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NOTEWORTHY 

● AI studies are being published with increasing frequency in nearly all subspecialties of nuclear medicine 

(Page 1). 

● Common pitfalls to AI studies include poor reproducibility, overly optimistic performance statement, lack 

of generalizability, and insufficient transparency (Page 1). 

● Technical best practices to AI algorithm development can help ensure reproducible scientific gains and 

accelerated clinical translation (Page 1). 

● Some general recommendations include: work closely with domain experts, collect representative 

datasets, develop models using cross validation, follow published reporting guidelines, make models 

and codes available, and be fully transparent about dataset characteristics and algorithm failure modes 

(Pages 3-7). 

● Some specific recommendations for nuclear medicine subspecialties include: evaluate image 

enhancement algorithms through reader studies, use multiple annotators for training and evaluating 

segmentation and diagnostic algorithms, algorithms that perform clinical tasks should be interpretable, 

and remove redundant features from radiomics analysis (Pages 7-11).  

ABSTRACT 

The nuclear medicine field has seen a rapid expansion of academic and commercial interests in developing 

artificial intelligence (AI) algorithms. Users and developers can avoid some of the pitfalls of AI by recognizing 

and following best practices in AI algorithm development. In this article, recommendations for technical best 

practices for developing AI algorithms in nuclear medicine are provided, beginning with general 

recommendations followed by descriptions on how one might practice these principles for specific topics within 

nuclear medicine. This report was produced by the AI Task Force of the Society of Nuclear Medicine and 

Molecular Imaging.  

INTRODUCTION 

Recent advances in artificial intelligence (AI) algorithms together with the emergence of highly 

accessible AI software libraries have led to an explosion of interest in AI within the nuclear medicine field 

(Figure 1).  AI, which is the development of computer systems able to perform tasks normally requiring human 

intelligence, is being explored in nearly every subspecialty in the chain of molecular imaging, from 

radiochemistry to physician report generation (see Figure 2). 

The hype that propels the development of AI algorithms in nuclear medicine is counterbalanced by 

concerns about certain pitfalls of AI (1). The enthusiasm for AI is justified given its numerous potential benefits: 

AI could relieve physicians and staff from repetitive tasks, accelerate time-intensive processes, enhance image 

quantification, improve diagnostic reproducibility, and deliver clinically actionable information. AI promises to 

carry nuclear medicine beyond certain human limitations and biases. On the other hand, AI is susceptible to 

unique biases that are unlike the biases typically committed by human experts. There are also valid concerns 

about the reproducibility of claims made in many published AI studies (2) and the generalizability of trained 

algorithms (3). These serious issues must be addressed to ensure that algorithms earn the trust of care 

providers and care recipients (4). 

This report was developed by the AI Task Force of the Society of Nuclear Medicine and Molecular 

Imaging and lays out good machine learning practices for algorithm development in nuclear medicine. 

https://paperpile.com/c/TTu7xE/gxv9P
https://paperpile.com/c/TTu7xE/gxv9P
https://paperpile.com/c/TTu7xE/gxv9P
https://paperpile.com/c/TTu7xE/jPoCa
https://paperpile.com/c/TTu7xE/jPoCa
https://paperpile.com/c/TTu7xE/jPoCa
https://paperpile.com/c/TTu7xE/nTsQb
https://paperpile.com/c/TTu7xE/nTsQb
https://paperpile.com/c/TTu7xE/nTsQb
https://paperpile.com/c/TTu7xE/Kkc3
https://paperpile.com/c/TTu7xE/Kkc3
https://paperpile.com/c/TTu7xE/Kkc3
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Standards and recommendations for algorithm development, study design, and scientific reporting can help 

ensure safe technologies and reproducible gains. The report provides general recommendations for AI 

algorithm development, followed by recommendations that are specific to the individual subspecialities of 

nuclear medicine. The report primarily focuses on machine learning (ML) methods, as those are currently the 

predominant class of AI algorithms being explored in nuclear medicine, although many principles are 

applicable beyond ML. The target audience of the report is developers, including physicists and clinical 

scientists, who wish to develop AI algorithms in nuclear medicine, but it can also benefit users (e.g., 

physicians) who wish to understand algorithm development. A forthcoming report from the AI Task Force 

focuses on appropriate methods of evaluating and validating AI algorithms in a clinical setting. 

GENERAL RECOMMENDATIONS 

The first part of this report describes the general pipeline of algorithm development (Figure 3) and 

provides recommendations that are common to most machine learning applications in nuclear medicine. The 

Supplemental Data presents a hypothetical tumor segmentation algorithm using a novel architecture (5) trained 

on a publicly available dataset (6,7) and follows it through all stages of development, from conception through 

reporting/dissemination, illustrating the recommendations listed below (Supplemental Figure 1).  

Study Design 

The first step in AI algorithm development is to carefully define the task to be performed by the 

algorithm (Figure 3). Investigators should collaborate with relevant stakeholders to understand whether and 

how the algorithm will be used in practice and then tailor the algorithm to the need. Early and regular feedback 

from users (e.g., clinicians) throughout the development process is necessary to properly align the algorithm’s 

functionality with the clinical need. Once the algorithm's task is defined, studies should then be designed to 

train and evaluate the algorithm. 

It is recommended that nuclear medicine AI studies be classified as either method development studies 

or evaluation studies, so that each class can be held to unique technical standards (see Table 1). Method 

development studies are defined as studies that introduce a novel method or demonstrate the feasibility of a 

new application (i.e., proof of concept). The large majority of recently published studies are method 

development studies. The evidence produced by these studies is insufficient to support a claim about how the 

trained algorithm is expected to perform clinically, often due to limited datasets and insufficient clinical 

evaluation techniques. Once an algorithm has shown technical promise in a method development study, it 

would then move on to a clinical evaluation phase in which a trained algorithm’s biases and limitations are 

evaluated on a clinical task to provide evidence to substantiate a clinical claim. Evaluation studies must be 

performed using datasets that are external to the development dataset, and should use “frozen” algorithms that 

are beyond the training stage (e.g., commercial software). Evaluation studies might include reader studies, 

phantom studies, and potentially multicenter blinded randomized controlled trials. Both classes of studies play 

important roles in advancing the field, and well-conducted studies of both classes should have a pathway to 

publication (potentially even in the same publication, if appropriate). Yet both classes of studies require unique 

design considerations.  By holding both types of studies to higher technical standards, it is hoped that the field 

can better avoid common weaknesses found in AI publications, including poor reproducibility, overly optimistic 

performance estimation, lack of generalizability, and insufficient transparency. The technical standards for both 

study types are discussed throughout this report and are summarized in Tables 1 and 2. Requirements for 

clinical evaluation studies will be further described in a forthcoming companion report from the AI Task Force. 

https://paperpile.com/c/TTu7xE/q25O
https://paperpile.com/c/TTu7xE/q25O
https://paperpile.com/c/TTu7xE/q25O
https://paperpile.com/c/TTu7xE/7RnQ+Go2B
https://paperpile.com/c/TTu7xE/7RnQ+Go2B
https://paperpile.com/c/TTu7xE/7RnQ+Go2B
https://paperpile.com/c/TTu7xE/7RnQ+Go2B
https://paperpile.com/c/TTu7xE/7RnQ+Go2B
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The pathway that a technology will take to reach clinical adoption should depend on the degree of risk it 

poses to patients. Risk categories for software have been proposed by the International Medical Device 

Regulators Forum and adopted by the U.S. Food and Drug Administration (8) . Software in the highest risk 

category will require prospective studies to validate clinical claims. Prospective studies should employ 

preregistered statistical analysis plans (9).  

AI algorithms will require post-deployment monitoring to ensure safety and quality. A decline in 

performance might occur for a variety of reasons, such as new scanners or shifting patient demographics. 

Developers should plan to seek extensive user feedback and gather performance data after clinical 

deployment to detect and mitigate algorithm non-conformance and to identify opportunities for improvement.  

Data Collection 

Collecting and labeling data are typically the most time-consuming aspects of algorithm development, 

but also have the greatest dividends. A ML algorithm is ultimately a reflection of its training data, and its 

performance can be affected by the amount and quality of its training data. In nuclear medicine, collecting large 

datasets can be challenging due to the lower volumes of exams compared to other modalities and applications.  

A data collection strategy should be designed with a goal to avoid the biases that might result from an 

insufficiently representative training dataset. Biases can be clinical  (how well the training data reflects the 

clinical condition or pathological features), technical  (scanner models, acquisition protocols, reconstruction 

settings), demographic  (racial and socioeconomic demographics, age, gender, habitus, etc.), and selection-

based (e.g., tertiary versus community hospital). For each of these biases, structural or distribution mismatch 

between the training and deployment domains can result in unintended model outputs. Datasets should ideally 

be curated to contain the features and abnormalities that the algorithm is expected to face once deployed. 

Domain experts (e.g., clinicians) should guide the collection of representative cases. 

It is challenging to determine the number of cases needed for algorithm development. For algorithm 

training, more data is better, as long as the data is high quality (i.e., capturing the data distribution of targeted 

population). No formal guidelines exist for training set size estimation, although some practical approaches 

have been described (10), and therefore trial and error are often necessary (11). For evaluation studies, 

however, sample sizes can be guided by statistical power calculations (12).  

Data augmentation can be particularly useful for deep learning applications in nuclear medicine. By 

synthetically modifying the input data, being careful not to break the association between the input data and its 

target label, dataset sizes can be artificially increased (13). Also, using a different dataset to pre-train a model 

can enhance the model’s capability to learn certain features and associations when labeled data is limited, 

although there is a risk of model overparameterization (14).  

Data Labeling 

For supervised ML, labels should reflect the desired output of the algorithm in both form and quality. 

Labels might be generated by expert opinion, computer simulation, etc. The labels should be regarded by 

experts in the field to be sufficient standards of reference. Different labeling techniques are typically possible 

for a given task, often yielding different degrees of quality as illustrated in Figure 4 for diagnostic applications. 

When labels are based on expert opinion, it is recommended that a detailed and thorough guide to labeling be 

developed and discussed among labelers to reduce inter- and intra-observer variability.  

https://paperpile.com/c/TTu7xE/Ot0s3
https://paperpile.com/c/TTu7xE/Ot0s3
https://paperpile.com/c/TTu7xE/Ot0s3
https://paperpile.com/c/TTu7xE/DRENq
https://paperpile.com/c/TTu7xE/DRENq
https://paperpile.com/c/TTu7xE/DRENq
https://paperpile.com/c/TTu7xE/scMtP
https://paperpile.com/c/TTu7xE/scMtP
https://paperpile.com/c/TTu7xE/scMtP
https://paperpile.com/c/TTu7xE/wNZG
https://paperpile.com/c/TTu7xE/wNZG
https://paperpile.com/c/TTu7xE/wNZG
https://paperpile.com/c/TTu7xE/nu955
https://paperpile.com/c/TTu7xE/nu955
https://paperpile.com/c/TTu7xE/nu955
https://paperpile.com/c/TTu7xE/85oLh
https://paperpile.com/c/TTu7xE/85oLh
https://paperpile.com/c/TTu7xE/85oLh
https://paperpile.com/c/TTu7xE/Yw7gU
https://paperpile.com/c/TTu7xE/Yw7gU
https://paperpile.com/c/TTu7xE/Yw7gU
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Due to the high cost of expert labeling, tradeoffs are nearly always made between the number of cases 

that can be labeled and the quality of those labels. For some tasks, having more labelers per sample can 

produce greater performance gains than using a larger dataset but with fewer labelers (15,16).  

Due to the scarcity of labeled nuclear medicine datasets, methods that minimize labeling efforts and 

maximize the use of unlabeled data should be considered. Labeling is often a bottleneck in algorithm 

development, yet troves of unlabeled data sit dormant in clinical databases. Developers should consider data-

efficient approaches to algorithm development, including semi-supervised learning algorithms (17) active 

learning, contrastive learning, pre-training with proxy tasks, and self-supervised learning (18).   

Model Design 

Investigators are often faced with numerous options when selecting or designing a model for a 

particular task. Options can include supervised or unsupervised learning, use of neural networks or decision 

trees, etc. Benchmark datasets and data science competitions are useful resources for exploring different 

options (19).  

For development studies, investigators should compare different model types. To avoid unnecessary 

complexity, investigators using large models are encouraged to also evaluate simpler models as a baseline 

comparison (e.g., logistic regression (20)). For a fair comparison of models, hyperparameters for all models 

should be sufficiently tuned. The approach used for hyperparameter optimization, including how many models 

were trained/compared, should be reported in the publication. For method development studies that introduce 

a novel architecture, ablation analysis is recommended (21).  

When comparing AI models, small performance differences between candidate models have to be 

carefully interpreted. Random initialization of model weights can result in sizeable performance differences 

between training sessions even when identical architectures are trained with identical data. If feasible, 

repeated training with random initialization or with repeated hold out should be performed to provide 

confidence intervals of a model’s performance which can be used to more rigorously compare different models.  

Model Training 

A critical part of model training is the partitioning of labeled datasets into disjoint sets. Each set serves 

a different purpose: the training set for updating the model’s weights, the validation set for hyperparameter 

tuning and/or model selection (if needed), and the testing set for estimating the model’s performance on 

unseen data. Partitioning a dataset reduces the risk of obtaining overly optimistic performance estimates due 

to overfitting to its own dataset. For this same reason, careful attention should be paid to prevent information 

from being leaked from the test set to the model during training. This can happen when, for example, a model 

is repeatedly retrained after evaluating it on the test set (i.e., tuning to the test set). Investigators should use 

the validation set to monitor model convergence (i.e., loss curves) to prevent underfitting and overfitting. 

Cross validation is recommended for method development studies whereas holdout/external test sets 

should be used for evaluation studies. In cross validation, the training, validation, and test datasets are 

repeatedly sampled from the overall dataset and a different model is trained and evaluated with each sampling. 

There are several approaches to cross validation (22), some of which are illustrated in Figure 5. Generally, 

data partitioning should aim to preserve data and class distributions in each of the data splits. A drawback of 

cross validation is that it creates multiple models and may not be computationally feasible for large models. 

However, for limited datasets, cross validation produces a less biased estimate of a method’s generalization 

https://paperpile.com/c/TTu7xE/KC3SU+jJEl6
https://paperpile.com/c/TTu7xE/KC3SU+jJEl6
https://paperpile.com/c/TTu7xE/KC3SU+jJEl6
https://paperpile.com/c/TTu7xE/KC3SU+jJEl6
https://paperpile.com/c/TTu7xE/KC3SU+jJEl6
https://paperpile.com/c/TTu7xE/LW6nG
https://paperpile.com/c/TTu7xE/LW6nG
https://paperpile.com/c/TTu7xE/LW6nG
https://paperpile.com/c/TTu7xE/tqNcl
https://paperpile.com/c/TTu7xE/tqNcl
https://paperpile.com/c/TTu7xE/tqNcl
https://paperpile.com/c/TTu7xE/DxgRn
https://paperpile.com/c/TTu7xE/DxgRn
https://paperpile.com/c/TTu7xE/DxgRn
https://paperpile.com/c/TTu7xE/tElva
https://paperpile.com/c/TTu7xE/tElva
https://paperpile.com/c/TTu7xE/tElva
https://paperpile.com/c/TTu7xE/N666p
https://paperpile.com/c/TTu7xE/N666p
https://paperpile.com/c/TTu7xE/N666p
https://paperpile.com/c/TTu7xE/yfab6
https://paperpile.com/c/TTu7xE/yfab6
https://paperpile.com/c/TTu7xE/yfab6
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performance than using one-time partitions (i.e., holdout testing) (23). The latter should only be used in 

development studies when cross validation is technically infeasible or for large datasets. 

Federated learning can be considered for multi-institution studies in which pooling data across 

institutions is challenging or prohibited due to privacy concerns. In federated learning, data cohorts reside 

within their respective institutional boundaries but models and weights are shared across institutions (24).  

Model Testing and Interpretability 

Following model training and selection, the model’s technical performance is determined. Model testing, 

especially when using the developmental dataset, does not typically result in evidence to substantiate broad 

clinical claims. 

Models are tested using a test dataset, which should be an unseen holdout dataset, or for development 

studies may consist of all the data through cross validation (Figure 5). The test set should have similar data 

and class distributions as the target population. The target population must be explicitly defined (e.g., 

“Hodgkin’s lymphoma patients scanned in our department in 2020”). Additional test cohorts that are external to 

the developmental data are highly desirable, as they provide an estimate of the algorithm’s sensitivity to 

covariate or dataset shift. 

Model performance is quantified using evaluation metrics. Evaluation metrics should be selected based 

on how well they reflect the failures and successes of the algorithm for the specific application. However, 

evaluation metrics are often unable to detect all the ways in which an algorithm fails, and summary statistics 

can hide meaningful errors (25). Investigators should seek to detect cases of failure and work to understand 

their causes. This will often include visual inspection of the model output. It is recommended to include 

challenging cases in the test set to probe the model’s limitations. Investigators should also directly compare the 

AI model’s performance to another acceptable standard, such as standard of care. It is recommended to 

conduct subgroup analysis to identify if there are cohorts the algorithm is biased against.  

Investigators should attempt to make their algorithms interpretable to users, especially algorithms that 

perform clinical tasks (4). Interpretable algorithms attempt to explain their outputs by highlighting the properties 

of the input data that most impacted the model’s prediction. Interpretability may help identify confounding 

factors that are unrelated to the task/pathology yet unintentionally guide the model’s predictions (3). Popular 

approaches include tracking gradients through the network (e.g., gradient-weighted class activation mapping) 

or by iteratively perturbing or occluding parts of the input data (e.g., Shapley additive explanations (SHAP)) 

(26).  

Reporting and Dissemination 

The quality of the reporting of AI studies is a key determinant of its subsequent impact in the field. 

Formal guidelines for reporting of AI studies are emerging (27,28), including some that have been proposed 

(29–31), and others that are forthcoming (32–34).  

For development studies, journals should make publication contingent on the models and either the 

source code (preferred) or executables being made accessible. Publications on development studies should 

contribute to the technical advancement of the field, which is often only accomplished through sharing. Many 

hosting resources are available for sharing, as listed in Table 3. Investigators should work with institutional 

review boards to ensure that datasets can be properly anonymized and openly shared. The paucity of large, 

high quality multicenter datasets is a major hindrance to the clinical translation of AI tools in nuclear medicine, 

and open sharing of data would greatly benefit the nuclear medicine community. When data cannot be fully 

https://paperpile.com/c/TTu7xE/TCaee
https://paperpile.com/c/TTu7xE/TCaee
https://paperpile.com/c/TTu7xE/TCaee
https://paperpile.com/c/TTu7xE/AjLfk
https://paperpile.com/c/TTu7xE/AjLfk
https://paperpile.com/c/TTu7xE/AjLfk
https://paperpile.com/c/TTu7xE/uU2bH
https://paperpile.com/c/TTu7xE/uU2bH
https://paperpile.com/c/TTu7xE/uU2bH
https://paperpile.com/c/TTu7xE/Kkc3
https://paperpile.com/c/TTu7xE/Kkc3
https://paperpile.com/c/TTu7xE/Kkc3
https://paperpile.com/c/TTu7xE/nTsQb
https://paperpile.com/c/TTu7xE/nTsQb
https://paperpile.com/c/TTu7xE/nTsQb
https://paperpile.com/c/TTu7xE/nAuka
https://paperpile.com/c/TTu7xE/nAuka
https://paperpile.com/c/TTu7xE/nAuka
https://paperpile.com/c/TTu7xE/t8qGp+CTkb5
https://paperpile.com/c/TTu7xE/t8qGp+CTkb5
https://paperpile.com/c/TTu7xE/t8qGp+CTkb5
https://paperpile.com/c/TTu7xE/t8qGp+CTkb5
https://paperpile.com/c/TTu7xE/t8qGp+CTkb5
https://paperpile.com/c/TTu7xE/gBJDT+o6Phq+5AhBe
https://paperpile.com/c/TTu7xE/gBJDT+o6Phq+5AhBe
https://paperpile.com/c/TTu7xE/gBJDT+o6Phq+5AhBe
https://paperpile.com/c/TTu7xE/gBJDT+o6Phq+5AhBe
https://paperpile.com/c/TTu7xE/gBJDT+o6Phq+5AhBe
https://paperpile.com/c/TTu7xE/l4j4M+z4Bex+pj1LM
https://paperpile.com/c/TTu7xE/l4j4M+z4Bex+pj1LM
https://paperpile.com/c/TTu7xE/l4j4M+z4Bex+pj1LM
https://paperpile.com/c/TTu7xE/l4j4M+z4Bex+pj1LM
https://paperpile.com/c/TTu7xE/l4j4M+z4Bex+pj1LM
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shared for privacy reasons, at least sample data should be made available so that the correct implementation 

of the model can be tested. Code should come with a modus operandi that does not leave any room for 

subjective settings, including a data dictionary defining variables and any preprocessing or parameter tuning 

instructions.  

In publishing evaluation studies, the scientific contribution is the reporting on the efficacy of a previously 

reported or commercial algorithm, so referring to the description of the algorithm is deemed sufficient for 

publication. 

Journal editors and reviewers are encouraged to systematically check that all provided materials are 

sufficient for replicating studies. This could consist of reproducibility checklists (35) and/or dedicated “data 

expert” reviewers, similar to statistics reviewers that are solicited for articles involving sophisticated statistical 

analyses. These demanding but desirable actions have been adopted in other fields and will serve to 

accelerate development and validation of AI algorithms. 

Investigators should be forthcoming about limitations and failures of their algorithm (36). Failure modes 

should be carefully described along with positive results. Developers should provide detailed descriptions of 

the characteristics and limitations of the training and evaluation datasets, such as any missing demographic 

groups.  

Evaluation 

Algorithm evaluation refers to the quantification of technical efficacy, clinical utility, biases, and post-

deployment monitoring of a trained algorithm. Following a successful development study, a trained algorithm 

should be subjected to a thorough evaluation study. Evaluation studies should involve clinical users of the 

algorithm and produce evidence to support specific claims about the algorithm. Clinical evaluation of a 

diagnostic algorithm requires reader studies, in which expert nuclear medicine physicians or radiologists 

assess how AI algorithms impact image interpretation and/or clinical decision making, often in comparison to a 

reference method. There are numerous additional considerations to algorithm evaluation, and a separate 

forthcoming report from the Society of Nuclear Medicine and Molecular Imaging AI Task Force focuses 

specifically on these evaluation studies and the claims that result from them.  

SPECIFIC APPLICATIONS 

The following subsections deal with the application of AI in the various subspecialties of nuclear 

medicine (Figure 2). Each section describes how AI might be used in the different domains of nuclear 

medicine, together with best practices in algorithm development for each type of application and considering 

the different components of the development pipeline (Figure 3).  

Image Reconstruction 

There is great anticipation about the benefits that AI might provide to image reconstruction, including 

faster reconstruction, improved signal to noise, and fewer artifacts. AI could also contribute to different 

components of image reconstruction, such as direct parametric map estimation, accelerated scatter correction, 

and attenuation correction for PET/MR, PET-only, and SPECT-only systems. 

In general, two classes of approaches are being explored in nuclear medicine reconstruction: those that 

incorporate neural networks into current physics-based iterative reconstruction methods, and those that directly 

reconstruct images from projection data (37). Studies on merits of end-to-end approaches versus penalty-

https://paperpile.com/c/TTu7xE/FvwHh
https://paperpile.com/c/TTu7xE/FvwHh
https://paperpile.com/c/TTu7xE/FvwHh
https://paperpile.com/c/TTu7xE/K0M5k
https://paperpile.com/c/TTu7xE/K0M5k
https://paperpile.com/c/TTu7xE/K0M5k
https://paperpile.com/c/TTu7xE/dylyx
https://paperpile.com/c/TTu7xE/dylyx
https://paperpile.com/c/TTu7xE/dylyx
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based approaches are needed. Furthermore, for end-to-end algorithms, innovative solutions are needed to 

handle the large size of 3D time-of-flight sinograms, as graphics processing unit (GPU) memory constraints 

have limited methods to either single-slice and non-time-of-flight applications or have required sinogram 

rebinning (38). Solutions might include multi-GPU parallelization or dimensionality reduction strategies.  

The large impact that AI-based reconstruction methods could have on patient care demands that 

algorithms be sufficiently validated. Investigators should use figures of merit to evaluate image quality, such as 

mean-squared error, structural similarity index, and/or peak signal-to-noise ratio, but should also recognize that 

these metrics might be misleading, as small, diagnostically important features could potentially be added or 

removed from images without significantly impacting summary statistics (25). Therefore, evaluation studies will 

require reader studies with clinically focused tasks (e.g., lesion detection). Models that use anatomic priors 

(e.g., CT) should be tested for robustness to functional-anatomic misregistration. For development studies, 

computational model-observer-based studies could prove more economical in identifying promising methods 

(39). 

Overall, comparative studies of different AI-based reconstruction approaches are needed, and 

evaluation studies should use task-oriented figures of merit and validation methods (i.e., readers studies). 

Post-Reconstruction Image Enhancement 

AI methods can enhance reconstructed nuclear medicine images with more favorable qualitative or 

quantitative properties, with many of the same benefits as AI-based reconstruction, including lower noise, 

artifact removal, and improved spatial resolution. 

Denoising of low-count PET images has been the subject of numerous publications and even 

commercial software (40). Training data often consists of pairs of images reconstructed from fully-sampled and 

subsampled listmode data. Subsampling should span the entire length of the exam time so that motion and 

tracer distribution are consistent between the image pairs. Investigators should compare the performance of 

denoising networks to other denoising approaches, such as Gaussian smoothing and more advanced methods 

such as non-local means. Contrast, feature quantification, and noise levels should be systematically evaluated.  

 Algorithms might be sensitive to outliers (e.g., implants) or artifacts (e.g., motion) and should always be 

evaluated on challenging, out-of-distribution cases. For applications that use coregistered CT or MR images as 

inputs, networks should be evaluated for robustness to misregistration (41).  

Traditional figures of merit to evaluate denoising methods may be misleading (42). Metrics such as 

signal-to-noise ratio, mean squared error, and quantitative bias should be used to evaluate gains in image 

quality while also ensuring quantitative fidelity. However, these metrics may not reflect the presence or 

absence of clinically meaningful features. Also, AI can create synthetic-looking or overly smooth images. Thus, 

evaluation should consist of human observer and/or model observer studies.  

In short, image enhancement algorithms should undergo sensitivity studies and reader evaluation 

studies, and performance should be compared to existing enhancement methods.  

Image Analysis 

AI is anticipated to automate a number of image analysis tasks in nuclear medicine, such as in 

oncological imaging (e.g. lesion detection, segmentation and quantification (43,44)), cardiac imaging (e.g. 

\blood flow analyses), brain imaging (e.g. quantification of neurodegenerative diseases), and dosimetry, among 

others (44,45). Automation of these tasks has significant potential to save time, reduce inter-observer 

variability, improve accuracy, and fully exploit the quantitative nature of molecular imaging (46,47). 
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AI-based segmentation algorithms should be task-specific. For instance, segmentation for radiotherapy 

target volume delineation requires different types of datasets and different labeling techniques than 

segmentation for prediction of overall survival (though they are related). An algorithm might be sufficient for 

one metric but not another (43). Images from other modalities, such as CT and MRI, that provide 

complementary high-resolution information could also be considered as inputs to an algorithm if expected to be 

available clinically.  

Segmentation algorithms are typically trained using expert-generated contours. To ensure appropriate 

and consistent labeling (Figure 4), clear annotation instructions should be distributed to qualified labelers to 

guide them on viewing settings, how to handle functional-anatomic misregistration, and other conditions that 

might affect segmentation. Expert contours will inevitably have inter-observer variability, which should be 

measured and used as a point of comparison for automated methods. Various methods exist for creating 

consensus contours from multiple observers (e.g., simultaneous truth and performance level estimation 

algorithm (48)). Investigators should also be aware of the various objective functions and evaluation metrics for 

segmentation, and of the existing guidelines for validation and reporting of auto-segmentation methods (49). 

Due to the sparsity of large, high quality labeled datasets in nuclear medicine, phantom and/or realistic 

simulation data can also be used for model pre-training (47,50). 

Overall, the development of AI segmentation algorithms should include meticulous, task-specific 

labeling practices, and published guidelines for validating and reporting of algorithms should be followed.  

AI and Radiomics as a Discovery Tool 

AI is expected to play a critical role in assisting physicians and scientists in discovering patterns within 

large biological and imaging datasets that are associated with patient outcome. Modern ML methods have 

shown promise as useful tools to uncover hidden but meaningful relationships within datasets (51). AI is 

therefore a useful adjunct to radiomics. 

First, ML can be used to identify deep radiomic features whose definitions completely depend on the 

data and on the task, unlike handcrafted radiomic features that are mathematically pre-defined whatever the 

data. Second, ML is an effective way to mine large numbers of radiomic features, possibly augmented by other 

omics or clinical data, to identify associations, reduce redundancy, produce tractable representations in low-

dimensional spaces, or design prediction models.  Unsupervised ML might be used to combine correlated input 

features into a smaller, more tractable set of factors (52), or to select feature relevant to a task. Redundancy in 

features can arise from technical causes (e.g., mathematical equivalence of radiomics features), or if they 

measure the same underlying biological factor, or as the result of a biological causal relationship (some 

biological factor influences multiple feature values). By distinguishing between these three situations, 

investigators can better to approach dimensionality reduction (53). For example, mathematical equivalence of 

radiomics features can be detected by randomly perturbing the image and assessing which correlations persist 

through the perturbations (54).  

The challenge of discovering predictive signatures in high-dimensional datasets might necessitate a 

multi-step approach. Investigators might first start with a selection of cases that represent both ends of the 

label’s range of values, such as short and long survival, to maximize the chances of detecting features 

associated with outcome but at the cost of low specificity.  

Following initial discovery, whatever features or relationships have been identified must be rigorously 

evaluated and scrutinized. Investigators must explore the relationships across the entire dataset using cross 

validation, aim to understand the underlying cause, and then externally validate these findings, ruling out false 

positives or spurious correlations. For example, they can repeat the whole AI-analysis pipeline on sham data 
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(e.g., randomized labels) to determine the baseline false positive rate for their set of methods, and then 

compare it to the discovery rate found in the real dataset. Investigators should also test different models and 

architecture to see if the discovered relationships hold, as it is unlikely that a real association will only be 

identified by one model.   

In short, radiomics analysis should include the removal of redundant features, and a multi-step 

approach of discovery (high sensitivity, low specificity) followed by rigorous validation might be considered.  

Detection and Diagnosis 

Computer-aided diagnosis (CADx) and detection (CADe) have long histories of successes and failures 

in radiology, but the recent advancements in AI have made widespread use of CADx and CADe an 

approaching reality for nuclear medicine. Automation of diagnostic tasks in nuclear medicine can be 

challenging, as diagnostic tasks are subjective, have high stakes, and must be incredibly robust to rare cases 

(e.g., implants, amputations, etc). However, the incentive to develop such tools is strong, with applications 

including assisted reads (55), tumor detection suggestions, neuro or cardiac diagnosis tools (56), training 

programs for residents, and many others.  

Investigators should select an appropriate labeling technique according to the accuracy that is needed 

for their CADx or CADe application (Figure 4). Labels from specialists are superior to those from trainees or 

generalists, and labels resulting from multiple readers (adjudication/consensus) are superior to those from 

single readers. Labels extracted from clinical reports are considered inferior to those obtained from dedicated 

research readings (57). Intra-observer and inter-observer variability in labels is often an indicator of label 

quality and should be quantified and reported.    

Investigators are encouraged to integrate model interpretability (e.g., SHAP) and uncertainty signaling 

(e.g., Bayesian approximation) into their algorithm. Because diagnostic algorithms will be used under the 

supervision of a physician, algorithm decisions should ideally be explainable so that clinicians have sufficient 

information to contest or provide feedback when algorithms fail. Developers also need to be transparent about 

their algorithm development and evaluation processes, including data sources and training set population 

characteristics. This can be accomplished by using reporting checklists such as MI-CLAIM (29). The high 

visibility and public attention that AI-based diagnostic algorithms receive demands that developers make every 

effort to be fully transparent.  

In short, for CADe and CADx algorithms, label quality should be justified by the application (high quality 

for high risk applications) and algorithms should be interpretable and fully transparent.  

Enhanced Reporting and Imaging Informatics 

ML has the potential to transform how the information within diagnostic images is translated into reports 

and clinical databases. AI can be used to prepopulate radiology reports, assist in real-time report generation, 

help standardize reporting, and perform structured synoptic reporting (58). 

Algorithm development in medical imaging informatics has several unique considerations. A critical 

challenge is the large heterogeneity in diagnostic reporting standards and practices across institutions, 

individual physicians, and for different exam types. Heterogeneity in language can be more challenging for 

automation than heterogeneity in medical images. Therefore, training data should be collected from diverse 

sources and annotators, and studies are expected to require much larger sample sizes than for other 

applications. Tasks in this domain might be uniquely suitable to unsupervised or semi-supervised approaches 

due to the large volume of unlabeled data available in clinical picture archiving and communication system 
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(PACS) systems. Various model types will likely be applied in this domain, but language models may need to 

be adapted to consider the unique vocabulary in nuclear medicine which might not be represented in typical 

medical text corpora (e.g,. “SUV”). Due to challenges in de-identification of radiology reports (59), federated 

learning should be considered to enable privacy-protected multi-institutional studies. Reporting of model 

performance should be disaggregated according to data source, originating institution, and annotator.  

Clinical Intelligence and Decision Support 

Clinical intelligence and decision support are concerned with delivering actionable advice to clinicians 

after extracting, distilling, and consolidating clinical information across multiple data sources. These systems 

are expected to pull the most pertinent information generated by a nuclear medicine exam and combine it with 

other clinical data to best guide patient care. For example, ML can predict future myocardial infarction using 

PET features combined with other clinical variables (60). The development and validation of clinical decision 

support systems should be guided by physician needs and clinical experts, involving teams from nearly all 

sectors of healthcare. 

 An algorithm’s ability to explain its decisions is key to safe, ethical, fair, and trustworthy use of AI for 

decision support, calling for the same recommendations as discussed in the section on Detection and 

Diagnosis. An AI model should ideally be able to provide an estimate of uncertainty together with its output, 

possibly by using Bayesian methods, and be willing to provide a “no decision” answer when the model 

uncertainties are too large to make the output meaningful. 

Instrumentation and Image Acquisition  

Challenging problems in data acquisition and instrumentation could be well suited to machine learning-

based solutions (61). For example, machine learning has been used to estimate 2D and 3D position-of-

interaction for detectors (62). Other promising applications include timing pickoff for detector waveforms, inter-

crystal scatter estimation, patient motion detection, and the prediction of scanner failure from quality control 

tracking. 

Precise data collection is critical to the success of AI applications within instrumentation. Simulations 

should be performed using appropriate models that incorporate geometric, physical, and statistical factors 

underlying image generation. Investigators should consider possible discrepancies between in silico and 

physical domains, and are encouraged to conduct cross validation studies when possible (61). Physical 

measurements, such as point source measurements, may require high precision motion stages and lengthy 

acquisition studies to collect the full range of training data. Scanner quality control applications will likely 

require enterprise-level tracking to obtain sufficient data on failure patterns. 

Algorithms that process events in real-time and need to be implemented on front-end electronics will 

likely be memory and operation limited (63), favoring simpler model architectures. Ablation analysis can help 

identify more parsimonious models.   

Radiopharmaceuticals and Radiochemistry 

The potential for AI to challenge the current paradigms in synthesis (64) and in administration (65) of 

radiopharmaceuticals is only beginning to be explored. Potential applications include predicting drug-target 

interactions (66), predicting and optimizing radiochemical reactions, and de novo drug design (67), as well as 

helping optimize radiopharmacy workflows. Proper integration of AI within the radiochemistry and 
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radiopharmacy communities will require collaborations between key stakeholders, including industry, end 

users, and quality control personnel, as well as experts in information technology, cybersecurity, and regulatory 

aspects. It is strongly recommended that groups share manufacturing data freely, as this will accelerate 

innovation by providing large test sets for ML that cannot be sufficiently generated at individual labs (e.g. 

synthesis module and cyclotron log files). 

DISCUSSION AND CONCLUSION 
 The recommendations listed above, including those summarized in Table 2, are intended to assist 

developers and users in understanding the requirements and challenges associated with the design and use of 

AI-based algorithms. They focus on specificities associated with nuclear medicine applications, whereas best 

practices for software development, data management, security, privacy, ethics, and regulatory considerations 

are largely covered elsewhere. It is also acknowledged that some standards of today are likely to be 

superseded by new standards as technologies continue to evolve. Yet, these recommendations should serve 

as a guide to developers and investigators at a time where AI is booming but should not be assumed to be 

comprehensive or unchanging. 

These recommendations were drawn from various sources, including the authors’ collective 

experiences in academia and industry, as well as other published position papers and put into the context of 

nuclear medicine applications. They should be considered as an add-on to other guidelines, including 

forthcoming guidelines from regulatory bodies (68) and relevant working groups (69).  

AI is expected to influence and shape the future of nuclear medicine, as it will in many fields. But the 

potential pitfalls of AI warrant a careful and methodical approach to AI algorithm development and adoption. 

Standards and guidelines can help nuclear medicine avoid the mismatch between the role that AI is expected 

to play and what it will actually deliver.  
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TABLES 
 

Table 1. Proposed standards for development studies versus evaluation studies 

  Development Studies Evaluation Studies 

Make code/models/executable 
accessible 

Necessary for publication Encouraged 

Use of external datasets Encouraged Required 

Subgroup analysis for biases Encouraged (if applicable) Required (if applicable) 

Clinical claims None Required 

Annotation quality Fair to high High 

Ablation studies Encouraged (if applicable) Not necessary 

Comparison of architectures Encouraged (if applicable) Not necessary 

Novelty in technology or application High (for publication) Not necessary (for publication) 

Data splitting Cross validation Holdout/external 
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Table 2. Summary of recommendations. 
Category Topic Recommendation 

Study Design Task definition Collaborate with domain experts, stakeholders 

Study types Publications should identify as development studies or evaluation studies 

Risk assessment A study’s degree of rigor should depend on the risk the algorithm poses to patients 

Statistical plan Prospective studies should preregister statistical analysis plans 

Data Collection Bias anticipation Collect data belonging to classes/groups that are vulnerable to bias 

Training set size estimation Based on trial and error, or prior similar studies 

Evaluation set size estimation* Guided by statistical power analysis 

Data decisions Inclusion/exclusion criteria should be justified, objective, and documented 

Data Labeling Reference standard Labels should be regarded as sufficient standards of reference by the field 

Label quality Label quality should be justified by the application, study type, and clinical claim (Figure 4) 

Labeling guide* Reader studies should produce a detailed guide for labelers 

Quantity/quality tradeoff Consider multiple labelers (quality) over greater numbers (quantity) 

Model Design Model comparison* Development studies should explore and compare different models 

Baseline comparison Complex models should be compared with simpler models and/or standard-of-care 

Model selection The model selection and hyperparameter tuning techniques should be reported 

Model stability Repeated training with random initialization is recommended 

Ablation study* Development studies focusing on novel architectures should perform ablation studies 

Model Training Cross validation* Cross validation should be used for development studies; preserve data distribution across splits 

Data leakage Information leaks from the test/evaluation set to the model during training must be avoided 

Model Testing and Interpretability Test set Should have same data/class distribution as the target population; high quality labels 

Target population The target population should be explicitly defined 

External sets External sets are recommended for evaluating model sensitivity to dataset shift 

Evaluation metric May consist of multiple metrics; often requires visual inspection of model output 

Model interpretability* Interpretability is needed for clinical tasks 

Reporting and Dissemination Reporting Follow published reporting guidelines/checklists 

Sharing* Development studies must make code and models accessible 

Transparency Be forthcoming about failure modes and population characteristics in training/evaluation sets 

Reproducibility checks Journals should ensure that submitted materials are sufficient for replication 

Evaluation Addressed in a separate report from the AI Task Force 

*not all recommendations are applicable to all types of studies 
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Table 3. Resources for hosting and sharing code, models, and data. 

Data type Resources 

Code Git repository hosts (Github, Gitlab, Bitbucket), Matlab File Exchange, SourceForge 

Models, containers, executables Docker Hub, modelhub, Model Zoo, ModelDepot, TensorFlow Hub, PyTorch Hub, Hugging 
Face 

Data The Cancer Imaging Archive, Kaggle, paperswithcodes.com, LONI Image and Data 
Archive, Figshare 
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FIGURES 

 
Figure 1.   The trend in publications on artificial intelligence within nuclear medicine according to Scopus. The 

word cloud contains the most commonly-used terms in recent abstracts.    

 

 

 
 

Figure 2. Applications of AI span the gamut of nuclear medicine subspecialties. 
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Figure 3. The pipeline for AI algorithm development together with key considerations of each stage of 

development.  

 

 

 

Figure 4. Annotation quality as a function of different labeling techniques for diagnostic applications. 

This hierarchy does not imply how useful an annotation method is (e.g., expert labels are often more 

useful than simulations due to the limited realism of simulated data).  
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Figure 5. Different approaches to cross validation (CV), depending on the dataset size and if model selection is 

needed. The figure illustrates 5-fold CV without model selection/hyperparameter tuning (top), 5-fold CV with a 

holdout test set (middle), and nested CV (5-fold outer loop, 4-fold inner loop).  
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Supplemental Data 
Nuclear Medicine and Artificial Intelligence: Best Practices for Algorithm Development  

 
 
Example AI Application: Deep learning-based segmentation of PET-CT head and neck cancer images  

 
This section walks readers through an example of machine learning being applied to a specific use 
case: automatic segmentation of oropharyngeal tumors in PET/CT images. This is a hypothetical 
illustration of how the different steps of algorithm development would be followed using a real-world 
dataset, while adhering to the recommendations listed in Table 2.  

 

 
Supplemental Figure 1. The segmentation algorithm development pipeline. 

 
1. Study Design   

Task definition: The algorithm’s task was to efficiently and reproducibly create segmentation masks 

from FDG PET/CT images of oropharyngeal tumors. The contours are to be used in image 

quantification for prognostication (e.g., SUV, radiomics). The study was designed with input from 

medical physicists with experience in image analysis, a nuclear medicine physician, and a radiation 

oncologist, all of whom contributed to the study design and provided extensive feedback throughout 

the development process. The motivation for the study is to improve outcomes for patients with head 

and neck cancers. Segmentation of PET imaging data can produce quantitative radiomics features 

that might predict tumor recurrence.  Segmentation is an important step for radiomics extraction. 

However, manual segmentation is both time-consuming and subject to high inter-observer variability.  

 
Study type: The study was a method development study. The study aimed to demonstrate the promise 
of a novel AI architecture and report on the method’s segmentation performance. As a method 
development study, it makes no claims to the performance of the method on a clinical task (ie, predicting 
outcomes), but instead focuses on its technical performance. The hypothesis of the study was that 
automatic segmentation using a novel AI model would be non-inferior to manual physician 
segmentations in terms of accuracy, with the expected advantages of greater reproducibility and faster 
analysis. The novelty of this development study is in the application of a previously-developed AI 
architecture to a new task: segmentation of PET/CT images. In the current segmentation study, SegAN, 
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a 3D generative adversarial network (GAN) based network developed by Xue et al. (4), was used for 
PET/CT segmentation and a combination of mean absolute error and Mumford-Shah loss function was 
used during training. The resulting mask is then used as the input to a localized active contour model 
to compute the energy function based on the region-based hybrid information of both PET and CT 
channels, which refines the SegAN-produced mask. This method has not been previously used for 
PET/CT segmentation.  
 
Risk assessment: The use case for this algorithm would be as an input to a prognostic or predictive 
model to help guide treating physicians. According to the IMDRF risk categories, the application would 
likely belong to Category I: it would serve as input to a system that “informs patient management” with 
patients in “serious” condition, and would therefore be considered low risk.  
 
Statistical plan: As an observational study, pre-registration of a statistical analysis plan is not required, 
but it can prevent “p-hacking” and help ensure that the study results are credible. For this study, a 
statistical analysis plan was designed, which described the expected metrics and statistical tests to be 
performed. As an optional step, prior to the analysis of the study, the document was uploaded to the 
academic research data management and dissemination tool figshare.com with a timestamp and 
assigned a digital object identifier (DOI) number. Any unplanned analyses were stated as being 
unplanned in the publication. While these steps are not required they do reflect best practices in science 
and can lend credibility and transparency to a study.  
 

2. Data Collection 

The dataset used in this study was originally described by Vallières et al. (5) and is publicly available 
on The Cancer Imaging Archive (TCIA) and provided by HEad and neCK TumOR (HECKTOR) (6) 
challenge organizers with the updated delineations in the 23rd MICCAI conference. It consists of pre-
treatment FDG-PET and CT images of 201 cases with head-and-neck cancer acquired for initial 
staging. The images were gathered within a median of 18 days (range: 6–66) before treatment from 
four institution in Quebec: Centre Hôpital général juif (CHGJ) de Montréal  (55 cases), Centre Hôpital 
Maisonneuve-Rosemont (CHMR) de Montréal (18 cases), Centre hospitalier de l’Université de 
Montréal (CHUM)  (56 cases) and Centre hospitalier universitaire de Sherbrooke (CHUS) (72 cases). 
Scanner and imaging protocols are described in (6). According to (5), this study was limited to patients 
with head and neck squamous cell carcinoma (HNSCC) who planned to receive radiation or chemo-
radiation with curative intent and excluded patients with recurrent head and neck cancer, those with 
metastases, and those receiving palliative treatment.  
 
Bias anticipation: Biases in segmentation algorithms are most likely to arise from clinical factors (size, 
location, stage, shape, and extent of disease), technical factors (acquisition protocol, tracer uptake 
time, scanner model, reconstruction settings) and demographic factors. The dataset came from a 
variety of institutions with different scanners and data acquisition protocols and reconstruction methods, 
although biased towards equipment by GE Healthcare. The lack of data from other established 
manufacturers and the lack of data from latest scanner generations may limit the generalizability of the 
results. According to the Supplemental Data provided by (5), datasets were biased towards males 
(~75%), indicating that subgroup analysis according to gender should be performed. The patient data 
also all originated from Quebec, suggesting that results may not be applicable to other locales. The 
dataset did represent different TNM stages, with a bias towards later stages (III and IV). There is also 
a potential technical bias introduced by the inconsistent techniques used to label images: some tumors 
(~40%) were labeled on PET/CT images, while others were labeled on contrast enhanced CT images 
and then registered to PET/CT images (described below).  

https://paperpile.com/c/KCaI1k/sFyAl
https://paperpile.com/c/KCaI1k/sFyAl
https://paperpile.com/c/KCaI1k/sFyAl
https://paperpile.com/c/KCaI1k/KkWV4
https://paperpile.com/c/KCaI1k/KkWV4
https://paperpile.com/c/KCaI1k/KkWV4
https://paperpile.com/c/KCaI1k/UdqxW
https://paperpile.com/c/KCaI1k/UdqxW
https://paperpile.com/c/KCaI1k/KkWV4
https://paperpile.com/c/KCaI1k/KkWV4
https://paperpile.com/c/KCaI1k/KkWV4
https://paperpile.com/c/KCaI1k/KkWV4
https://paperpile.com/c/KCaI1k/KkWV4
https://paperpile.com/c/KCaI1k/KkWV4
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Training set size estimation: Training set size was selected based on trial-and-error and previous 
published studies of HN tumor segmentation. In our study, we use a sample size of 201. 
 
Evaluation set size estimation:  Not applicable, as cross validation was used.  
 
Data decisions: The inclusion/exclusion criteria were determined by the investigators that collected and 
made the data available (5,6) and have been described at the beginning of this section. No additional 
criteria were enforced for this study.  
 
Curation: The pre-processing steps of the segmentation study are as follows: 

● DICOM images were converted to NIFTI format. 
● PET/CT images were deformably registered to the planning (contrast enhanced) CT 

using commercial software (MIM Software Inc., Cleveland, OH).  
● Resampling the CT and PET images to an isotropic 1×1×1mm voxel spacing using 

trilinear interpolation.  

● The CT volumes are clipped in the specific range of Hounsfield Units (HU) [−150, 150]. 

● Cropping the head and neck data to a volume of size 144×144×144 voxels containing 
all tumors (primary oropharynx tumors and metastatic lymph nodes). Cropping is 
semi-random to prevent the tumor from always appearing in the middle, and was 
accomplished by randomly shifting the bounding box relative to the center point of the 
tumor, but still keeping all tumor edges within the bounding box. Shifts ranged from 1 
to 10 voxels.  

● Visual confirmation of the image quality and cropping.  
● Conversion to standardized uptake values (SUV) normalized by body mass.  

 
3. Data Labeling 

 
Reference standard: Contours drawn on PET/CT images by board certified nuclear medicine 
physicians or radiologists are generally considered standards of reference for PET quantification. 
However, for applications involving outcome prediction following radiotherapy, planning contours drawn 
by board certified radiation oncologists are also generally considered as acceptable reference 
standards, especially for a development/proof-of-concept study.  
 
Label quality: The labels used in this development study were gross tumor volumes (GTVs) drawn by 
radiation oncologists for radiotherapy planning. The original publications of the dataset (5) do not state 
the number, credentials, or experience of the radiation oncologists performing the labeling, which 
should normally be reported in AI studies. The lack of this information should be considered as a 
limitation of this study. 

● Contours (GTVs) were drawn on CT images (either the CT of the PET/CT exam or the 
planning CT) using various treatment planning software platforms and then registered 
to the PET image using MIM software. 

● Labels were manually adapted for quantification when appropriate. For example, air 
and other surrounding non-tumor tissue that often gets included within the GTV were 
removed, and the quality of the contour propagation following registration was visually 
inspected and corrected, if needed.  

● All final registered contours and images were visually inspected and approved by an 
experienced nuclear medicine physician. 

https://paperpile.com/c/KCaI1k/KkWV4+UdqxW
https://paperpile.com/c/KCaI1k/KkWV4+UdqxW
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The quality of the labels could be improved by having multiple experts independently contour the lesions 
and perform a majority vote, or by having multiple experts come to a consensus. Multiple labelers would 
also allow for quantification of inter-observer variability, which is a reflection of overall label quality. 
However, as a method development study, the quality of the labels is of sufficient quality to demonstrate 
the promise of the method, especially when used for quantification alone (as opposed to being used 
for radiation treatment planning).  
 
Labeling guide: No labeling guide was developed due to the retrospective nature of the dataset.  
 
Quantity/quality tradeoff: The retrospective nature of this dataset prevented an a priori evaluation of the 
tradeoff between quality and quantity.  

 
4. Model Development  

Model comparison: An end-to-end deep learning framework, SegAN (4) was previously designed for 
medical image segmentation based on adversarial learning. We used the output of the SegAN as input 
to an active contour model. Our method was compared to a standard 3D U-Net model. 
 
Baseline comparison: All deep learning models were compared to a 40% threshold of maximum SUV. 
 
Model selection: For the CNN architectures in the SegAN framework, batch normalization layers were 
used to increase network convergence and dropout layers were used to avoid overfitting. The 
hyperparameters of the SegAN network were set to match the original SegAN publication (4). The 
hyperparameters of the U-Net architecture, including the number of layers, number of convolutional 
filters at each layer, and learning rate were determined using a grid search approach with a preliminary 
one-time random split (60:40) of the entire dataset. This preliminary split did not correspond to the data 
splits used during model training with cross validation, and will therefore not lead to overfitting. Ten U-
Net models were trained and compared using the preliminary data split. The hyperparameters from the 
best performing U-Net model were then used throughout each fold of cross validation.   
 
Model stability: Repetitions of 5 cross-validation runs were performed to assess model stability. The 
variation between runs is expected due to networks’ random weight initializations and shuffling of the 
training samples. 
 
Ablation study: The SegAN + active contour model was compared to the SegAN model alone to 
determine the added value of the active contour component. 
  
5. Model Training 

 

Cross validation: The model was trained using leave-one-center-out cross-validation. One center was 

used as the test set, one center as the validation set (which determined the number of epochs with 

which to train the model) and the remaining centers as the training set.  A repetition of 5 cross-center-

validation runs was performed to assess model stability. The U-Net model was also trained with the 

same cross validation scheme. A binary cross entropy loss function was used. 

 

Data leakage: The use of cross validation prevents data leakage.  

 

6. Model Testing and Interpretability 

 

https://paperpile.com/c/KCaI1k/sFyAl
https://paperpile.com/c/KCaI1k/sFyAl
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Test set: Cross-center-validation was used to evaluate the generalization of the segmentation 

algorithms to unknown centers. Each center served as an external test set for each fold of CV. 

 

Targeted population: The targeted population in this application is patients in Quebec with histologically 

proven head-and-neck cancer prior to radiation therapy, excluding patients with recurrent disease or 

receiving palliative treatment.  

 

External sets: No test sets that were external to the developmental dataset were used, although the 

leave-one-center-out cross validation approach does treat each center as an external to the training 

data set.  

 

Evaluation metric: The DSC (Dice similarity coefficient) was used as the primary evaluation metric. 

Values were averaged across all test patients for each fold and repetition of CV. The structural similarity 

index measure (SSIM), Jaccard coefficients (JSC), Hausdorff distance (HD) measures and tumor 

volume error were also reported.  

 

Model interpretability: We used gradient-weighted class activation mapping to determine which parts 

of the image contributed to the pixel-classification decisions of the network. Heatmaps were inspected 

and reported with example results. 

 

7. Reporting and Dissemination 

 

Reporting: When publishing results of the study, we follow the MI-CLAIM checklist (27) for reporting AI 

studies. 

 
Sharing: All codes and trained models, with instructions on how to implement them, are posted to a 
public git repository prior to submission for publication. Examples, with preprocessing steps, are 
provided to ensure correct implementation and reproducibility. 
 
Transparency: We visually inspected the 25 cases with the lowest model performance to identify any 
patterns or failure modes. Overall, we found that small, low uptake lesions  less than 5 ml in volume 
tended to be missed by the model (i.e, the model returned no segmentation mask). When publishing, 
we display some of these cases.  
 
Reproducibility checks: We followed the checklist used by the NeurIPS conference (33).  
 
8. Evaluation  
 
Clinical evaluation of the final trained model was not performed as this study was a method 
development study that did not aim to make any claims about the clinical performance of the algorithm. 
Given the promising results, evaluation studies will follow. Evaluation studies will require clinical task-
specific evaluation (i.e., outcome prediction) using external datasets and involving a team of domain 
experts (i.e., physicians) to help properly select the appropriate evaluation dataset and evaluation 
strategy.  
 

https://paperpile.com/c/KCaI1k/uowSy
https://paperpile.com/c/KCaI1k/uowSy
https://paperpile.com/c/KCaI1k/AzVsC
https://paperpile.com/c/KCaI1k/AzVsC

