVR range (from 0.9 to 1.5).

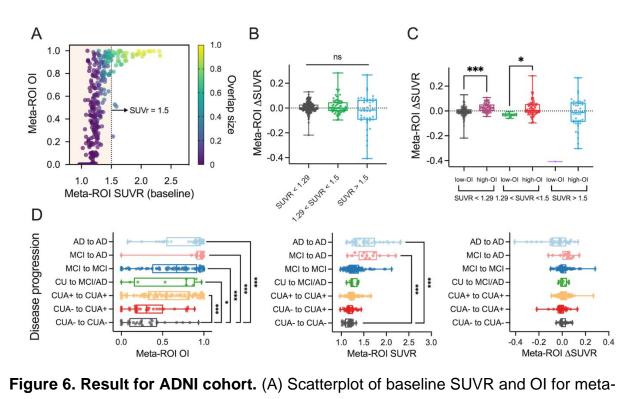

422 423 Figure 4. Relationship between meta-ROI OI and meta-ROI SUVR. (A) A scatterplot 424 (left) of baseline SUVR and OI for meta-ROI. Histograms are displayed along SUVR 425 and OI axis, respectively. The low SUVR range (<1.5) was magnified in a separate 426 scatterplot (right) with linear regression (solid black line) and 95% confidence band 427 (dotted black lines). (B) Scatterplot of meta-ROI OI and \triangle SUVR with regression. (C) Comparison of ∆SUVR between SUVR based subgroups. (D) The SUVR based 428 429 subgroups in C were further separated into low-OI and high-OI categories. *p<0.05, 430 **p<0.05, ***p<0.005, *post-hoc* Dunn's tests.

Figure 5. Association of overlap index with disease progression. (A) Tau-PET

- 434 variables in different clinical groups. OI, baseline SUVR, baseline SUVR_{pvc}, and Δ SUVR
- 435 from meta-ROI of CUA-toCUA- were compared with those of other groups. *p<0.05,
- 436 **p<0.05, ***p<0.005, *post-hoc* Dunn's tests.

438 439

440 ROI. (B) Comparison of \triangle SUVR between SUVR based subgroups. (C) The SUVR

- 441 based subgroups in B were further separated into low-OI and high-OI categories. (D)
- 442 OI, baseline SUVR, and Δ SUVR from meta-ROI of CUA-toCUA- were compared with
- those of other groups. *p<0.05, **p<0.05, ***p<0.005, *post hoc* Dunn's tests.

445 **References**

446 Nelson PT, Alafuzoff I, Bigio EH, et al. Correlation of Alzheimer disease neuropathologic 1. 447 changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 448 2012;71:362-381. 449 450 Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and 2. 451 problems on the road to therapeutics. *science*. 2002;297:353-356. 452 453 3. Wisniewski T, Goñi F. Immunotherapy for Alzheimer's disease. Biochem Pharmacol. 454 2014;88:499-507. 455 456 4. Lowe VJ, Wiste HJ, Senjem ML, et al. Widespread brain tau and its association with 457 ageing, Braak stage and Alzheimer's dementia. Brain. 2018;141:271-287. 458 459 5. Ossenkoppele R, Smith R, Ohlsson T, et al. Associations between tau, A β , and cortical 460 thickness with cognition in Alzheimer disease. *Neurology*. 2019;92:e601-e612. 461 462 6. Lowe VJ, Lundt ES, Albertson SM, et al. Tau-positron emission tomography correlates 463 with neuropathology findings. *Alzheimers Dement.* 2019;16:561-571. 464 465 7. Ossenkoppele R, Schonhaut DR, Schöll M, et al. Tau PET patterns mirror clinical and 466 neuroanatomical variability in Alzheimer's disease. Brain. 2016;139:1551-1567. 467 468 8. Johnson KA, Schultz A, Betensky RA, et al. Tau positron emission tomographic imaging in 469 aging and early A lzheimer disease. Ann Neurol. 2016;79:110-119. 470 471 9. Jack CR, Wiste HJ, Lesnick TG, et al. Brain β -amyloid load approaches a plateau. 472 Neurology. 2013;80:890-896. 473 474 10. Jack Jr CR, Wiste HJ, Schwarz CG, et al. Longitudinal tau PET in ageing and Alzheimer's 475 disease. Brain. 2018;141:1517-1528. 476 477 11. Cho H, Choi JY, Lee HS, et al. Progressive tau accumulation in Alzheimer disease: 2-year 478 follow-up study. J Nucl Med. 2019;60:1611-1621. 479 480 Pontecorvo MJ, Devous MD, Kennedy I, et al. A multicentre longitudinal study of 12. 481 flortaucipir (18F) in normal ageing, mild cognitive impairment and Alzheimer's disease 482 dementia. Brain. 2019;142:1723-1735. 483 484 13. Devous MD, Joshi AD, Navitsky M, et al. Test-retest reproducibility for the tau PET 485 imaging agent Flortaucipir F 18. J Nucl Med. 2018;59:937-943. 486

487	14.	Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due			
488	to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's				
489	Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement.				
490	2011;7:270-279.				
491					
492	15.	McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to			
493	Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's				
494	Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement.				
495	2011;	7:263-269.			
496					
497	16.	Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med.			
498	2004;	256:183-194.			
499					
500	17.	Schwarz CG, Gunter JL, Lowe VJ, et al. A comparison of partial volume correction			
501	techn	iques for measuring change in serial amyloid PET SUVR. J Alzheimers Dis. 2019;67:181-			
502	195.				
503					
504	18.	Joshi A, Koeppe RA, Fessler JA. Reducing between scanner differences in multi-center			
505	PET s	tudies. <i>Neuroimage.</i> 2009;46:154-159.			
506		-			
507	19.	Schwarz CG, Wiste HJ, Gunter JL, et al. Variability in MRI and PET measurements			
508	introduced by change in MRI vendor. <i>Alzheimers Dement.</i> 2019;15:P104-P105.				
509					
510	20.	Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling			
511	of act	ivations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject			
512	brain	. Neuroimage. 2002;15:273-289.			
513					
514	21.	Vemuri P, Whitwell JL, Kantarci K, et al. Antemortem MRI based STructural Abnormality			
515	iNDex	(STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage.			
516	Neuroimage. 2008;42:559-567.				
517					
518	22.	Ashburner J, Friston KJ. Unified segmentation. <i>Neuroimage</i> . 2005;26:839-851.			
519					
520	23.	Vemuri P, Senjem ML, Gunter JL, et al. Accelerated vs. unaccelerated serial MRI based			
521	TBM-	SyN measurements for clinical trials in Alzheimer's disease. <i>Neuroimage</i> . 2015;113:61-69.			
522		, 5 ,			
523	24.	Jack Jr CR, Wiste HJ, Weigand SD, et al. Defining imaging biomarker cut points for brain			
524	aging and Alzheimer's disease. <i>Alzheimers Dement.</i> 2017;13:205-216.				
525	00	,			
526	25.	Meltzer CC, Leal JP, Mayberg HS, Wagner Jr HN, Frost JJ. Correction of PET data for			
527	partial volume effects in human cerebral cortex by MR imaging. J Comput Assist Tomogr.				
528		:14:561-570.			
529	,				

530 Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC. Tau imaging: early progress 26. 531 and future directions. The Lancet Neurology. 2015;14:114-124. 532 533 27. Timmers T, Ossenkoppele R, Visser D, et al. Test–retest repeatability of [18F] Flortaucipir 534 PET in Alzheimer's disease and cognitively normal individuals. Journal of Cerebral Blood Flow & 535 Metabolism. 2020;40:2464-2474. 536 537 28. Barthel H. First Tau PET Tracer Approved: Toward Accurate In Vivo Diagnosis of 538 Alzheimer Disease. Journal of Nuclear Medicine. 2020;61:1409-1410. 539 540 29. Fagan AM, Xiong C, Jasielec MS, et al. Longitudinal change in CSF biomarkers in 541 autosomal-dominant Alzheimer's disease. Sci Transl Med. 2014;6:226ra230-226ra230. 542 543 30. Sepulcre J, Schultz AP, Sabuncu M, et al. In vivo tau, amyloid, and gray matter profiles in 544 the aging brain. J Neurosci. 2016;36:7364-7374. 545 546 31. laccarino L, Tammewar G, Ayakta N, et al. Local and distant relationships between 547 amyloid, tau and neurodegeneration in Alzheimer's Disease. Neuroimage Clin. 2018;17:452-548 464. 549 550 32. Mattsson N, Insel PS, Donohue M, et al. Predicting diagnosis and cognition with 18F-AV-551 1451 tau PET and structural MRI in Alzheimer's disease. Alzheimers Dement. 2019;15:570-580. 552

1 Supplemental Data

2 Neuroimaging methods

3 T1-weighted MRI was acquired using 3T scanners manufactured by General 4 Electric (GE) and Siemens using a 3D Sagittal Magnetization-Prepared Rapid 5 Acquisition Gradient Recalled Echo (MPRAGE) sequence (number of scans=544 and 6 306 for GE and Siemens, respectively). During the analysis, two scans were excluded 7 because MRI data was unusable due to motion. Tau-PET and amyloid PET scans were 8 acquired using the PET/CT scanner by GE and Siemens operating in 3D mode (number 9 of scans=817 and 33, for GE and Siemens, respectively for tau-PET; number of 10 scans=782 and 31, for GE and Siemens, respectively for amyloid-PET). To harmonize 11 the inter-scan difference, for PET scanners, different filters were applied to each during 12 reconstruction in order to harmonize resolution according to the method of Joshi et al 13 (1). For MRI scanners, we have previously shown that the effects on PET quantification 14 are negligible (2). A CT scan was obtained for attenuation correction. For tau-PET, an 15 intravenous bolus injection of ~370 MBq (range 333-407 MBq) F18-flortaucipir was administered, and PET/CT imaging was performed with a 20-minute PET acquisition of 16 17 four 5-min dynamic frames, 80-100 minutes after injection. Amyloid PET imaging was 18 performed using Pittsburgh compound B (PiB) and consisted of four 5-min dynamic 19 frames, 40–60 min after injection of 628 MBq (range 385–723 MBq) of 11C-PiB. The 20 mean and standard deviation of specific activity for the entire period that the images 21 were acquired was 2.58 (± 0.32) Ci/µmol and 3.44 (± 0.78) Ci/µmol for PiB and AV1451, 22 respectively. An iterative reconstruction algorithm was applied. Emission data were 23 reconstructed into a 256×256 matrix with a 30-cm field of view (in-plane pixel size = 1.0

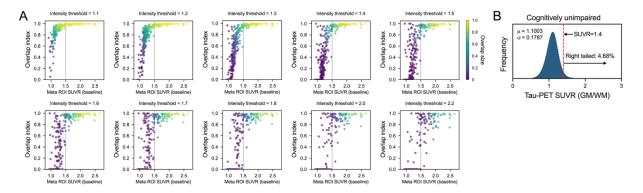
24 mm). Standard corrections for attenuation, scatter, random coincidences and decay
25 were applied as well as a 5 mm Gaussian post-reconstruction filter. The images from
26 the four dynamic frames were averaged to create a single static image.

27

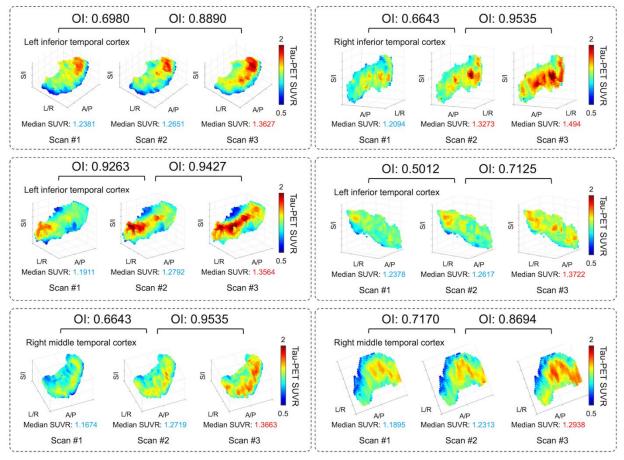
28 The static tau-PET image volumes of each participant were rigidly co-registered 29 to the corresponding T1-weighted MRI using 6-degree-of-freedom registration 30 ("spm_coreq") in SPM5. The automated anatomic labeling (AAL) atlas (3) was 31 normalized to the custom template (4) using the unified segmentation method in SPM5 32 giving a set of labels corresponding to the custom template space. SPM5 unified 33 segmentation (5) with a custom elderly template generated from 200 AD and 200 34 controls and tissue priors (4) was used to segment the MRI into GM, WM, CSF, and to 35 warp the atlas labels from template space to subject space. Within each subject, SPM5 co-registration was performed on the longitudinal series of MRI images to align to the 36 37 mean across all images, thus forming a new mean image, and repeated until 38 convergence (6). SUVR images were normalized to the uptake in the cerebellar crus 39 (7). For each timepoint, the tau-PET images were resampled into the space of the mean 40 MPRAGE. The regional SUVRs were calculated by measuring median uptake in each 41 ROI, excluding any voxels segmented as cerebrospinal fluid. A meta-ROI for tau-PET 42 included the amygdala, entorhinal cortex (ERC), fusiform, parahippocampal and inferior 43 temporal and middle temporal gyri (8,9). The tau-PET meta-ROI SUVR was calculated as an average of the median SUVR in each region. We did not use a voxel-number 44 45 weighted average for the meta-ROI SUVR calculation because the weighted average 46 might penalize small ROI values such as for the entorhinal cortex or amygdala,

47 anatomic regions of known early NFT accumulation. Global cortical amyloid PET SUVR 48 was computed as a voxel-number weighted average of median SUVR in each meta-ROI 49 region including the prefrontal, orbitofrontal, parietal, temporal, anterior and posterior 50 cingulate, and precuneus ROIs (9). The threshold used to define abnormal PiB PET 51 was SUVR=1.42 (9). All analysis was performed using non-partial volume corrected 52 (PVC) PET images. For comparison with non-PVC images, tau-PET with PVC was 53 evaluated. For the PVC, each PET image voxel was divided by the value in the tissue 54 mask to generate a PVC image (10) and an unsmoothed binary MRI grey matter mask 55 applied to yield a grey matter sharpened PET image.

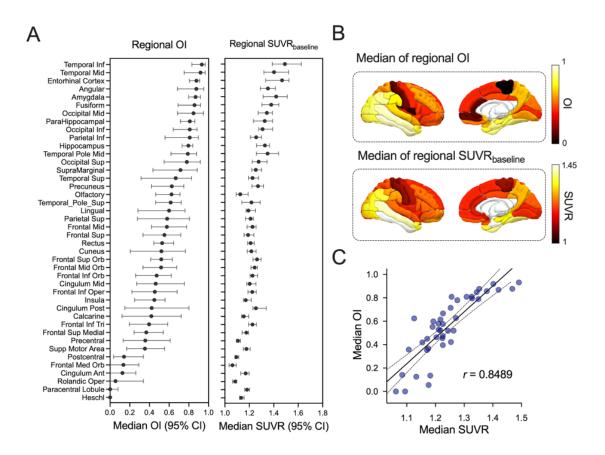
56

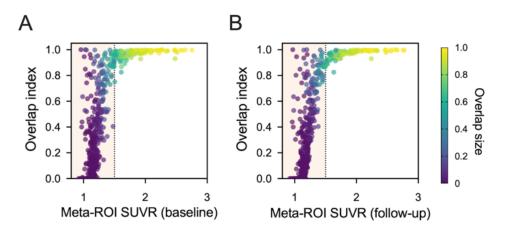

57 Statistical tests

58 The association of regional OI and regional SUVR from the total cohort was 59 assessed with Pearson's correlation to evaluate the topographical relationship of the 60 two measurements. An association of OI with SUVR in the lower SUVR range (<1.5) 61 was tested using linear regression. Meta-ROI \triangle SUVR for each individual was calculated 62 by subtracting the baseline SUVR from the follow-up SUVR and dividing by the time 63 difference in years. To investigate the association of OI with meta-ROI Δ SUVR, the total 64 cohort was separated into three sub-groups (SUVR<1.29, 1.29<SUVR<1.5 and 65 SUVR>1.5) of baseline meta-ROI SUVR, further separated into low-OI (OI<0.5) and high-OI (OI>0.5) group based on meta-ROI OI value. The difference of meta-ROI 66 67 △SUVR between groups was tested by *post-hoc* Dunn's multiple comparison test after 68 non-parametric Kruskal-Wallis tests. To address different stages of the typical 69 Alzheimer's continuum, we separated the CU participants using the amyloid positivity: 70 CU individuals with normal amyloid PET (CUA-, i.e. not in the Alzheimer's continuum)


71 and CU individuals with abnormal amyloid PET (CUA+, i.e. early in the Alzheimer's 72 continuum). Then, the clinical change seen in participants at the time points of the serial scans were grouped as CUA-toCUA-, CUA-toCUA+, CUA+toCUA+ CUtoMCI/AD, 73 74 MCItoMCI, MCItoAD, and ADtoAD. Subjects for which clinical diagnosis was not 75 available were excluded from the diagnostic group analysis. The associations with 76 diagnostic change groups were assessed by *post-hoc* Dunn's multiple comparison test 77 after non-parametric Kruskal-Wallis tests. Analysis was performed using Matlab (version 78 9.4) and GraphPad Prism (version 9.0.0).

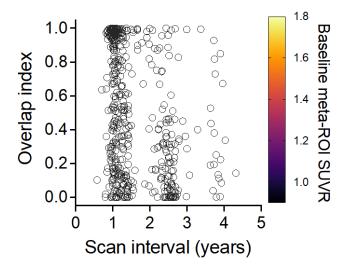
80 Supplementary Figures



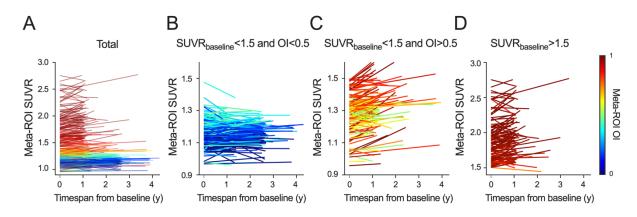

83 Supplementary Figure 1. Intensity threshold comparison. (A) In order to determine 84 the intensity threshold, experimental tests were performed for various threshold levels 85 (from 1.1 to 2.2). We found that OI was easily saturated if the OI threshold was low because too many voxels were included in the mask. In contrast, if a more stringent 86 threshold was applied, fewer voxels survived and the OI calculation became unstable. 87 88 For these higher intensity thresholds, identifying abnormal regions is not typically a 89 diagnostic dilemma and standard ROI analysis is sufficient. The threshold level used for 90 the main analysis (SUVR=1.4) was determined observationally. (B) A histogram of 91 voxel-wise SUVR values for all the gray and white matter in the brain over a cognitively 92 unimpaired group was derived. The arbitrarily determined threshold (SUVR=1.4) 93 corresponds to a right-tailed 4.68% (1.67xSD) meaning that the voxels with SUVR >1.4 94 are fairly rare in the brain of CU participants, serving as a reasonable threshold for the 95 purposes of OI calculation.

- 98 Supplementary Figure 2. Examples of high-OI cases. Three consecutive 3D scatter
- 99 plots in each dotted box represent tau-PET SUVR of each voxel in each scan from an
- 100 individual subject with high OI (>0.5) and low median SUVR at the first scan (<1.29).

104 Supplementary Figure 3. Topographical pattern of overlap index. (A) For each 105 specific brain region, the median of regional OI and regional SUVR from CI cohort was 106 displayed with 95% confidence intervals. The brain regions were sorted high to low in 107 the median of regional OI. Bilateral hemispheres were used together for OI and SUVR 108 calculation. (B) Median of regional OI and SUVR illustrated in 3D rendering plot. (C) 109 The scatter plot illustrates an association between median SUVR and median OI. r 110 indicates the Pearson's correlation coefficient. The black solid line and dotted lines represent a regression line and its 95% confidence band, respectively. 111 112


114 Supplementary Figure 4. Association of OI with baseline and follow-up SUVR. (A)

115 The scatterplot illustrates the association between baseline SUVR and OI for meta-ROI.

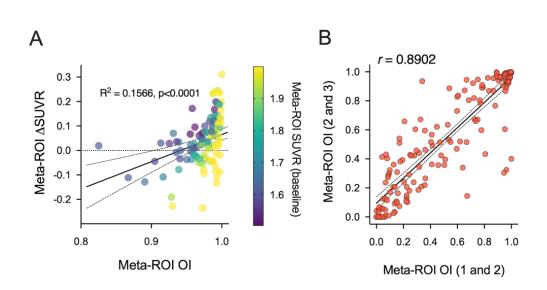

116 The dot's color indicates the overlap size. (B) The scatterplot illustrates the association

between follow-up SUVR and OI from meta-ROI. The dot's color indicates the overlap

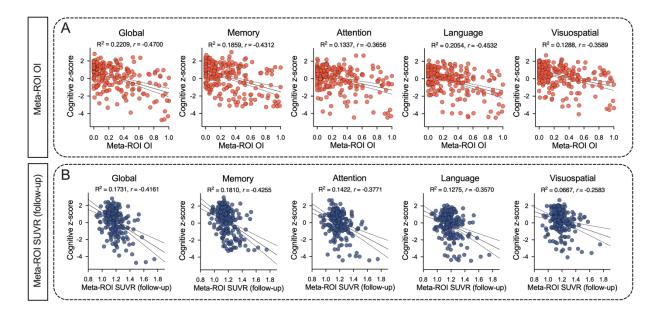
118 size.

121 Supplementary Figure 5. Association of OI with inter-scan interval.

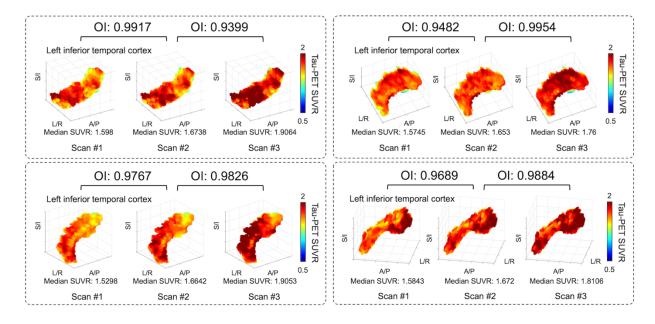
124 **Supplementary Figure 6.** (A) Spaghetti plot of SUVR trajectory from baseline to next

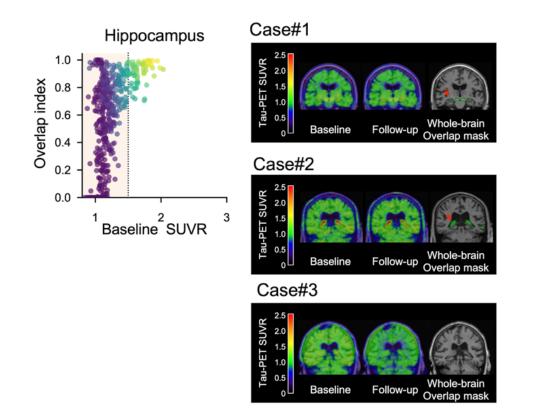

125 follow-up showing meta-ROI SUVR for all individuals. The line color was coded by each

126 individual OI. (B) Spaghetti plot of SUVR trajectory showing meta-ROI SUVR for


127 SUVR<1.5 and OI<0.5. (C) Spaghetti plot of SUVR trajectory showing meta-ROI SUVR

128 for SUVR<1.5 and OI>0.5. (D) Spaghetti plot of SUVR trajectory showing meta-ROI

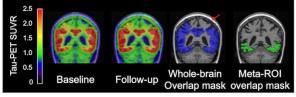

- 129 SUVR for SUVR>1.5.
- 130


Supplementary Figure 7. (A) Association between meta-ROI OI and meta-ROI ∆SUVR
where baseline SUVR>1.5. The black solid line and dotted lines represent a regression
line and its 95% confidence band, respectively. (B) Consistency of the OI metric. The
meta-ROI OI from the first and second scans and that from the second and third scans
in the cohort who had three or more time points were compared. r indicates the
Pearson's correlation coefficient.

- 144 Supplementary Figure 8. Association of overlap index with cognitive scores. Four
- 145 cognitive domains (memory, attention, language and visuospatial) and global scores
- 146 (average of all domains) were tested. Only participants who had cognitive scores were
- 147 included in this analysis (Supplementary Table1). (A) Relationship between meta-ROI
- 148 OI and cognitive scores. The black solid line and dotted lines represent a regression line
- and its 95% confidence interval, respectively. r shows Pearson's correlation coefficient.
- 150 (B) Relationship between meta-ROI Δ SUVR and cognitive scores. The black solid line
- and dotted lines represent a regression line and its 95% confidence interval,
- 152 respectively. r shows Pearson's correlation coefficient.
- 153

- 155 Supplementary Figure 9. Examples of high SUVR cases. Three consecutive 3D
- 156 scatter plots in each dotted box represent the tau-PET SUVR of each voxel in each
- 157 scan from an individual subject. OI becomes saturated (close to 1) in the high SUVR
- 158 range because serial scans with abundant tau signals tend to be consistent.
- 159

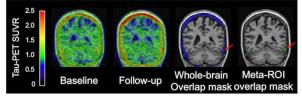
- 161 **Supplementary Figure 10. Choroid plexus bindings.** High OI was frequently
- 162 observed in the lower baseline SUVR range in hippocampus. The coronal slices show
- 163 the baseline tau-PET, follow-up tau-PET, and their overlap mask between high-intensity
- voxels (SUVR>1.4) for three representative cases. The red arrows indicate the choroid
- 165 plexus overlap between baseline and follow-up scans.
- 166


Case#1

Baseline clinical diagnosis: CU Meta-ROI SUVR – baseline: 1.2046, follow-up: 1.0286 Meta-ROI OI: 0

Case#3

Baseline clinical diagnosis: AD Meta-ROI SUVR – baseline: 1.7420, follow-up: 1.8856 Meta-ROI OI: 0.9843


Case#2

Baseline clinical diagnosis: MCI Meta-ROI SUVR – baseline: 1.2847, follow-up: 1.2663 Meta-ROI OI: 0.5179

Case#4

Baseline clinical diagnosis: FTD Meta-ROI SUVR – baseline: 1.0579, follow-up: 1.0208 Meta-ROI OI: 0.8018

- 168 Supplementary Figure 11. Meninges binding. The coronal slices show the baseline
- 169 tau-PET, follow-up tau-PET, overlap mask of whole brain and overlap mask within the
- 170 meta-ROI for four representative cases. The red arrows indicate the meninges overlap
- 171 between baseline and follow-up scans.
- 172

173	Supplementary	Table 1	. Participant	demographics.
-----	---------------	---------	---------------	---------------

Baseline Characteristics	Summary
Number of participants (total)	339
Total tau-PET scans, n (%)	
2	189 (55.75)
3	129 (38.05)
>4	21 (6.19)
Time between consecutive scan, years*	
Median (IQR)	1.24 (1.04, 2.32)
Min, max	0.58, 4.32
Age at baseline PET, years	
Median (IQR)	68 (62, 76)
Min, max	33 95
Education, years {1}	
Mean (SD)	15.39 (2.66)
Male sex, n (%)	195 (57.52%)
PiB SUVR at baseline {16}	
Median (IQR)	1.72 (1.34 2.14)
Min, max	1.16 3.38
Diagnosis at baseline, n (%) {1}	
Cognitively Unimpaired	172 (50.74)
Mild Cognitive Impairment	62 (18.29)
Alzheimer's Dementia	47 (13.86)
Lewy Body Dementia	9 (2.65)
REM sleep Behavior Disorder	7 (2.06)
Frontotemporal Dementia	9 (2.65)
Posterior Cortical Atrophy	8 (2.36)
Logopenic Progressive Aphasia	2 (0.59)
Progressive Supranuclear Palsy	1 (0.29)
Progressive Fluent Aphasia/semantic aphasia	4 (1.18)
Progressive associative agnosia/prosopagnosia	1 (0.29)
Unknown	17 (5.01)
APOE ε4 carrier, n (%) {3}	128 (38.10)
Short Test of Mental Status score at baseline, median (IQR) {15}	35 (31 37)
Cognitive z scores at baseline, median (IQR)	
Global {174}	0.6906 (-0.3220 1.1513)
Memory {159}	0.6084 (-0.4529 1.3066)
Attention {165}	0.3680 (-0.4391 0.9368)
Language {159}	0.3230 (-0.4653 0.8395)
Visuospatial {170}	0.5789 (-0.0615 1.2111)

^{*} Based on all scans for all individuals.

175 {} Brackets in the characteristics column indicate the number of participants missing this

176 particular variable.

Baseline Characteristics	Summary
Number of participants (total)	235
Total tau-PET scans, n (%)	
2	158 (67.23)
3	67 (28.51)
>4	10 (4.26)
Time between consecutive scan, years*	
Median (IQR)	1.03 (0.98, 1.25)
Min, max	0.58, 2.92
Age at baseline PET, years	
Median (IQR)	74 (69, 79)
Min, max	56 90
Education, years	
Mean (SD)	16.32 (2.51)
Male sex, n (%)	112 (47.66%)
AV45 SUVR at baseline {75}	
Median (IQR)	1.17 (1.03 1.36)
Min, max	0.81 1.72
Diagnosis at baseline, n (%) {1}	
Cognitively Unimpaired	127 (54.04)
Mild Cognitive Impairment	78 (33.19)
Alzheimer's Dementia	30 (12.77)
APOE ε4 carrier, n (%) {6}	128 (48.47)

177 Supplementary Table 2. ADNI participant demographics.

178

179 * Based on all scans for all individuals.

180 {} Brackets in the characteristics column indicate the number of participants missing this

181 particular variable.

Supplementary Table 3. Image IDs for ADNI cohort.

MRI_ImageID											
1573620	11084935	1655397	11142379	1990073	11325694	1758062	11316836	1640943	11039209	11185266	I1004681
1906797	11266356	1910675	11184047	11153132	11019265	11068952	11006005	1801187	11222562	11325980	I1182315
I1050345	1695035	1655561	1895057	11086094	11188738	11047958	11190195	1955110	1766317	11012942	1996464
1687384	1916119	1920960	11142367	11253141	11326332	11229050	11325533	11116518	1992457	11320847	I1169375
1848000	11060804	1594111	11264767	11136371	11037228	11189749	11091694	11276857	1852333	11021751	11045984
11001975	11244529	1883929	11223029	11267719	11219059	11116451	11286418	1515359	1985405	11195531	11227239
1774046	1905391	1909607	11342083	1879552	1927354	11263792	1956599	1775626	11154866	11328524	11046736
1854584	11060894	11044187	1987370	11196891	11117449	1901163	11119606	1903950	1832079	11023583	11226810
11010814	11228309	11225879	11158135	1881980	1916492	11042399	11278852	11081537	1974779	11215774	
1884806	1937847	1767926	1929044	11025881	11116728	11215232	1984878	1520149	11020096	11329845	
11042944	11081546	1902899	11135165	11225896	1957103	1729610	11221363	1914038	11185714	11049755	
1835740	1974757	1860224	11251421	1666359	11165397	1858531	11050518	1781037	11069951	11245803	
1988538	11157071	11011352	1956815	1944327	1991861	11010150	11236425	1905324	11260118	1507327	
11270100	1876555	1569607	11275051	1849901	11211451	11173416	1925543	1794165	11186906	11056754	
1912447	11025741	1854572	1947480	1996840	1728268	1898538	11214021	1922614	11326101	11225162	
11235535	11186516	1748885	11264016	11174915	11117314	11040539	1909791	1674977	1841950	1858503	
1973293	1940882	1876699	1714589	11061844	11293452	11251515	11116890	1882274	11162407	11161837	
11160987	11132797	11020355	1942773	11259263	1527063	11014602		1727179	1530861	1839474	
11001084	1985197	11020137	11263811	11058589	1818409	11215046	11257600	1859212	1784788	11170878	
11185102	11160021	11195772	11003363	11253903	1599501	11038250	1879209	1890738	1549854	1887923	
11005735	1998447	11327210	11175340	1919238	1824980	11278681	11092240	11042463	1796487	11116406	
11227039	11170118	11092176	11003993	11058029	1709524	1908698	1980928	11219049	1573499	11229457	
11005884	11041482	11282405	11186737	1955473	1914845	11303143	11226508	1521553	1799802	1935952	
11196215	11193331	11177672	11030818	11117701	1952046	1892784	1977141	1871944	1911048	11264670	
11012896	1902070	11328418	11227943	11285188	11146201	11238877	11123765	11018794	11230243	1961814	
11205679	11079424	1935824	11114881	1957065	1973541	1874427	11304066	11184723	1634514	11136571	
11016012	11267860	11274808	11296792	11281495	11214910	11033744	11092329	1508766	1861323	11299107	
11190913	1784921	1946297	1975780	1938292	1971779	11233982	11120772	1893677	1638471	1874879	
1905360	1914397	11086072	11170596	11072872	11190623	1963756	11281547	11053655	1858986	11252024	
11058014	11225000	11241872	1880427	11258040	11003961	11167981	1945601	1931614	11004652	1892759	
11236721	1908586	1958011	11079905	1942819	11223550	1974164	11122101	11263330	11169363	11256135	
1963926	11067189	11117156	11179769	1070545	11017725	11175747	11281566	11003918	1663669	1900796	
11133565	11239410	11278640	1904007	11250808	11196850	1947589	11017005	11226896	1878250	11284408	
1965825	1899473	11029584	11067140	1984807	1644636	11182766	11181047	11331291	1705049	1946980	
11149858	11072377	11224869	11224698	11165491	1915902	11004663	11038941	11003831	1863101	11167318	
1969773	11072077	1874250	1634541	1996786	1654979	11179083	11261558	11180976	1703846	11299334	
11248433	1907713	1029492	1814950	11174125	1914178	1699539	11226101	11029798	1862838	1882167	
1978374	11072841	1864643	1774420	11084921	1641037	1943600	11220101	11226436	11017893	11040207	
11158785	11254369	11023178	1847364	11175032	1931962	11293823	11053608	11021434	11180387	11063917	
1989656	11037958	11184858	1582706	11045204	1884453	11040222	11280955	11199335	1928920	11258251	
11170103	11241180	1879343	1814318	11233828	11046066	11264179	11003342	11042262	11071232	11019281	
11020186	11023727	11030385	1845672	1769864	11213040	11264173	11165186	11233686	11257943	11237279	
11214052	11282313	11189912	11091790	1919448	1971712	11269091	11027771	11073644	1931630	1923853	
1925944	1820302	11274391	11285558	11053099	11195542	1859714	11207638	11243100	11073317	11075536	
11064236	11173060	11155909	1508493	11241095	11287821	11212969	11040533	1741448	11256452	1763562	
11244513	1820315	1848162	1941140	1817507	1881729	1905866	11226120	11221690	1991768	1893552	
1902659	11172863	11173479	1872012	1959742	11033364	11071981	11220120	11194945	11164436	11037531	
11060837	1905773	1831854	11190570	11278606	11185877	11276990	11293353	11023753	11000359	11225971	
1695091	11043303	11152869	11133905	11017993	11008726	1976382	1901027	11273042	11177292	11223971	
1942907	11227288	1844181	11149150	11194953	11177833	11189640	11234305	1744805	11003730	11333802	
1342301	11221200	1044101	11143130	11134333	111/1000	11103040	11204000	1/44005	11003730	11333002	

B32901 I111091 B/74812 I119800 I1002757 I1230231 I123403 I1195100 I1002757 B15138 I1226643 B02853 I1175800 I105594 I1055764 I14714 I1014161 IP221400 IB3346 IP2377 II001514 IP32651 IP32757 IP32651 IP32765 IP32767 IP32673						AV1451	ImageID					
B15198 1128443.1 1922883 1175880 1143244 1103766 11242710 1193661 175277 1190617 1095422 1817873 1672813 1174237 1122173 1132442 1132442 1132442 1100747 1090232 1677813 1174237 1122473 1122472 1122473 1152462 1151718 1100741 1132042 1090232 11055749 1152492 1122473 1122473 1122473 1152492 1151744 11005619 11221717 1122493 1122493 1122493 1122493 1122493 1122493 1122493 1122493 1122493 1122493 1122493 1122493 1122493 1123413 1123413 1123413 1123413 1123414 1134143 1123414 1134143 11234143 1123414 1134143 11234143 11234143 11234143 11234143 11234143 11234143 11234143 11234143 11234143 11234143 11234143 11234143 11234144 11234143 11234143	1632551	11111061	1678812	11158520	1996426	11325693	1759978	11320231	1735701	11044233	11185100	11002757
H1654822 IP16727 H67811 H90622 H196851 H165529 H1221773 H1001616 JP762011 H1020455 H107747 H86903 H162527 H677911 H1224137 H103172 H1064703 H123176 H1064703 H197136 H86514 H1232462 H1725476 H1722446 H156477 H1724176 H85514 H133172 H1064703 H197136 H166647 H1220567 H1176207 H1221244 H56648 H156478 H156487 H157487 H156487 H157487 H156487 H157487 H157487 H156487 H157487 H157487 H156487												
IB68022 IB17733 IB124037 II24137 II322425 II327166 II117128 II001314 II320670 II170613 IM01342 IT245633 IB68111 II224740 II226677 II126877 II106137 II005176 II226677 II22657 IT05150 II225175 II022708 IIB01444 IT761560 II526441 IT761576 II22677 II226175 II226175 II226177 II226176 II226177 II221616 II226176 II226177 II221715 II222616 II226271 II226716 II226716 II226716 II226716 II226716 II226716 II2226717 II226717 II226717												
11001342 11245623 1885431 11224517 1126082 1555842 1965481 11795667 11228517 11066569 1854548 11057749 1102409 11221957 11064106 1122112 11016306 1123112 110164106 11221127 11016306 11221127 110164106 11221127 110164106 11221127 110164106 11221127 110164106 11221127 110164106 11221127 110164106 11221127 110164106 11221110 110164106 11221110 110164106 11221110 110164106 11221110 11017427 11017427 110164106 11226110 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 11016406 1126414 110164106 1126414 110164106 1126414 11017428 11017428 110164106 1126414 11017428 11017428 11017428 11017428 11017428 11017428 11017428 1												
11001342 11245623 1885431 11224517 1126082 1555842 1965481 11795667 11228517 11066569 1854548 11057749 1102409 11221957 11064106 1122112 11016306 1123112 110164106 11221127 11016306 11221127 110164106 11221127 110164106 11221127 110164106 11221127 110164106 11221127 110164106 11221127 110164106 11221127 110164106 11221110 110164106 11221110 110164106 11221110 110164106 11221110 11017427 11017427 110164106 11226110 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 110164106 1126414 11016406 1126414 110164106 1126414 110164106 1126414 11017428 11017428 110164106 1126414 11017428 11017428 11017428 11017428 11017428 11017428 11017428 1	1848039	11062327	1678791	11320862	11075017	11041479	1968220	11122345	11281760	1855614	11033172	11064703
1863436 11057649 11050819 1989161 1122783 1117483 180306 1122807 1912510 183401 11040053 11237135 1866723 1944916 1779832 1929657 11033141 11118415 11228929 1198299 11032021 1135391 11037021 1844301 189120 1891421 1105723 1174860 1999576 1594492 111073021 184331 11012311 11012735 1138597 11037021 112221616 1195997 113522 112228161 11228416 11228416 11228416 11228416 11228416 11228416 11228416 11228416 11228416 11228416 11228416 11228416 11228416 11228416 11228416 11228416 11228416 11228416 11238464 11228416 11238464 11228416 11238464 11228416 11238464 11238464 11238464 11238464 1133735 11238464 11338737 11238464 11338376 11238464 1133856 11656527 11238464												
I1010005 I1221125 I1227296 I1157437 I182211 I148478 I124456 I1288029 I1083768 I174832 I1217092 I186723 I1842590 I894766 I17282547 I1999996 I777855 I1221516 I914642 I1158971 I1073021 I1844301 I891768 I1221516 I91462 I1158971 I1022658 I1110515 I1110515 I1110515 I11110515 I1125414 I117757 I1039926 I1254144 I1177574 I10399261 I1325415 I1531757 I1034477 I1044005 I1132147 I11110515 I1254145 I111110516 I11334473 I1027169 I194716 I1254455 I153759 I1035467 I103502 I762010 I151824 I877653 I1022865 I1964783 I1027199 I1254474 I1209070 I803328 I105592 I762101 I151824 I877653 I1022865 I196563 I1139661 I1228474 I1969665 I1965783 I9	1761550	1906514	1912364	11343146	1877000	1929659	11261995	1982149	1776104	11155676	11328673	11065699
IBB6723 IH4916 IT79832 ID929657 IH033141 IH18615 IE24000 IB9676 I566400 IH027264 IH35097 IB44301 IB91120 IB61627 IT24031 IT71577 IT77420 IB71078 IH05728 IT81891 IH15897 IH15199 IH15197 IH172281 IH18917 IH17287 IH172887 IH1728864 IH228067 <t< td=""><td>1854548</td><td>11057549</td><td>11050819</td><td>1989161</td><td>11227883</td><td>11117483</td><td>1890306</td><td>11122087</td><td>1912510</td><td>1834601</td><td>11043063</td><td>11237135</td></t<>	1854548	11057549	11050819	1989161	11227883	11117483	1890306	11122087	1912510	1834601	11043063	11237135
11052023 11082590 184430 1136606 11223547 1988966 1776765 1125116 1916462 11185967 11073021 1844301 1981120 1861627 11204271 11716777 1175420 1871078 11205646 1990974 1262816 1523969 1973677 11044759 1854800 1448017 1102174 1757443 1990211 1235624 11327165 112268171 1173636 11236170 1955224 11327165 112268171 1175658 1102465 11236171 11168161 125730 115559 11166064 1175658 1106668 1102665 1102665 1102665 1102665 1102665 1102665 1102665 1102665 1102665 1106661 1102665 1106661 1102665 1106661 1102665 1106661 1103665 1106661 11036661 1102665 1106661 11036661 1102667 11066761 11066761 11067618 1101721 1556841 1008507 1126766 1001721 1556841 1008507 1126767 1126776 11066776 10056776 11066767 11066767 <	11010905	11229125	11227296	11157437	1882211	1948378	11044156	11288929	11083089	1976392	11217092	
184301 1981120 1861627 11/26403 17/1677 11/175420 17/078 11/057228 17/1192 11/11058 11/24599 11/88115 1879716 1645884 11/20011 11/21571 </td <td>1886723</td> <td>1944916</td> <td>1779832</td> <td>1929657</td> <td>11033141</td> <td>11116815</td> <td>11204900</td> <td>1989766</td> <td>1568490</td> <td>11027264</td> <td>11330199</td> <td></td>	1886723	1944916	1779832	1929657	11033141	11116815	11204900	1989766	1568490	11027264	11330199	
1989358 111582:1 11009363 1952961 1948931 11012785 11236646 1909074 11262816 152864 1973677 11049759 1854890 1948017 1002174 1757443 1899021 11231670 1933524 11327165 11222651 1992116 1943320 1875798 1722171 11073404 11173455 11023676 11161616 1925730 11163569 11160604 11161471 1137473 11027199 1943715 1226425 1535759 110236169 11032622 1762010 1531524 1857663 11028265 194488 11026299 1126527 11072607 1828552 11913616 1038572 1124424 1137376 11726007 153584 1900052 11232169 1133156 11032828 11035653 112278636 1186615 1956633 1926843 11014816 10268512 11054761 1726480 1133156 11032816 11248149 1050907 1036354 1014482 13731481 11226471 157688 1801328 1814169 11324818 11228168		11082590							1916462	11185997	11073021	
I1168115 IB79716 I645864 I1290919 IE55396 I1215414 I1711597 I939826 I797939 I1191369 I1040083 I1973671 I1147407 I759181 I1262400 I1171298 IB39801 I1038465 II967130 IB65059 II660730 IB73235 I199216 I943373 I102799 I943715 I1284425 I1325761 I111616 I25730 II136596 II160604 I1102865 I994448 I1026299 I265227 I072407 I825522 I1035169 I1035292 I762010 I531524 IB57653 I1028651 I135066 I1024097 I269070 I609338 I1027616 I103572 I122129 I575577 I1234818 I1038707 I132656 I132661 I105663 I928483 I1318141 I1226461 I575677 I1234818 I1039707 I132773 I1244444 I1228642 I1120276 I054762 I23009 I668770 I1039767 I123166 I132908 I117942 I980567 I1320639 I192244 I653505 I1326903 I1047474 <td></td> <td>1981120</td> <td></td> <td></td> <td></td> <td></td> <td>1871078</td> <td></td> <td>1781192</td> <td>I1111058</td> <td></td> <td></td>		1981120					1871078		1781192	I1111058		
H97877 H1049759 H854890 1948017 1102174 1757443 H89021 H1231670 1935224 H1327165 H1226651 1992116 1943320 1875798 1722171 11077404 11173455 11236775 11116816 1925730 11163599 1160509 1160509 1160509 1160509 1160509 1160509 1160509 1160509 1160509 1160509 1160509 1160500 1160509 1160509 1160509 1160509 1160509 1160509 1160509 1160509 1160509 1160509 1160509 1160500 1133166 11325169 1133166 11326169 1133166 11326072 112209 157577 1123418 1137070 11036651 11326072 112249 157577 11230070 11326072 11224919 157577 1123007 11226072 11230070 11032607 11220726 11054762 1133063 1194099 11196164 11325601 11326072 11227973 11226773 11226677 1116508 11320072						11012521	11012785		1909074	11262816	1529864	
11262171 11187407 1759181 11262400 11171285 1839801 10038465 1957413 168509 1860730 1873235 1992116 19433715 1126425 1535759 1721428 116516 1925730 1163599 11605665 11026655 1994488 1002629 1256227 11072607 182852 121428 1262032 1686273 1724442 1167658 11082861 1105506 11125007 1609333 1655452 1917166 10036572 1122199 1575577 11234818 11039370 11036503 1276636 1185151 1965633 1928434 131811 11226547 1576868 1801328 1941809 11094768 1113493 11057990 1117424 1960647 1916364 110226547 1576868 1801328 1941809 11094768 11134593 11057990 1117424 1960544 11226547 11730470 11230079 11230079 11230079 11230079 11230079 11230079 11230079 1130933 1173745 11044544 11226542 11230569 11335537	I1168115	1879716	1645864	11290919	1855396	11215414	11171597	1939926	1797939	I1191369	11046083	
1992/16 1943320 1875798 1722171 1073404 11173455 11236776 1116816 1925730 11163599 11160604 11026655 1994488 11026299 11265227 11072607 1828552 11262032 1869273 1734442 1137658 11082828 11005530 11325965 11185074 1920023 1832340 11277166 11064612 11054761 1796000 1133156 11232169 1118117 11227651 110486323 1655452 1916166 11036771 11221299 1123156 11393170 11036653 11276636 11189615 1956633 1928677 191634 1104852 1873804 1907301 11220072 11097476 191642 11329807 11228773 11286731 1114644 11226692 1130353 1139033 1132803 1139303 1139256 1133303 1132803 1139303 1132803 1139303 1132873 1132873 1130936 113924 1160534 1105375 1123071 <td< td=""><td>1973677</td><td>11049759</td><td>1854890</td><td>1948017</td><td>11002174</td><td>1757443</td><td>1899021</td><td>11231670</td><td>1935224</td><td>11327165</td><td>11228651</td><td></td></td<>	1973677	11049759	1854890	1948017	11002174	1757443	1899021	11231670	1935224	11327165	11228651	
I1161478 I1137473 I1027199 I943715 I1258425 I535759 I103569 I1025022 I762010 I531824 I857653 I1187329 I116661 I1198006 I1024097 I1260070 I609338 I105805 I916758 I901721 I55841 I900852 I1032570 I1036551 I122765 I104349 I1058333 I656422 I916106 I1035872 I221299 I575577 I123418 I1033650 I127866 I1195683 I928433 I1318181 I1226547 I576868 I801328 I941809 I1196164 I1139569 I118443 I105790 I117444 I940367 I96334 I1309539 I11420072 I1230070 I1036503 I139234 I96334 I1309539 I1149248 I805303 I1399244 I835503 I135503 I1028729 I1074428 I123745 I1244747 I1045199 I97992 I576858 I861365 I1335503 I1028729 I1297975 I800519 I1226242 I1206271 I1						1839801	11038465	1957413	1685059	1860730	1873235	
H1026655 I994488 H1026229 H265227 H1072607 H28252 H123428 H262032 H68273 J784842 H167568 H1082828 H1005530 H1325985 H185074 H920023 H832340 H1277166 H036512 H054761 J79600 H133156 H038288 H103653 H127875 H1038434 H106533 H926434 H1318161 H226547 H576668 H01328 H941809 H196168 H1936569 H114133 H057930 H117942 H980567 H916344 H102676 H043652 H736848 H037301 H280072 H10747676 H916842 H1230678 H173145 H961041 H1012984 H16634 H1309559 H1395053 H1395053 H1395053 H139505 H1335057 H1444 <td></td> <td></td> <td></td> <td></td> <td>11073404</td> <td>11173455</td> <td>11236776</td> <td>11116816</td> <td>1925730</td> <td>I1163599</td> <td>I1160604</td> <td></td>					11073404	11173455	11236776	11116816	1925730	I1163599	I1160604	
11187329 11169561 11024097 11269070 1609338 11059605 1916758 1901721 1555841 1900852 110282169 11181217 11122765 11043849 1058823 1655452 1916106 11038872 1122129 1575577 11234818 11039770 11036563 11276635 11186151 1956633 1128047 1916364 11014852 1873844 1907301 11280072 11047875 191684 11393907 112297973 11245731 1124573 11268724 11309539 11199224 1635350 1135903 11208729 11079439 197428 11299208 112292773 1124471 11045199 197192 1576858 1861365 11335037 11191956 1726656 1873086 1879051 11229208 11202078 11074313 11191954 1964166 11222058 1105474 1806089 121073 1191956 11041349 11333351 1177259 11074913 11119154 1964166 11220578 1105474 1806089 121073 11916561 11624074 1	11161478											
110028228 11005530 11325985 11185074 1920023 1823240 11271166 11086512 11054761 1796600 1113316 110329770 11036653 1127656 11185615 1056633 192843 1318181 11226547 1576868 1801328 1941809 11194766 11916442 11329807 11227973 11217973 11265731 1114444 11226647 11054762 11230069 1968770 11208729 11079439 1974428 1131145 1961041 1012934 1916934 11309539 11199224 1635350 1133937 11026522 1127676 11291668 11292020 11285731 1114444 112066271 11118166 1894156 1640890 1921073 1191556 1729555 1973368 1979051 1943916 11223591 1967179 1940476 1005528 1948327 1104509 11224239 11226771 11074913 1139266 11222696 11220313 1169969 1228226 11064502 11224378 1176524 1124577 11254771 11275775	11028655											
11181217 11122765 11043849 11058323 165452 1916106 11035872 11221299 157577 11234818 11196168 11193569 11181493 1105790 1117942 1980567 1916364 11014852 1873894 1907301 11280072 11047767 1916842 11329807 11227973 11285731 11146464 11256924 11105276 11054762 1120076 11054762 11230069 1968770 11208729 11079439 197428 1127173 11282375 11214947 11045199 1971992 1576858 1813550 1135503 11191565 1729585 197368 197368 1979051 1943092 1991914 1266271 1118166 1894156 1640880 1926274 11084009 1123473 1137559 11074913 11191054 1964166 11222058 11054764 1806689 1126524 11084509 11234747 1107905 1113776 1117531 1117533 1122296 11263013 11169969 11289208 11960183 1931634 1045422 1220781<												
11036970 11036653 11276536 1118615 1956633 192843 11318181 11226547 1576688 1801328 1941809 11047676 1916842 1132807 11227973 1128731 11146464 11256924 11102762 11024762 11230809 196937 11208729 11079439 1974428 11137145 1961041 110234 1916934 11302539 1119924 1635350 1135503 11102662 1127676 11291668 11299208 1124947 1104519 197992 1576858 1861385 11355357 1915150 1104139 1139353 1177259 1073913 11910164 11226571 1118166 1884156 1640809 1922053 1905150 1104139 1139353 1177259 1072913 11791054 1166911222058 1105476 11005528 194837 11263775 1952534 1985145 11014149 1943964 1122359 1126374 11069966 11304376 11156624 1124672 11280781 11263778 11229671 11243647 1703850 1999208<												
I1196168I1193569I1181493I1057990I1117942I980567I916364I1014852I873894I907301I1220072I1208729I1079439I974428I1137145I961041I1012934I916934I1309539I119924I635350I1135903I1028622I1267876I1291668I129200I1222375I124447I1045199I971992I576886I861365I133537I1915150I1041349I1139353I1177259I1074913I91191054I964166I1282058I1064764I860689I226214I1064509I123429I1296765I880519I1252422I1029765I167911I967179I940476I1005528I948327I1253775I952534I985145I1014149I943916I1023593I979045I1122206I1263013I1169699I1289208I966777I1067567I1122007I1185747I107096I1023778I1137531I1282205I1037548I66508I959272I1156624I1224622I1280781I902477I125409I1196938I947218I1003546I879650I1304876I990183I931634I1046001I1008666I1002243I961476I1212967I1181668I1331674I703850I94228I990183I931634I1046011I102652I94338I105345I1051418I101745I1304876I990183I931634I1046011I1026652I101767I1212677I126671I113068I1331674I703850I13048												
Inder876I916842I1329807I122773I1285731I1466464I1256924I1120276In054762I12300691968770I1208729I1079439I974428I1137145I961041I012934I916934I1309539I1199224I635350I1335357I1191956I729585I973388I979051I943092I991914I1266271I1118166I894156I640890I921073I915105I1041439I1133535I1177259I074913I191054I964166I1282058I1065764I860689I1265214I1064509I1234239I1296765I880519I1258422I1028675I1167991I997179I940476I1005528I948327I1253775I952534I985145I1014149I943916I1223593I979045I1122296I1263013I116999I1289208I156624I1246522I1280781I902477I1252009I1037778I1175531I122296I1263013I1169969I129872I156624I1246622I1280781I902477I1252409I116676I103537I1122957I1304876I1304876I980183I931634I1046001I1068666I1002243I661476I122957I1121647I120456I163456I133167I980183I933778I1034882I83276I122677I1226870I1226870I1226873I104545I863145I1173776I999500I1236749I872446I634555I0101457I88376I1226833I1027683I122683<												
112087291107943910744281137145196104111012834191893411396331119224163550113590311028221128787611291688112920811282375112444711045199197192157685818138511335031191956172958519733681979051194309219919141126627111111816618841561640890192107319151501104413491139353111772591107491311191054196416611282058110547641860689112652141108450911224339112967651880519112584221102897511167991194047611005528194832711253775195253419851451101414919439161122359319790451112229611263013111699691128920811566241122077110675571112200711185741100005110377781117531112820501037548166538619592721980183193163411046001110696661100224316614761121295711181068113316741703850195428198018319316341104600111069661100224316147611021471102456211073761980183193163411046001110696611002715211181071102141811001745186281111173776198018319317811034821822573111745301914307175843711226474112366217054421123982 <tr<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<<>												
I1028622I1267876I1291668I129208I1282375I1214947I1045199I971922I578658I861365I1335357I1191956I709585I773968I973058I973051I943092I991914I1266271I111816I894156I640890I926274I1915150I1041349I1139353I1177259I1074913I1191054I964166I1282058I1054764I800589I226274I1084509I1224239I1296765I880519I1258422I102875I1167991I967179I940476I1005528I948327I1966777I1067557I1122007I1185747I1070905I1037778I1175531I1282205I1037548I665386I959272I1156624I1245622I1280781I902477I1252409I109938I947218I1039309I1204356I879650I304876I990183I931634I1046001I1066666I1002243I661476I1212957I181686I1331674I703850I94228I1178524I1083272I126074I1225478I1166025I914338I1005345I1051418I1010745I863145I1173776I890183I93778I1034822I825213I1174500I94307I758437I1226471I1024633I1044622I862881I948324I994547I10867262I102351I1174509I931886I1227774I105418I1074530I104452I86281I948324I99955I820874I1084522I65025I609005I1027552 <td></td>												
I1191956I729585I973388I979051I943092I991914I126271I118166I894156I640890I921073I1915150I1041349I1139353I1177259I1074913I1191054I964166I1282058I1054764I860689I1265214I1084509I1234239I1296765I880519I1258422I102875I1167991I961779I940476I1005528I94327I1253775I952534I985145I1014149I943916I1223593I979045I1122205I1263013I1169969I1289208I1156624I1245622I1280781I902477I1025409I103778I1175531I128205I1037548I66598072I1156244I1045622I1280781I902477I1252409I1196938I947218I1039309I1204356I879650I1304876I990183I931634I1046001I1069666I1002243I661476I1212957I1181068I1331674I703851I177776I989600I1236749I874246I634595I1011867I688379I1226870I1212547I1232682I705442I1299329I1215678I933778I1034882I82513I1174530I914307I758437I1024185I82681I948324I994547I1086582I860255I609005I1027052I755437I1226970I1226870I12218675I1226871I1073656I1994547I106582I860255I609055I1004705I948307I1265825I103486I927877I1073												
915150 1041349 113353 1177259 1074913 119164 964166 1282058 1054764 860689 126214 1084509 1234239 1296765 1880519 1258422 1029875 1167991 967179 1940476 1005528 1948327 1253775 152534 1985145 10114149 1943916 1223593 17799145 1122295 1136731 1199969 1289208 1966777 1067557 1122007 1185747 1070905 1037778 1175531 128205 1037548 665386 959272 1156624 1245622 1280781 1902477 1252409 1196938 947218 1039309 1204356 879650 1304876 1980183 931634 1046001 1069666 1002243 661476 121257 1181068 1331674 T03850 954228 11178524 1083272 1226474 1225478 118625 914337 1226870 1212547 122682 123634 1173776 199600 1236749 1874246 634595 1011867 688379 1226870 1212547 122683 1021608 1041516 1176101 125458 1033161 1035163 1027052 715595 948585 1332635 1021608 1041516 1176101 124558 1033941 1185226 583146 1051880 888176 106333 1126033 117753 1073656 199959 1053934 1136526 153146 105189 888176 106333 118												
11084509112342391129676518805191125842211029875111679911967179194047611005528194832711253775195253419651451101414919439161122359319790451112220511063013111699991128920819667771106755711122007111857471107090511037778117553111222051103754816653661959272111562411245622112807811902477112524091109938194721811039309112043561879650113048761980183193163411046001110696661100243166147611212957111810681133167417085019542281117852411083272112264781137761122647811031674170850195422811215678193377811034882182513111745301914307175843711224871122663311021608119454711086582186025160900511027052171559519458581132635112266331102160811041516119454711085821805410117456919318861122777411059052110334201175287110736501999951105393311045791112304371126504110218819321711128970711186001124179118791771822921123915110457911123032811012933111177051107135611053661110479501105398311494145118723141												
11253775195253419514511014149194391611225731979045111229611263013111696991128920819667771106755711120071111857471107090511037778111755311128220511037548166538619592721115662411245622112456221128620911096966110022431661476112129571118106811331674170385019542281117852411083272112602741122547811060251914338110053451105141811010745186314511173776198060011236749187267211260274112254781101867168839911226870112248721123268217054211299291121567819337781103488218251311174530191430717584371122417110344521862881194324199454711086821865025160900511027052171559519458581133263511226833110175871107365019995911053941118522615831461105188018881761106393311186099112128819321771125970711186600112417911879177182229211239151104579111230328110129331117705110713561105366119995551820839140438411872314166771911246941133949111602411239631125871112389361104570511053883110438411872341962921963437<												
19667771106755711122007111857471107090511037778111755311128220511037548166538619592721115662411246522112807811902477112524091119693819471811033009112043561879650113048761980183193163411060966110022431661476112129571118106811331674173650195422811175241108327211260274112254781166025191433811005345110514181101074518631451117377619896001123674918742461634595110118671688379112268701121254711232682170544211293329112156781933778110348821825213111745301914307175843711224187110445218628811948324199454710865821865025160900511027052171559519458581132635112266331102160811041516111761011125455811023510185041011174569193188611277704110590521103342011175287110365019999591105393411852261583146110518801888176110639331112603311212587110656111053661110475011053983110438411872314176771911214694111339491116024112396311258171112587611266311127608811045851124693411276863112465241102986811070544193												
111566241124562211280781190247711252409111969381947218110393091120435618796501130487619801831931634110460011106966611002243166147611212957111810681133167417038501954228111785241108327211260741122547811160625191433811051418110174518631451117377619896001123674918742461634595110118671688379112268701121254711232682170544211299329112156781933778110348821825213111745301914307175843711224187110444521862831194832419945471108658218650551609005110270521715595194585811326351122663311021608110415161117610111254558110235101850410111745691931886112777041105905211034201117528711073650199959511053934111852261583146110518801888176110639331118609911201288193217711259707111866001124179118791718229292112391511045791112303281101293311177551107365011047950110539831104384118723141767719112469411139499111602411239631125817111238936112266311127808811190145110938471916329196433711265504110298681107544 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
1980183193163411046001110696661100224316614761121295711181068113316741703850195422811178524110832721126027411225478111660251914338110053451105141811017451863145111737761989600112367491874246163459511011867168837911226870112125471123268217054421129329112156781933778110348821825213111745301914307175843711224187110445218622811948324199454711086582186502516090051102705217155951945858113326351122663311021608110415161117610111254558110235101850410111745691931886112777041105905211033420111752871107365019999591105939411185261583146110518801888176110639331186099112012881932177112597071118660011241791187917718222921123391511045791112303281101293311117705110713561105366111047950110539831104384118723141767719112165041102986811070544193911519614941939955182083918454981129088411079242111851318958991123158911243166110736561113161011070646111734961115893515225671124603411276633112417581106586 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
11178524110832721126027411225478111660251914338110053451105141811017451863145111737761989600112367491874246163459511011867168837911226870112125471123268217054421129932911215678193377811034882182521311174530191430717584371122418711044452186288119483241994547110865821865025160900511027052171559519458581132635112263331102160811041516111761111254581102351018504101117456919318861127770411059052110334201117528711073650199995911059394111852261583146110518801888176110639331118609911201288193217711259707111866001124179118791771822292112339151104579111230328110129331111770511071356110536611104795011053983110438411872314176771911246941113394911660241123946311253151964941122663111278088111901451109384719163291963437112655041102968811073656111316101107064611173496111589351522567112460341127686311247581105686175838111256522177086811241113182088718500201941743181775918769661940749112395481												
19896001123674918742461634595110118671688379112268701121254711232682170544211299329112156781933778110348821825213111745301914307175843711224187110444521862881194832419945471108658218650251609005110270521715595194585811326351122663311021608110216081117610111254558110235101850410111745691931886112777041105052110334201117528711073650199995911053934111852261583146110518801888176110639331118609911201288193217711259707111866001124179118791771822292112339151104579111230328110129331111770511071356110536611104795011053983110438411872314176771911214694111339491116602411239633112581711123893611226631112780881119014511093847191632919634371126550411029868110705441939115196149419399551820839184549811209084110792421115851318958991124316611073656111316101107064611173496111589351522567112460341127686311247581105658617583811125665217708681124111318208871850020194174318177591876966194074911239548<												
11215678193377811034882182521311174530191430717584371122418711044452186288119483241994547110865821865025160900511027052171559519458581133263511226633110216081104151611176101112545581102351018504101117456919318861127770411059052110334201117528711073650199995911059394111852261583146110518801888176110639331118609911211770511071356110536611104795011023983110438411872314176771911214694111339491116602411233963112581711123893611226631112780881119014511093847191632919634371126550411029868110705441939115196149419399551820839184549811290884110792421115851318958991123158911243166110736561113161011070646111734961115893515225671124603411278683112147581106658617583811126665217708681124111318208871850020194174318177591876966194074911239548110480511117397911050668811048797190821618371321122294911282723111859591127936811290948110832711100657411240834175808511048815111840591977471104030511048282198422												
199454711086582186502516090051102705217155951945858113326351122663311021608110415161117610111254558110235101850410111745691931886112777041105905211033420111752871107365019999591105939411185226158314611051880188817611063933111860991121728819321771125970711186000112417911879177182229211233915110457911123028110129331111770511071356110536611104795011053983110438411872314176771911214694111339491116602411233963112581711123893611226631112780881119014511093847191632919634371126550411029868110705441939115196149419399551820839184549811290884110792421115851318958991123158911243166110736561113161011070646111734961115893515225671124603411276863112147581106658617583811125665217708681124111318208871850020194174318177591876966194074911239548110480801994529189278319029281117349711175896195949519764011022152110736221113757411188951111739791105068810487971908216183713211222949112827231118595911279368 </td <td></td>												
11176101112545581102351018504101117456919318861127770411059052110334201117528711073650199995911059394111852261583146110518801888176110639331118609911201288193217711259707111866001124179118791771822292112339151104579111230328110129331111770511071356110536611104795011053983110438411872314176771911214694111394911160241123963112581711123893611226631112780881119014511093847191632919634371126550411029868110705441939115196149419399551820839184549811290884110792421115851318958991123158911243166110736561113161011070646111734961115893515225671124603411276863112147581105658617583811125665217708681124111318208871850020194174318177591876966194074911239548110480801994529189278319029281117349711175896195949519776401102215211073621137574111889511117397911050688104879719082161837132112229491128272311185959112793681129034110832711100657411240834175808511048151118405919774711040305110482821984226<												
199995911059394111852261583146110518801888176110639331118609911201288193217711259707111866001124179118791771822292112339151104579111230328110129331111770511071356110536611104795011053983110438411872314176771911214694111339491116602411239633112581711123893611226631112780881119014511093847191632919634371126550411029868110705441939115196149419399551820839184549811290884110792421115851318958991123158911243166110736561113161011070646111734961115893515225671124603411276863112147581105658617583811125665217708681124111318208871850020194174318177591876966194074911239548110480801994529189278319029281117349711175896195949519764011022152110736221137574111889511173979110506881048797190821618371321122294911282723111859591127986811290341108327111006574112408341758085110481511184059197174711040305110482821984226192075211185528111776311168259												
I1186600I1241791I879177I822292I1233915I1045791I1230328I1012933I1117705I1071356I1053661I1047950I1053983I1043841I872314I767719I1214694I1133949I1166024I1239633I1258171I1238936I1226631I1278088I1190145I1093847I916329I963437I1265504I1029868I1070544I939115I961494I93955I820839I845498I1209884I1079242I1158513I895899I1231589I1243166I1073656I1131610I1070646I1173496I1158935I522567I1246034I1276863I124758I1056586I758381I1256652I770868I1241113I820887I850020I941743I817759I876966I940749I1239548I1048080I994529I892783I902928I1173497I1175896I959495I97640I1022152I1073622I1137574I1188951I1173979I1050688I1048797I908216I837132I122949I1282723I1185959I1279368I122904I1083271I1006574I1240834I758085I1048815I1184059I971747I1040305I1048282I984226I920752I1185528I1177663I1168259												
11047950110539831104384118723141767719112146941113394911166024112339631125817111238936112266311127808811190145110938471916329196343711265504110298681107054419391151961494193995518208391845498112908841107924211158513189589911231589112431661107365611131610110706461117349611158935152256711246034112768631121475811056586175838111256522177086811241113182088718500201941743181775918769661940749112395481104808019945291892783190292811173497111758961959495197764011022152110736221113757411188951111739791105068810487971908216183713211222949112827231118595911279368112993041108327111006574112408341758085110488151118405919717471104030511048282198422619207521118552811177631168259												
1122663111278088111901451109384719163291963437112655041102986811070544193911519614941939955182083918454981129088411079242111585131895899112315891124316611073656111316101107064611173496111589351522567112460341127686311214758110565861758381112566521770868112411131820887185002019417431817759187696619407491123954811048080199452918927831902928111734971117589619594951977640110221521107362211137574111889511117397911050688104879719082161837132112229491128272311185959112793681129090411083271110065741124083417580851104881511184059197174711040305110482821984226192075211185528111776311168259												
19399551820839184549811290884110792421115851318958991123158911243166110736561113161011070646111734961115893515225671124603411278863112147581105658617583811125665217708681124111318208871850020194174318177591876966194074911239548110480801994529189278319029281117349711175896195949519776401102215211073622111375741118895111173979110506881104879719082161837132112229491128272311185959112793681129030411083271110065741124083417580851104881511184059197174711040305110482821984226192075211185528111776311168259												
11070646111734961115893515225671124603411276863112147581105658617583811125665217708681124111318208871850020194174318177591876966194074911239548110480801994529189278319029281117349711175896195949519776401102215211073622111375741118895111173979150568811048797190821618371321122294911282723111859591127936811299041108327111006574112408341758085110481511184059197174711040305110482821984226192075211185528111776311168259												
112411131820887185002019417431817759187696619407491123954811048080199452918927831902928111734971117589619594951977640110221521107362211137574111895111173979110506881104879719082161837132112294911282723111859591127936811299304110832711100657411240834175808511048815111840591971747110403051104828219842261920752111855281117766311168259												
1902928 11173497 11175896 1959495 1977640 11022152 11073622 11137574 11188951 11173979 11050688 11048797 1908216 1837132 11222949 11282723 11185959 11279368 11299304 11083271 11006574 11240834 1758085 11048815 11184059 1971747 11040305 11048282 1984226 1920752 11185528 11177663 11168259												
11048797 1908216 1837132 11222949 11282723 11185959 11279368 11299304 11083271 11006574 11240834 1758085 11048815 11184059 1971747 11040305 11048282 1984226 1920752 11185528 11177663 11168259												
I758085 I1048815 I1184059 I971747 I1040305 I1048282 I984226 I920752 I1185528 I1177663 I1168259												
	1946089	11232727	1858115	11145242	11206710	11178741	11191368	11232729	1761087	11017333	11333863	

Supplementary Table 4. Multivariate regression analysis. Each independent variable was standardized (i.e., centering and scaling) for the analysis.

Variables	Coefficient (95% Confidence interval)	P value	
Scan interval	-0.04512 (-0.06856 to -0.02168)	0.0002	
Baseline SUVR	0.2506 (0.2271 to 0.2740)	<0.0001	
Intercept	0.4881 (0.4657 to 0.5105)	<0.0001	

REFERENCES

1. Joshi A, Koeppe RA, Fessler JA. Reducing between scanner differences in multi-center PET studies. *Neuroimage*. 2009;46:154-159.

2. Schwarz CG, Wiste HJ, Gunter JL, et al. Variability in MRI and PET measurements introduced by change in MRI vendor. *Alzheimers Dement*. 2019;15:P104-P105.

3. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. *Neuroimage*. 2002;15:273-289.

4. Vemuri P, Whitwell JL, Kantarci K, et al. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage. *Neuroimage*. 2008;42:559-567.

5. Ashburner J, Friston KJ. Unified segmentation. *Neuroimage*. 2005;26:839-851.

6. Vemuri P, Senjem ML, Gunter JL, et al. Accelerated vs. unaccelerated serial MRI based TBM-SyN measurements for clinical trials in Alzheimer's disease. *Neuroimage*. 2015;113:61-69.

7. Lowe VJ, Lundt ES, Albertson SM, et al. Tau-positron emission tomography correlates with neuropathology findings. *Alzheimer's & Dementia*. 2019.

8. Jack Jr CR, Wiste HJ, Schwarz CG, et al. Longitudinal tau PET in ageing and Alzheimer's disease. *Brain.* 2018;141:1517-1528.

9. Jack Jr CR, Wiste HJ, Weigand SD, et al. Defining imaging biomarker cut points for brain aging and Alzheimer's disease. *Alzheimers Dement*. 2017;13:205-216.

10. Meltzer CC, Leal JP, Mayberg HS, Wagner Jr HN, Frost JJ. Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. *J Comput Assist Tomogr*. 1990;14:561-570.