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Abstract 

Head motion during brain PET imaging can cause significant degradation of the quality of the 

reconstructed image, leading to reduced diagnostic value and inaccurate quantitation. A fully data-

driven motion correction approach was recently demonstrated to produce highly accurate motion 

estimates (< 1 mm) with high temporal resolution (≥ 1 Hz), which can then be used for a motion 

corrected reconstruction. This can be applied retrospectively with no impact on the clinical image 

acquisition protocol. We present a reader-based evaluation and an atlas-based quantitative analysis 

of this motion correction approach within a clinical cohort. 

Methods: Clinical patient data were collected over 2019–2020 and processed retrospectively. Motion 

estimation was performed using image-based registration on reconstructions of ultra-short frames 

(0.6–1.8 s), after which fully motion corrected list-mode reconstructions were performed. Two readers 

graded the motion corrected and uncorrected reconstructions. An atlas-based quantitative analysis 

was performed. Paired Wilcoxon tests were used to test for significant differences in the reader scores 

and standard uptake values between the reconstructions. Levene’s test was used to test whether 

motion correction had a greater impact on the quantitation in the presence of motion than when low 

motion was observed. 

Results: 50 standard clinical 18F-fluorodeoxyglucose brain PET data sets (age range 13–83 years, 

mean age ± standard deviation 59 ± 20 years, 27 women) from 3 scanners were collected. The reader 

study showed a significantly different, diagnostically relevant improvement by motion correction for 

cases where motion was present (p = 0.02) and no impact in low motion cases. 8% of all data sets 

improved from diagnostically “unacceptable” to “acceptable”. The atlas-based analysis demonstrated 

a significant difference between the motion corrected and uncorrected reconstructions in cases of high 

motion for 7 of 8 ROIs (p < 0.05). 



Conclusion: The proposed data-driven motion estimation and correction approach demonstrated a 

clinically significant impact on brain PET image reconstruction.  

Keywords: PET; image reconstruction; data-driven motion correction; brain imaging  



Introduction 

As the spatial resolution of modern whole-body positron emission tomography (PET) scanners reaches 

2-4 mm full-width at half-maximum (FWHM), together with improved sensitivity and time of flight (TOF) 

resolution, it is becoming increasingly likely that even small head motion may substantially degrade the 

reconstructed image. While patient motion with translations of up to 15 mm and rotations of up to 4o 

are reported (1,2), smaller motions are quite common. Various motion tracking and correction 

techniques have been presented to account for head motion (2–7). These usually use an external 

tracking device (such as a camera) to track a marker attached to the head (5) or directly track the head 

(6). The motion estimates can then be used to perform frame-based reconstructions (8) or a full event-

by-event motion corrected reconstruction (9,10). However, none of these motion correction approaches 

have been implemented into wide-spread standard clinical routine. This fact can be attributed to several 

reasons. Some patient motion can be partially managed through head restraints and discarding motion-

corrupted portions of the data. To date, most motion tracking methods rely upon external hardware 

around the scanner (such as cameras) and/or attached to the patient (such as head markers), which 

complicate routine clinical protocols. Until recently there has not been a substantial effort from vendors 

to incorporate motion correction into their products and it has thus remained predominantly within the 

research setting.  

Fully data-driven approaches to motion correction have been presented which do not require external 

hardware. These usually estimate when motion occurred so that the data can be suitably framed (11) 

or estimate the motion itself to be used in a motion corrected reconstruction (12–15). Due to typically 

low count rates in PET imaging and long reconstruction times, the temporal resolution used for such 

motion estimation is usually on the order of tens of seconds or longer. Such low temporal resolution 

may lead to residual intra-frame motion blurring and inaccurate motion estimates. Alternatively, when 

higher temporal resolutions are used (on the order of ~1 s) as in (12,13), the motion is estimated using 

centroid-of-distributions or inertial tensors calculations. 



In this work we present an evaluation of a recently proposed data-driven motion estimation and 

correction approach (16,17). The motion is estimated using rigid image registration on reconstructed 

images of very short frames (0.6 – 1.8 s duration). The estimated motion is then used in a full event-

by-event motion corrected list-mode reconstruction of the data including all PET corrections. The 

approach is completely data driven and can be applied retrospectively. An evaluation on a cohort of 50 

standard clinical 18F-fluorodeoxyglucose (18F-FDG) brain PET data sets is presented, showing results 

of a reader study and an atlas-based quantitation analysis. 

Materials and Methods 

Data 

Patient data were acquired at the Wisconsin Institutes for Medical Research at the University of 

Wisconsin–Madison, WI, USA, over 2019 and 2020, from a 4-ring Discovery MI (D-MI) PET/CT (20 cm 

axial field of view), a Discovery 710 (D710) PET/CT, and a SIGNA PET/MR (all from GE Healthcare, 

Chicago, IL, USA). All cases constituted routine clinical imaging studies for which an IRB-approved 

waiver of consent was obtained. Fifty consecutive 18F-FDG brain PET data sets were collected 

retrospectively for this study, and none were rejected. Preliminary results from this study using these 

data sets were presented at the SNMMI 2021 conference (18); the current work presents a more 

thorough analytical and statistical analysis.  

Motion estimation and image reconstruction 

The data were processed in two steps before being analyzed. A flow diagram of the study is shown in 

Figure 1. First, ultra-fast reconstructions of very short frames (16) (0.6 – 1.8 s per frame, set 

automatically and adjusted at each frame to ensure a constant number of 500×103 true and scattered 

events per frame (17)) were performed for the entire scan duration, and image-based registration was 

then performed on these frames to estimate the motion. A rigid registration was performed using a 

least-squares metric and a gradient descent optimizer; further details are given in (17). The 6 degrees-



of-freedom (DOFs) of the motion were thus estimated directly at about 1 Hz, with an accuracy of 

< 1 mm (measured as the mean error in absolute displacement of a mesh of points moved by the 

estimated motion) (17). The reference frame for the image registrations was chosen to ensure that the 

PET reconstruction aligned with the attenuation map. In the case of PET/MR, the MR acquisitions for 

the attenuation map occur concurrently with the PET acquisition, thus the PET frames corresponding 

to data acquired during the MR attenuation correction pulse sequence were averaged to create the 

reference frame. For PET/CT, however, the CT acquisition occurs prior to the PET acquisition, thus, 

after estimating motion using the first PET frame as the reference, a single, automatic, cross-modality 

registration is performed using a mutual information metric to set this reference frame to align with the 

CT. The mean of all the short PET frames, after aligning them according to the estimated motion, was 

used for this registration. For 12 of the 29 PET/CT data sets, the automated cross-modality registration 

between the PET and the CT was suboptimal and manual intervention was required to ensure a good 

registration. This registration step will be made more robust in the future to ensure fully automated 

processing. 

The data were categorized into four motion groups using a metric based upon the magnitude of the 

motion for each data set. Similarly to prior literature (19,20) we categorized the motion by moving points 

in image space and measuring their displacement. While others have used an average displacement, 

we were interested in the maximum extent of the motion, and thus two points at the extreme extent of 

the brain were sufficient. Two points located in image space at 70 mm anterior and 70 mm posterior to 

the brain center were chosen and moved according to the estimated motion parameters. The brain 

center relative to the scanner center was set at a typically observed value for each scanner: for the 

PET/MR at [left-right, anterior-posterior, superior-inferior] = [0, 40, 20] mm (the anterior-posterior offset 

was due to the head coil used), and for both PET/CTs at [0, 0, 20] mm. The median absolute 

displacement from the reference was calculated for each point. The larger of these two medians was 

used as a metric to classify the data sets into four motion groups: 



Low:  Median displacement less than 1 mm. 

 Offset:  Median displacement less than 1 mm, but an initial displacement greater than 2 mm. 

Medium: Median displacement between 1 mm and 2 mm. 

High:  Median displacement greater than 2 mm. 

The Offset motion group captures those data sets with little motion during the PET acquisition but with 

a large offset between the attenuation map acquisition and the PET (this usually only applies to PET/CT 

scans). This group classification was chosen empirically based on our experience with many clinical 

data sets. 

Following estimation of head motion a full reconstruction was performed with each event being 

corrected according to the estimated motion, as shown in Figure 1. A list-mode TOF-based block 

sequential regularization expectation maximization (BSREM) algorithm (21,22) was performed with a 

beta parameter of 50. A spatially-variant point-spread function (PSF) modelling is performed using a 

hybrid image-space / projection-space approach (23). For clarity the list-mode maximum likelihood 

expectation maximization (MLEM) with motion correction (9,10) is given here; subsets and a 

regularization term are added for the BSREM implementation: 
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where 𝜆𝑗
𝑛 is the image value at pixel 𝑗 and iteration 𝑛, 𝑖𝑚 is the line-of-response (LOR, the line joining 

a detecting crystal pair) 𝑖 associated with list-mode event 𝑚, 𝑀 is the total number of list-mode events, 

𝑖𝑚
′  is the motion corrected LOR 𝑖 for event 𝑚, 𝑐𝑖𝑗 is the system matrix, 𝑆𝑖

′ is the motion-aware scatter 

contribution along LOR 𝑖, 𝑅𝑖 is the randoms contribution, 𝑎𝑖 is the attenuation correction factor through 



the patient attenuation map along LOR 𝑖, 𝑒𝑖 is the attenuation correction factor through the attenuating 

material exterior to the patient along LOR 𝑖,  𝜎𝑖 is the scanner sensitivity factor (crystal efficiency and 

deadtime) for LOR 𝑖. The time-averaged sensitivity image 𝑠̅ is calculated by moving the endpoints of 

each LOR (𝑙, of which there are 𝐿 in the scanner) by a particular set of motion parameters 𝑝, 

backprojecting the appropriate attenuation and sensitivity factors, and calculating the time-weighted 

(𝑤𝑝) average across all the motion data, 𝑃. The attenuation factors 𝑎𝑖 and 𝑒𝑖 are handled separately 

since the patient is moving while the rest of the attenuating material is not, therefore the motion 

corrected LORs (𝑖𝑚
′ ) are used for the patient attenuation correction factors. 

Additionally, a non-motion corrected list-mode reconstruction was performed for comparison. 

FIGURE 1: Flow diagram of the reconstruction process and analysis. MoCo: motion corrected. MNI: 
Montreal Neurosciences Institute. 
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Reader study 

The motion corrected (MoCo) and non-motion corrected (No MoCo) reconstructions were randomized 

and read blinded by a nuclear medicine physician with 36 years of experience (author SP) and a dual-

board certified nuclear medicine physician and radiologist with fellowship training in nuclear medicine 

and body MRI with 2 years of experience (author AP). Images were evaluated on a 5-point Likert scale 

for “image sharpness” and “diagnostic quality”, as specified in Table 1. The readers were not made 

aware of the motion groups of the data sets; these were used only during the analysis. 

Quantitative analysis 

An atlas-based analysis of the quantitative accuracy of the reconstructions was performed. The 

reconstructions were individually and non-rigidly registered to an aggregated FDG atlas in Montreal 

Neurosciences Institute-152 (MNI152) image space (24,25) using the Advanced Normalization Tools 

(ANTs) toolbox (26). Eight regions of interest (ROIs) were extracted and analyzed: frontal lobe, occipital 

lobe, temporal lobe, parietal lobe, cerebellum, left/right cerebral cortex, and whole cerebral cortex.  

Statistical analysis 

For the reader study, the inter-reader variability was tested using two metrics: as recommended by (27) 

the modified interrater agreement index (𝑟𝑤𝑔
∗ ) was used to evaluate the 5-point Likert scores, and 

Cohen’s kappa (κ) (28) was used to evaluate the agreement of whether an image was diagnostically 

acceptable or not (i.e. having a Likert score of ≥ 3). These tests were conducted for both reader 

questions, and for the No MoCo and MoCo reconstructions.  

Using the average Likert scores for the two readers, paired Wilcoxon tests were conducted to test for 

significant differences between the median scores of the MoCo and No MoCo reconstructions, at the 

two-sided p < 0.05 significance level, using the statistical toolbox in MATLAB (29). The false discovery 

rate (FDR) was corrected for using the Benjamini-Hochberg procedure with a rate (Q-value) of 10%. 



For the atlas-based quantitative analysis, paired Wilcoxon tests for significant differences between the 

medians of the ROI SUVmax values in the MoCo and No MoCo reconstructions within each motion 

group were conducted at the two-sided p < 0.05 significance level, with FDR correction. Additionally, 

the relative differences between the SUVmax values of the MoCo and No MoCo reconstructions were 

calculated, and Levene’s tests (30) were conducted to test whether the variance in these differences 

for each motion group was significantly different to the Low motion group in order to provide an 

indication that motion correction had made a quantitative difference in reconstructions when motion 

was present. A two-sided significance level of p < 0.05 was used and FDR correction was applied. 

Results 

Data Characteristics  

A cohort of 50 standard clinical FDG brain data sets (age range 13 – 83 years, mean age ± standard 

deviation 59 ± 20 years, 27 women) was collected retrospectively from three scanners: D710 PET/CT 

(n = 18), D-MI PET/CT (n = 11), and SIGNA PET/MR (n = 21). The injected activity for the data sets 

from the three scanners was (mean ± standard deviation): D710 PET/CT: 390 ± 24 MBq (55 ± 4 min 

uptake time, 15 minutes duration, 4.6 ± 1.1 × 108 counts), D-MI PET/CT: 400 ± 26 MBq (56 ± 5 min 

uptake time, 15 minutes duration, 8.9 ± 2.3 × 108 counts), and SIGNA PET/MR: 450 ± 85 MBq (63 ± 

13 min uptake time, 25 minutes duration, except 3 data sets with 11 – 15 minutes duration, 17.2 ± 

5.3 × 108 counts). 

Motion estimation  

The number of data sets in each motion group is shown in Table 2, and the distribution of the 

displacement metric is shown in Figure 2.  



 

FIGURE 2: Violin plots (31) showing the distribution of the estimated motion for all data sets within 
the four motion groups. The width of the violins indicates the density of data points, and their length 
indicates the range of the data. The actual data points are scattered within the violins, with the white 

dot being the median. 

Motion correction case studies 

Three examples of reconstructions are shown in Figure 3 from the Low, Offset, and High motion groups. 

The relative differences images shown were calculated as (MoCo – No MoCo)/MoCo × 100%.  



 

FIGURE 3: Example reconstructions for three case studies from the (A) Low, (B) Offset, and (C) High 
motion groups. All three are PET/CT data. The 6 DOFs of the motion data are plotted at the top. The 
smoothed relative differences between the images are shown at the bottom overlayed on the MoCo 
image. The Low motion case (A) demonstrates that when there is little motion the MoCo has a very 
small effect on the reconstruction. The Offset case (B) shows that while no obvious differences are 
visible between the images, the relative difference image shows a gradient due to the misalignment 
of the No MoCo image with the attenuation map. In the High motion case (C) much of the blurring 
due to motion visible in the No MoCo image has been removed in the MoCo image. Rot.: Rotation. 

Trans.: Translation. 

Reader study 

The results of the inter-reader variability analysis are shown in Table 3. The agreement between the 

readers was high according to all the tests. Notably, the agreement between the readers on whether 



an image was diagnostically acceptable (κ) was higher (no disagreement) for the MoCo reconstructions 

than the No MoCo reconstructions (where there was one disagreement). The Likert scores for the two 

readers are shown in Figure 4 for the two questions. In 5 (10%) of the 50 data sets the diagnostic 

quality of the reconstruction improved with motion correction by  1 on the Likert scale. The No MoCo 

reconstructions for four (8%) data sets were rated as “not diagnostically acceptable” and for all of these 

the MoCo reconstructions were rated as “diagnostically acceptable.” The results of the paired Wilcoxon 

tests on the reader scores are shown in Table 4. 

 

FIGURE 4: The Likert scores for the MoCo and No MoCo reconstructions for the two questions: 
(A) Image sharpness, and (B) Diagnostic quality. In the No MoCo cases the reader scores had more 

variation among the data sets in the higher motion groups, with some images being not diagnostically 
acceptable, while in the MoCo cases the scores were consistent across all motion groups. 

Quantitative analysis 

The relative differences in the ROI SUVmax values between the MoCo and No MoCo reconstructions 

are shown in Figure 5, calculated as (SM – SN)/SM × 100% where SM and SN refer to the SUVmax values 



for the MoCo and No MoCo reconstructions, respectively. Table 5 presents the results of the statistical 

analysis.  

FIGURE 5: Relative differences between the SUVmax of the ROIs extracted from the MoCo and No 
MoCo reconstructions. The differences are larger in magnitude in the higher motion groups, as 

expected. Note that since the MoCo reconstruction ensures better alignment with the attenuation 
map, the SUVmax are expected to be more accurate in the MoCo reconstructions as compared to the 

No MoCo reconstructions, regardless of which is greater or lesser. 

 

In Figure 5 it can be seen that the relative differences in SUVmax between the MoCo and No MoCo 

reconstructions were larger in the higher motion groups as compared to the Low motion group. In the 

High motion group the SUVmax of the parietal lobe in the MoCo reconstructions differed from those of 

the No MoCo reconstructions by 1.5 ± 2.7% (mean ± standard deviation) with a maximum of 6.6%, and 

in the temporal lobe the SUVmax differed by 1.8 ± 2.6% with a maximum of 8.2%. In all cases the SUVmax 

in the MoCo reconstruction are assumed to be more accurate, whether it is higher or lower than the 

No MoCo reconstruction, since the former ensures better alignment with the attenuation map and has 

reduced motion blurring. Table 5(a) demonstrates that in the High motion group the SUVmax values 



between the MoCo and No MoCo reconstructions were significantly different in 7 out of 8 ROIs. Even 

in the Offset group where there was minimal motion during the PET acquisition the motion correction 

made a significant difference in 5 of 8 ROI SUVmax values, due to the improved alignment with the 

attenuation map. Levene’s tests indicated that the variance in the relative differences between the 

MoCo and No MoCo reconstructions was higher for 7 of the 8 ROIs in the Medium and High motion 

groups, as compared to the Low motion group (Table 5(b)). A visualization of these variances can be 

seen in the extent of the plots in Figure 5, comparing the higher motion groups to the Low motion group. 

The results in Table 5 indicate that when there was high motion the MoCo significantly changed the 

reconstruction. The results of the reader study then confirm that the MoCo reconstructions were 

preferred. 

Discussion 

An evaluation of a fully data-driven motion estimation and correction technique for reconstruction of 

brain PET data sets has been presented. 50 standard clinical FDG brain PET data sets were processed 

retrospectively, acquired on one PET/MR and two PET/CT scanners. No additional motion tracking 

hardware was used during the scan, and there was no impact on the standard clinical routine. The 

motion estimation used a temporal resolution of ~1 s and detected motion of more than 1 mm in 70% 

(35/50) of the data sets and more than 2 mm in 24% (12/50) of cases, the latter of which usually 

resulted in visually obvious differences between the MoCo and no MoCo reconstructions. The blinded 

reader study showed that the MoCo reconstructions improved the diagnostic quality in 10% (5/50) of 

the data sets, and the improvement was significant in the High motion group (p = 0.02) and when 

considering all the data (p = 0.003). In 8% (4/50) of the data sets the image was improved from 

diagnostically “unacceptable” to “acceptable”, which is a substantial portion of the cohort. The atlas-

based quantitative analysis found significant differences (p < 0.05) in the SUVmax in 7 of the 8 ROIs in 

the Medium and High motion groups, and no significant differences in 5 of 8 ROIs in the Low motion 

group. The reader study confirmed that the image quality of the MoCo reconstructions was preferred 



over the No MoCo reconstructions when motion was present and did not affect the scores when no 

motion was present, while the atlas-based analysis confirmed that motion correction does affect the 

quantitation of the reconstructions in the presence of motion. 

Our study incorporated data from 3 scanners with very different geometries, with the axial field of view 

ranging from 157 mm to 250 mm, and all scanners benefitted from motion correction. The higher 

sensitivity and TOF resolution of modern scanners allows for shorter frame durations to be used for 

motion estimation, and hence improved temporal sampling. To achieve optimal temporal sampling, 

scanner specific optimization may be necessary (17). Motion estimation and reconstruction were 

performed in a research setting and took approximately 2 hours, which was ~30% longer than the no 

MoCo reconstruction of the same data set. Significant speed-up is expected with software optimization 

and dedicated hardware (e.g., GPUs) to ensure that the approach can be clinically feasible in future 

work. 

This study has some limitations. We focused on 18F-FDG as it is the most common clinically used 

radiotracer. However, assuming that accurate motion estimates can be obtained with other 

radiotracers, we expect that motion correction would have a similar effect on reconstructions of such 

data sets. Accurate motion estimation has been demonstrated previously with 18F-florbetaben (FBB) 

using this approach (17). Optical motion tracking was not available for comparison, as the data were 

processed retrospectively, and this comparison was not the intention of this work. Note that this work 

has not included exams where the activity distribution of the radiotracer inside the brain may change 

substantially during the scan, for example an 15O-H2O brain perfusion study, since the reference frame 

used for registration would not be representative of the entire data set. While an approach for motion 

estimation in such cases would be more challenging and is outside of the scope of the current work, 

we believe that a data-driven solution is possible and is the topic of ongoing research. Lastly, while an 

evaluation of the image quality before and after motion correction was conducted, the diagnostic 



implications of the motion corrected images was not fully investigated. Considering the promising 

nature of our current results, we plan to further investigate the clinical impact of the application. 

Conclusions 

We have presented an evaluation of a data-driven head motion correction technique for brain PET 

imaging. We have demonstrated that motion is prevalent amongst standard clinical data sets and that 

motion correction has a significant impact on the reconstructions, both qualitatively and quantitatively. 

The application of motion correction had no detrimental impact on image quality or quantification when 

no motion was present. Because motion is a known confounder of clinical brain PET, utilizing data-

driven motion correction will likely have important implications for diagnostic and research studies 

where motion may occur. Given that the proposed solution relies entirely on retrospective 

reconstruction, it could be readily adopted into routine PET imaging procedures. 

Disclosure 

M. Spangler-Bickell and T. Deller are employees of GE Healthcare. Data for this study was controlled 

by M. Spangler-Bickell (while he was with UW–Madison in 2020), A. McMillan, and S. Hurley.  

  



Key points 

Question: How effective is the proposed data-driven head motion correction technique? 

Pertinent findings: 

• Motion was observed in 70% of the study cohort consisting of 50 consecutively acquired data sets. 

• A reader study showed that all data sets which were deemed diagnostically “unacceptable” without 

motion correction (8%, 4/50) were then diagnostically “acceptable” with motion correction, with a 

significant improvement in cases of high motion. 

• An 8 ROI atlas-based quantitative analysis concluded that motion correction had a significant 

impact on SUVmax (up to 9%) in 65% of the ROIs. 

Implications for patient care: Patient motion would no longer be a concern for FDG PET brain imaging 

when using this technology; patients can be scanned regardless of motion risk and any motion will be 

corrected. 
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TABLE 1: Likert-scale scoring for image evaluation. 

Score Criteria Diagnostic Acceptability 

1 Very poor Non-diagnostic 

2 Poor Non-diagnostic 

3 Acceptable Diagnostic 

4 Good Diagnostic 

5 Excellent Diagnostic 

 

 

TABLE 2: Distribution of data sets amongst the defined motion groups. 

Group All scanners D710 PET/CT D-MI PET/CT SIGNA PET/MR 

Low 15 (30%) 4 1 10 

Offset 9 (18%) 4 5 0 

Medium 14 (28%) 6 4 4 

High 12 (24%) 4 1 7 

 

 

TABLE 3: The results of the inter-reader variability analysis. The agreement was high in all cases. 

   

 No MoCo MoCo 

𝑟𝑤𝑔
∗   κ 𝑟𝑤𝑔

∗  κ 

Image Sharpness 0.98 0.85 0.98 1 

Diagnostic Quality 0.98 0.85 0.98 1 

 

 

TABLE 4: The p-values of the paired Wilcoxon tests between the MoCo and No MoCo 
reconstructions, according to the reader Likert scores. “All” indicates all motion groups considered 

together. An * indicates a significant difference (p < 0.05, FDR corrected). 

Motion Group Low Offset Medium High All 

Image Sharpness >0.99 >0.99 0.06 0.02* 0.003* 

Diagnostic Quality >0.99 >0.99 0.13 0.02* 0.003* 

 

  



TABLE 5: (a) Results from the paired Wilcoxon tests on the ROI SUVmax of the MoCo and No MoCo 
images. (b) Results of the Levene’s tests on the variance of the ROI SUVmax relative difference 

values. An * indicates a significant difference (p < 0.05, FDR corrected). 

     
(a) Wilcoxon test on SUVmax  (b) Levene’s test on relative 

difference of SUVmax  
Low Offset Med High  Offset Med High 

Frontal lobe 0.03* 0.25 0.009* 0.007*  0.10 0.002* 0.02* 

Occipital lobe 0.03* 0.004* 0.009* 0.001*  0.73 0.001* 0.005* 

Temporal lobe 0.007* 0.16 0.10 0.007*  0.001* 0.04* 0.01* 

Parietal lobe 0.11 0.004* <0.001* 0.08  0.89 0.01* 0.009* 

Cerebellum 0.39 >0.99 0.71 0.03*  0.05 0.04* 0.04* 

Left cerebral cortex 0.09 0.008* 0.02* 0.03*  0.20 0.0499* 0.01* 

Right cerebral cortex 0.21 0.004* 0.01* 0.009*  0.24 0.07 0.24 

Whole cerebral cortex 0.21 0.004* 0.03* 0.02*  0.13 0.04* 0.03* 
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