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ABSTRACT 1 

Rationale: To determine whether ComBat harmonization improves 18F-FDG-PET radiomics-based tissue 2 

classification in pooled PET/MR and PET/CT datasets. 3 

Methods: Two-hundred patients who had undergone 18F-FDG-PET/MR (two scanners/vendors; 50 4 

patients each) or -PET/CT (two scanners/vendors; 50 patients each) were retrospectively included. Grey-5 

level histogram (GLH), co-occurrence matrix (GLCM), run-length matrix (GLRLM), size-zone matrix 6 

(GLSZM), and neighborhood grey-tone difference matrix (NGTDM) radiomic features were calculated 7 

for volumes of interest in the disease-free liver, spleen, and bone marrow. For individual feature classes 8 

and a multi-class radiomic signature, tissue classification was performed on ComBat-harmonized and 9 

unharmonized pooled data, using a multi-layer perceptron neural network.  10 

Results: Median accuracies in training/validation datasets were: GLH, 69.5/68.3% (harmonized) vs. 11 

59.5/58.9% (unharmonized); GLCM, 92.1/86.1% vs. 53.6/50.0%; GLRLM, 84.8/82.8% vs. 62.4/58.3%; 12 

GLSZM, 87.6/85.6% vs. 56.2/52.8%; NGTDM, 79.5/77.2% vs. 54.8/53.9%, and radiomic signature, 13 

86.9/84.4% vs. 62.9/58.3%. 14 

Conclusion: ComBat harmonization may be useful for multi-center 18F-FDG-PET radiomics studies 15 

using pooled PET/MR and PET/CT data. 16 
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INTRODUCTION 1 

Radiomics, a computer-assisted technique for extraction of quantitative features from diagnostic images 2 

(1,2), is increasingly applied to positron emission tomography (PET) (3). However, PET radiomic 3 

features are known to be sensitive to image acquisition and reconstruction parameter variations, 4 

instrumentation bias (4), and probably also injected dose, and are therefore of limited use in multi-center 5 

studies without further pre-processing.  6 

ComBat harmonization has recently been proposed and successfully used by Orlhac et al. to 7 

correct PET radiomic data for differences in imaging device and acquisition protocols while preserving 8 

biological and pathophysiological associations (5). Notably, previous studies applying ComBat to PET 9 

radiomics almost exclusively used data from different PET/CT scanners (5-11), but did not include 10 

PET/MR data. Since PET/MR relies on a fundamentally different, MR-based method for PET attenuation 11 

correction (AC) (12), differences in PET radiomics may be more pronounced between PET/MR and 12 

PET/CT. To our knowledge, only two studies compared 18F-FDG-PET radiomic feature values obtained 13 

with PET/CT and PET/MRI. Vuong et al. compared 18F-FDG-PET radiomic feature values of nine 14 

patients with lung lesions who underwent PET/MR and subsequent PET/CT after a single 18F-FDG 15 

injection, i.e., with PET performed at different time points, which, due to the differences in counts, is 16 

likely to affect radiomic feature values (13). Correlation coefficients suggested that 50% of texture 17 

features were not robust/stable between the two scans, but the effects of this feature instability on 18 

radiomics-based classification were not investigated, and no harmonization was applied. Tsujikawa et al. 19 

compared 18F-FDG-PET radiomics of 15 patients with gynecological or oral cavity/oropharyngeal cancers 20 

who underwent PET/CT and subsequent PET/MR after a single 18F-FDG injection, i.e., also at different 21 

time points (14). Contrary to Vuong et al., these authors reported a generally high degree of correlation 22 

between PET/CT and PET/MR-based radiomic features; in particular, textural features were less affected 23 

by differences in scanners and scan protocol than conventional and histogram features, possibly due to the 24 
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use of resampling with 64 bins (i.e. a bin width of 0.4).  The impact of ComBat harmonization was not 1 

evaluated in either study. 2 

Therefore, our dual-center study aimed to determine the impact of ComBat harmonization in a 3 

larger, pooled 18F-FDG-PET/MR and -PET/CT radiomics dataset with real-world, in part marked intrinsic 4 

heterogeneity between institutions and vendors in terms of acquisition parameters according to standard 5 

clinical practice. We focused on discrimination between visually similar, but biologically different 6 

tissues, as a surrogate for lesions with similar tracer uptake. Rather than investigating statistical 7 

differences between numerical radiomic feature values, we used tissue classification accuracy as the main 8 

outcome measure, to simulate conditions comparable to those of current clinical radiomics trials.   9 

 10 

METHODS 11 

Patients and Design 12 

Two-hundred consecutive patients (92 females, 108 males; mean age, 46.2 ± 17.3 years) who had 13 

undergone whole-body 18F-FDG-PET/MR or -PET/CT for clinical purposes from 01/2010-12/2020 were 14 

retrospectively included. This Health Insurance Portability and Accountability Act-compliant study was 15 

approved by the Institutional Review Boards of Memorial Sloan Kettering Cancer Center (MSKCC) and 16 

the Medical University of Vienna (MUV); informed consent was waived. Inclusion criteria were: no 17 

evidence of disease in the liver, spleen, or bone marrow, according to imaging, pathology, and clinical 18 

reports; and imaging performed on one of four specified scanners (see below; 50 patients per scanner). 19 

Exclusion criteria were: glucose levels >180 mg/dL prior to PET; substantial 18F-FDG extravasation; or 20 

imaging artifacts obscuring analyzed tissues.  21 

 22 

  23 
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Imaging Protocols 1 

At center 1 (MSKCC), PET/MR was performed on a Signa PET/MR (PET/MR-1), and PET/CT 2 

on a Discovery 690 (PET/CT-1) scanner (both GE, Waukesha, USA) (Supplemental Table 1). PET was 3 

performed one hour after intravenous injection of 444 MBq ± 10% of 18F-FDG. For PET/MR, a 2-point 4 

Dixon LAVA T1-weighted sequence, and for PET/CT, a non-contrast-enhanced, low-dose spiral CT 5 

series was used for AC. For the Signa PET/MR, a standard z-axis filter with a cutoff 5 mm; and for the 6 

Discovery 690 PET/CT, a heavy z-axis filter and Gaussian transaxial filter with 6.4 mm cutoff was used. 7 

At center 2 (MUV), PET/MR was performed on a Biograph mMR (PET/MR-2), and PET/CT on 8 

a Biograph TruePoint 64 (PET/CT-2) scanner (both Siemens, Erlangen, Germany). PET was performed 9 

one hour after intravenous injection of 3 MBq/kg of 18F-FDG. For PET/MR, an axial 2-point Dixon VIBE 10 

T1-weighted sequence, and for PET/CT, a contrast-enhanced, full-dose spiral CT venous-phase series was 11 

used for AC. For the Biograph TruePoint64 PET/CT, no post reconstruction filter was used; and for the 12 

Biograph mMR PET/MR, a 2 mm FWHM Gaussian filter was used. 13 

 14 

Image Analysis and Harmonization 15 

Using the Beth-Israel PET/CT viewer and the International Biomarker Standardization Initiative-16 

compliant PyRadiomics plugins for FIJI (15-17), three-dimensional radiomic features were extracted from 17 

the liver, spleen, and bone marrow (vertebral body L4) using manually defined 2.5-cm³ spherical volumes 18 

of interest (Fig. 1). The three tissues were chosen because (1) they are relatively homogeneous, meaning 19 

that variations in VOI placement should not have a relevant impact on feature values; (2) they are large 20 

enough to allow placement of a sufficiently large VOI of identical size and shape; and (3) they have a 21 

visually similar 18F-FDG-PET pattern in terms of degree of tracer uptake and image texture. In addition, a 22 

fourth VOI of same size was placed in the aorta to measure blood pool radiomic features. Before feature 23 

extraction, intensity discretization using a fixed bin width of 0.5, and spatial resampling to 1.5 x 1.5 x 1.5 24 
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mm³ voxels using B-spline interpolation were applied; discretization and resampling values were chosen 1 

because they are in the range of optimal settings for histogram and texture features reported by Yip et al 2 

(18). Nineteen gray-level histogram (GLH), 24 co-occurrence matrix (GLCM), 16 run-length matrix 3 

(GLRLM), 16 size-zone matrix (GLSZM), and 5 neighboring gray-tone difference matrix (NGTDM) 4 

features were calculated (for a feature list, see Supplemental Table 2; for equations, see 5 

https://pyradiomics.readthedocs.io/en/latest/features.html).  ComBat harmonization (without empirical 6 

Bayes assumption, with parametric adjustments and four batches) was applied to all features, separately 7 

for the individual analyzed tissues, as previously described (5). 8 

 9 

Statistical Analysis  10 

Cases were randomly assigned to a training dataset (70%; 140 patients), and a validation dataset 11 

(30%; 60 patients); assignment to training and validation datasets was repeated five times (i.e., 5-fold 12 

cross-validation), and was identical for unharmonized and harmonized datasets to ensure comparability. 13 

Separately for unharmonized and harmonized datasets, and independently for the different feature classes 14 

(GLH, GLCM, GLRLM, GLSZM, and NGTDM), a multi-layer perceptron neural network (MLP-NN 15 

(19); one hidden layer with at least three neurons) was used to discriminate between liver, spleen, and 16 

bone marrow to generate a 3-tissue model, and then by also adding blood pool data to generate a 4-tissue 17 

model, using all features of a class as input. Median accuracies were calculated for training and validation 18 

datasets in the 3-tissue and the 4-tissue models, and Wilcoxon signed rank tests were used to compare 19 

differences in accuracies between paired unharmonized and harmonized datasets. In addition, for the 3-20 

tissue model, areas under the ROC curves (AUCs) were calculated for validation data using a pair-wise 21 

(i.e., 1-versus-2 tissues) approach. Three-dimensional scatterplots were used to visualize scanner-specific 22 

and organ-specific clustering in both unharmonized and harmonized datasets.  23 

To generate radiomic signatures for tissue discrimination, principal component analysis (based on 24 

Eigenvalues >1, maximum of 25 iterations for convergence) based on all features of all classes was 25 
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performed, separately for 3-tissue and the 4-tissue models. Principal radiomic components were used as 1 

input for the MLP-NN, and accuracies and AUCs were calculated as described above.  2 

To investigate the impact of the number of hidden layers for MLP-NN classification –i.e., to test whether 3 

the MLP-NN would, by itself, be able to correct for technical differences between PET/CT and PET/MR 4 

scanners with an additional hidden layer– MLP-NN classification was again performed in the 5 

unharmonized dataset of the 3-tissue model, this time using the scanner type as an additional nominal 6 

input variable (factor), and using a network architecture with one hidden layer first, and then an 7 

architecture with two hidden layers.  8 

Generalized Estimating Equations (GEE)-based case-wise classifications from all five MLP-NN 9 

iterations performed using radiomic signatures were used to model the impact of scanner type, organ, 10 

method (unharmonized and harmonized), as well as all two- and three-way interactions, on the percentage 11 

of correctly classified VOIs, taking multiple measurements per patient into account. All tests, including 12 

MLP-NN, were performed using SPSS 24.0 (IBM, Armonk, USA). The specified level of significance 13 

was P<0.05.         14 

 15 

RESULTS 16 

3-tissue model 17 

Using unharmonized datasets consisting of pooled data from the four scanners, 18F-FDG-PET 18 

radiomics-based tissue discrimination yielded median accuracies ranging from 50.0-62.4% for individual 19 

feature classes (Table 1). The multi-class radiomic signature (ten principal components) provided 62.9% 20 

median accuracy in the training and 58.3% in the validation dataset. Depending on the feature class, 21 

AUCs for 1-versus-2 tissue discrimination suggested poorer separability of the spleen from the other 22 

tissues; separation of liver and bone marrow from the respective other two tissues was similar for most 23 

feature classes (Fig. 2).  24 
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ComBat harmonization significantly improved 18F-FDG-PET radiomics-based tissue discrimination for 1 

all feature classes, but most prominently for GLCM features (median accuracy, +38.5 percentage points 2 

(p.p.) in the training and +36.1 p.p. in the validation cohort) and GLSZM features (median accuracy, 3 

+31.4 p.p. in the training and +32.8 p.p. in the validation cohort) (Table 1) (Fig. 3). Tissue classification 4 

was also improved for the radiomics signature (ten principal components), with a median accuracy of 5 

86.9% in the training (+24.0 p.p. compared to unharmonized data) and 84.4% in the validation dataset 6 

(+26.1 p.p. compared to unharmonized data). Similarly, AUCs for 1-versus-2 tissue discrimination were 7 

markedly improved in all cases (Fig. 2).   Notably, GEE analyses revealed lower classification accuracies 8 

(i.e., higher misclassification rates) in the PET/MR cohort than in the PET/CT cohort (Supplemental 9 

Table 3). 10 

 11 

4-tissue model 12 

Using unharmonized datasets, 18F-FDG-PET radiomics-based tissue discrimination yielded 13 

median accuracies ranging from 39.6-46.3% for individual feature classes (Table 2). The multi-class 14 

radiomic signature (eleven principal components) provided slightly better results, with 51.6% median 15 

accuracy in the training and 48.8% in the validation dataset. Again, ComBat harmonization significantly 16 

improved 18F-FDG-PET radiomics-based tissue discrimination for all feature classes except GLH, but 17 

most prominently for GLSZM features (median accuracy, +41.6 p.p. in the training and +42.9 p.p. in the 18 

validation cohort) and NGTDM features (median accuracy, +20.6 p.p. in the training and +18.8 p.p. in the 19 

validation cohort)  (Table 2). Tissue classification was also improved for the radiomics signature (ten 20 

principal components), with a median accuracy of 82.1% in the training (+30.5 p.p. compared to 21 

unharmonized data) and 81.3% in the validation dataset (+32.5 p.p. compared to unharmonized data).  22 

Similar to the 3-tissue model, accuracies were lower (i.e., the percentage of misclassified cases was 23 

higher) in the PET/MR cohort than in the PET/CT cohort (Supplemental Table 3). 24 

 25 
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Impact of number of hidden layers for MLP-NN 1 

Using radiomic signatures (principal components) extracted from unharmonized data in the 3-2 

tissue model, MLP-NN classification with one hidden layer yielded median accuracies of 71.0% (range, 3 

66.0-71.1%) in the training and 62.8% (range, 59.4-71.1%) in the validation sets. With two hidden layers, 4 

median accuracies were 71.0% (range, 64.5-74.0%) in the training and 67.2% (range, 61.1-70.0%) in the 5 

validation sets. Differences between MLP-NN with one and MLP-NN two hidden layers were neither 6 

significant in the training (P=0.89) nor in the validation sets (P=0.27).  7 

 8 

DISCUSSION 9 

Our results suggest that ComBat harmonization enables successful 18F-FDG-PET radiomics-10 

based tissue classification in pooled PET/MR and PET/CT datasets. ComBat led to substantial and 11 

statistically significant gains in terms of classification accuracies for both individual radiomic features 12 

classes and multi-class radiomic signatures (Table 1, Fig. 2), as typically applied in radiomics research, 13 

and in both the 3-tissue and the 4-tissue models, though at different accuracies probably due to 14 

introduction of a tissue (i.e., blood pool) without actual intrinsic structure. 15 

ComBat harmonization is a post-reconstruction algorithm based on empirical Bayes estimation 16 

(20).  Originally developed to reduce the batch effect in genomic data, ComBat has recently been applied 17 

to multi-center PET, CT, and MRI data (5,21,22). Several PET radiomics studies with heterogeneous 18 

datasets utilized ComBat to improve classification (6-11), but very few investigated the actual effects of 19 

ComBat on PET radiomics-based classification. In patients with cervical cancer, and using data from 20 

three centers, Lucia et al. reported a combined 18F-FDG-PET/CT and MR radiomics-based locoregional 21 

control prediction accuracy of 98% for harmonized and 86% for unharmonized data (6). Da-Ano et al. 22 

observed similar trends when testing different ComBat modifications in a slightly extended cervical 23 
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cancer cohort, and for several classifiers (23). However, ComBat did not improve cervical cancer survival 1 

prediction when 18F-FDG-PET features were combined with clinical parameters (8).  2 

While for PET/CT, the CT component provides attenuation coefficients and correction factors for 3 

PET AC, the standard approach in PET/MR is a T1-weighted gradient-echo Dixon sequence to generate 4 

an AC map for separation of soft-tissue, fat, lung, and air (12). This approach, while robust (24), leads to 5 

systematic underestimation of attenuation coefficients in the presence of cortical bone (25). Further, 6 

uniform attenuation coefficients are assigned to the separated tissue types in MR-based AC, meaning that, 7 

contrary to CT-AC maps (26), no noise is present in the MR-AC maps. Noise therefore does not translate 8 

into PET images using MR-based AC. These differences may not only affect standardized uptake values, 9 

but also PET radiomic features, and thus, comparability between PET/MR- and PET/CT-based metrics. 10 

Figure 3 clearly illustrates the clustering of radiomic features (represented by the top three principal 11 

components) to the different scanners in the unharmonized datasets. ComBat decreased/resolved this 12 

scanner-specific clustering, and improved organ-specific clustering, leading to higher classification 13 

accuracies in both the 3-tissue and the 4-tissue models (Tables 1 and 2). Notably, there was an imbalance 14 

between PET/MR and PET/CT in terms of accuracies, with PET/MR data showing slightly lower 15 

accuracies than PET/CT in the unharmonized datasets, and clearly lower accuracies after harmonization 16 

(Supplemental Table 3) – i.e., the benefit of ComBat application was greater for PET/CT than for 17 

PET/MR. 18 

We used an MLP-NN for tissue classification, which –though a long-establish machine learning 19 

algorithm– is not as commonly used in radiomics research as other algorithms. However, MLP-NN has 20 

often yielded better results than other, more popular techniques, such as random forests (27-31). The use 21 

of MLP-NN also enabled us to explore the impact of an additional hidden layer on classification results, 22 

which led to slight but statistically non-significant improvement of results. While we cannot rule out that 23 

other algorithms might have achieved even better classification accuracy, it seems unlikely that the choice 24 

of a different algorithm would have affected our main result, i.e., that ComBat improves tissue 25 
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classification in technically heterogeneous datasets. The retrospective design of our study together with 1 

our use of clinical PET scans (for which raw data were not stored in our institutions) precluded us from 2 

using more uniform image acquisition and reconstruction settings. While this technical heterogeneity 3 

within pooled PET data from different institutions reflects clinical reality, use of pre-defined, more 4 

uniform imaging protocols, for instance in prospective multi-center studies, is likely to decrease the 5 

impact of ComBat harmonization, or even make its use unnecessary.    6 

In summary, our data suggest that radiomics studies using pooled 18F-FDG-PET data from 7 

PET/MR and PET/CT devices are feasible and should utilize ComBat harmonization as a pre-processing 8 

step, at least in retrospective technically heterogeneous datasets, or also prospectively if no uniform 9 

imaging protocol is implemented. We expect this strategy to improve generalizability of results and 10 

facilitate the development of radiomics-based applications for use in clinical practice. 11 
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KEY POINTS 1 

QUESTION: Is ComBat harmonization useful in pooled PET/MR and PET/CT radiomic data? 2 

PERTINENT FINDINGS: ComBat improves PET radiomics-based tissue classification for both 3 

individual radiomic features classes and multi-class radiomic signatures. 4 

IMPLICATIONS FOR PATIENT CARE: ComBat harmonization should be applied in multi-center 5 

radiomics studies using pooled PET/MR and PET/CT data. 6 

  7 
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 1 

Figure 1: Representative 18F-FDG-PET image showing VOI placement in the three-tissue model: liver 2 

(blue), spleen (green), and bone marrow (red). 3 

 4 
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 1 

Figure 2: ROC curves (validation set) for pair-wise (1-versus-2) MLP-NN-based tissue discrimination 2 

(median of five iterations shown). Following ComBat harmonization, AUCs are clearly improved for 3 

individual radiomic features classes and radiomic signatures. 4 
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 1 

Figure 3: 3D scatterplots showing obvious scanner-specific clustering within the unharmonized dataset, 2 

which is decreased/resolved in the harmonized dataset. Conversely, clustering according to tissue type 3 

(liver, spleen, and bone marrow) is improved in the harmonized dataset; in particular, the liver cluster 4 

(blue) is now clearly visible. 5 

  6 
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TABLE 1. Tissue classification based on radiomic feature classes and signatures in the 3-tissue 1 

model 2 

                                                            Unharmonized                            Harmonized 

 

 Median Range Median Range P 

GLH:      

    Accuracy–training (%) 59.5 57.4-62.1 69.5 66.0-77.1 0.043 

    Accuracy–validation (%) 58.9 53.3-61.1 68.3 58.3-73.9 0.043 

      

GLCM:      

    Accuracy–training (%) 53.6 47.9-56.7 92.1 88.1-95.2 0.043 

    Accuracy–validation (%) 50.0 48.9-55 86.1 80.6-90.6 0.043 

      

GLRLM:      

    Accuracy–training (%) 62.4 58.8-64.5 84.8 82.4-89.5 0.043 

    Accuracy–validation (%) 58.3 57.2-62.8 82.8 73.9-87.8 0.043 

      

GLSZM:      

    Accuracy–training (%) 56.2 52.9-57.9 87.6 84.0-89.0 0.042 

    Accuracy–validation (%) 52.8 51.7-58.3 85.6 74.4-90.6 0.043 

      

NGTDM:      

    Accuracy–training (%) 54.8 53.3-55.7 79.5 75.5-82.9 0.043 

    Accuracy–validation (%) 53.9 50-59.4 77.2 73.9-85.0 0.042 

      

Radiomic signature:      

    Accuracy–training (%) 62.9 61-63.6 86.9 86.0-90.0 0.043 

    Accuracy–validation (%) 58.3 55.6-63.9 84.4 76.7-86.7 0.043 

 3 
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TABLE 2. Tissue classification based on radiomic feature classes and signatures in the 4-tissue 1 

model 2 

                                                            Unharmonized                            Harmonized 

 

 Median Range Median Range P 

GLH:      

    Accuracy–training (%) 46.3 44.8-48.9 56.1 53.6-60.4 0.043 

    Accuracy–validation (%) 45.8 42.5-49.2 53.8 46.3-56.3 0.043 

      

GLCM:      

    Accuracy–training (%) 43.4 37.5-46.1 62.7 60.5-64.3 0.043 

    Accuracy–validation (%) 39.2 36.7-41.7 57.5 50.8-65.0 0.042 

      

GLRLM:      

    Accuracy–training (%) 46.3 43.4-47.1 63.0 57.3-64.5 0.042 

    Accuracy–validation (%) 41.7 40.4-47.9 59.2 52.5-61.7 0.043 

      

GLSZM:      

    Accuracy–training (%) 43.4 41.4-43.8 86.0 83.0-87.5 0.043 

    Accuracy–validation (%) 39.6 36.3-42.9 82.5 68.8-85.0 0.043 

      

NGTDM:      

    Accuracy–training (%) 42.1 39.6-45.0 62.7 60.0-64.3 0.043 

    Accuracy–validation (%) 42.5 36.7-46.7 61.3 57.1-65.8 0.043 

      

Radiomic signature:      

    Accuracy–training (%) 51.6 48.2-56.6 82.1 80.0-86.3 0.042 

    Accuracy–validation (%) 48.8 42.9-50.8 81.3 67.5-82.9 0.043 

 3 
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SUPPLEMENTAL TABLE 1. Scanner and reconstruction parameters 

 GE Signa 
PET/MR 

GE Discovery 690 Siemens 
Biograph mMR 
PET/MR 

Siemens 
Biograph 
TruePoint 64 

Axial FOV (mm) 250 153 256 216 

Matrix size 192 x 192 128 x 128 172 x 172 168 x 168 

Voxel size (mm³) 3.1 x 3.1 x 2.8 5.47 x 5.47 x 3.3 4.17 x 4.17 x 2.0  4.1 x 4.1 x 5.0 

Iterations 2 2 3 4 

Subsets 28 16 21 21 

Sensitivity 
(cps/kBq) 

21.2 7.5 13.2 7.6 

Reconstruction 
algorithm 

OSEM OSEM HD-PET TrueX 

Time per bed 
position (min) 

5 3 5 4 

 
FOV, field of view;  OSEM, ordered subset expectation maximization 

  



SUPPLEMENTAL TABLE 2. List of radiomic features 

First order gray-
level histogram 
(GLH) 

Gray-level co-
occurrence 
matrix (GLCM) 

Gray-level run-
length matrix 
(GLRLM) 

Gray-level size-
zone matrix 
(GLSZM) 

Neighboring 
gray-tone 
difference 
matrix 
(NGTDM) 

Energy Autocorrelation Short Run 
Emphasis 

Small Area 
Emphasis 

Coarseness 

Total Energy Joint Average Long Run 
Emphasis 

Large Area 
Emphasis 

Contrast 

Entropy Cluster 
Prominence 

Gray Level Non-
Uniformity 

Gray Level Non-
Uniformity 

Busyness 

Minimum Cluster Shade Gray Level Non-
Uniformity 
Normalized 

Gray Level Non-
Uniformity 
Normalized 

Complexity 

10th percentile Cluster Tendency Run Length Non-
Uniformity 

Size-Zone Non-
Uniformity 

Strength 

90th percentile Contrast Run Length Non-
Uniformity 
Normalized 

Size-Zone Non-
Uniformity 
Normalized 

 

Maximum Correlation Run Percentage Zone Percentage  

Mean Difference 
Average 

Gray Level 
Variance 

Gray Level 
Variance 

 

Median Difference 
Entropy 

Run Variance Zone Variance  

Interquartile 
Range 

Difference 
Variance 

Run Entropy Zone Entropy  

Range Joint Energy Low Gray Level 
Run Emphasis 

Low Gray Level 
Zone Emphasis 

 

Mean Absolute 
Deviation 

Joint Entropy High Gray Level 
Run Emphasis  

High Gray Level 
Zone Emphasis 

 

Robust Mean 
Absolute 
Deviation 

Informational 
Measure of 
Correlation 1 

Short Run Low 
Gray Level 
Emphasis 

Small Area Low 
Gray Level 
Emphasis 

 

Root Mean 
Squared 

Informational 
Measure of 

Short Run High 
Gray Level 

Small Area High 
Gray Level 

 



Correlation 2 Emphasis  Emphasis 

Standard 
Deviation 

Inverse 
Difference 
Moment 

Long Run Low 
Gray Level 
Emphasis  

Large Area Low 
Gray Level 
Emphasis 

 

Skewness Maximal 
Correlation 
Coefficient 

Long Run High 
Gray Level 
Emphasis  

Large Area High 
Gray Level 
Emphasis 

 

Kurtosis Inverse 
Difference 
Moment 
Normalized 

   

Variance Inverse 
Difference  

   

Uniformity Inverse 
Difference 
Normalized 

   

 Inverse Variance    

 Maximum 
Probability 

   

 Sum Average    

 Sum Entropy    

 Sum of Squares    

 

  



SUPPLEMENTAL TABLE 3. Accuracies by scanner type (PET/MR and PET/CT) 

 Accuracy (mean) % Std. error 95% Confidence interval 

3-tissue model:    

    Unharmonized–PET/MR 61.5 2.6 56.4-66.4 

    Unharmonized–PET/CT 62.4 2.4 57.5-67.1 

    Harmonized–PET/MR 77.7 2.8 71.6-82.7 

    Harmonized–PET/CT 98.7 0.7 96.6-99.5 

    

4-tissue model:    

    Unharmonized–PET/MR 49.8 2.2 45.6-54.1 

    Unharmonized–PET/CT 55.2 2.2 51.0-59.4 

    Harmonized–PET/MR 70.3 3.4 63.2-76.4 

    Harmonized–PET/CT 94.2 1.1 91.7-96.1 

 


