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ABSTRACT 

The impact of PET image acquisition and reconstruction parameters on SUV measurements or radiomic 

feature values is widely documented. This "scanner" effect is detrimental to the design and validation of 

predictive or prognostic models and limits the use of large multicenter cohorts. To reduce the impact of 

this scanner effect, the ComBat method has been proposed and is now used in various contexts. The 

purpose of this article is to explain and illustrate the use of ComBat based on practical examples. We also 

give examples in which the ComBat assumptions are not met; thus, ComBat should not be used. 

Keywords: Radiomics, Harmonization, Texture Analysis, Multicenter Studies 

Noteworthy: 

• Guidelines for using the ComBat harmonization method on SUVs, Metabolic Tumor Volume or any

radiomic features illustrated with simulated and real data (p 4-8)

• Recommendations on the use of covariates within ComBat (p 9-12)

• Comparison of the ComBat, EARL and z-score harmonization strategies (p 12, 15-16)
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INTRODUCTION 

The emergence of radiomics in mid-2010 renewed interest in quantitative image analysis for prediction 

and classification tasks. As radiomics requires large image datasets for designing and validating models, it 

would largely benefit from pooling images from different sites or from different scanners. However, many 

quantitative biomarkers and radiomic features are sensitive to a scanner or protocol effect (1–5), referred 

to as the site effect hereafter, underlining the importance of harmonizing image acquisition and 

reconstruction procedures to reduce multicenter variability before pooling data from different sites. 

Similarly, when a new radiomic or quantitative image analysis method is developed in one site (site 1), its 

application to images from a different site (site 2) requires prior verification that the images from the two 

sites are comparable. 

 

Much effort has been deployed in recent years to propose procedures to harmonize image quality 

(6), including the successful resEARch 4 Life accreditation program (EARL) (7,8). However, in retrospective 

studies, many images have been reconstructed using protocols that did not follow these harmonization 

guidelines, for which it is impossible to retrieve or perform phantom acquisitions that would be needed to 

harmonize them a posteriori. Often, the raw data are not stored, hampering any novel reconstruction to 

target a given image quality. The variability between scans resulting from different 

acquisition/reconstruction protocols can be reduced using image resampling or filtering (9,10), but these 

techniques require image postprocessing and most often yield a decrease in spatial resolution in the 

images acquired using the most recent devices, yielding suboptimal image quality for subsequent 

quantitative and radiomic studies. 

 

To address these site effects, the ComBat harmonization method has been proposed (11–15) and 

has produced satisfactory results in various contexts. Since 2017, at least 51 papers have reported the use 
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of ComBat in radiomic analysis of MRI (36%), CT (34%), or PET images (28%). Of these articles, 41% 

reported higher performance metrics after ComBat than before, and 41% presented only the results with 

harmonization. Only 18% of the articles did not report a benefit in using ComBat, without any detrimental 

effect. 

 

ComBat directly applies to features already extracted from the images without the need for 

retrieving the images. However, as with any harmonization method, it is based of assumptions that have 

to be met for the method to generate valid results. The objective of this paper is to explain and 

demonstrate under which conditions ComBat can be used to harmonize image-derived biomarkers 

measured in different conditions and when it should be used with caution. We first summarize the theory 

behind ComBat and then illustrate several use cases to demonstrate its ability to compensate for site 

effects when properly employed and to answer practical questions a ComBat user might have. We also 

give examples of situations in which the ComBat assumptions are not met; thus, ComBat should not be 

used. Finally, we discuss the assets and limitations of ComBat.  

All patient data used in the examples below were obtained from previous retrospective studies 

approved by an institutional review board and the requirement to obtain informed consent was waived.  

 

THEORY OF COMBAT 

ComBat was initially introduced in the field of genomics (16) and widely used in this field (17). 

ComBat assumes that: 

𝑦𝑖𝑗 = 𝛼 + 𝛾𝑖 + 𝛿𝑖𝜀𝑖𝑗                                                                      (1) 

where 𝑗 denotes the specific measurement of feature y, 𝑖 denotes the setting, 𝛼 corresponds to the 

average value of the feature of interest 𝑦, 𝛾𝑖 is an additive “batch” effect affecting the measurement, 𝛿𝑖 is 

a multiplicative batch effect and 𝜀𝑖𝑗  is an error term. Batch 𝑖 corresponds to the experimental settings used 
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for making the y measurement, including the possible observer effect, scanner effect or even sample 

effect. 

In medical imaging, y is an image feature (for example, SUV), 𝑖 denotes the scanner, protocol effect 

or even observer effect (called the site effect), and 𝑗 denotes the specific measurement, typically the 

volume of interest (VOI) in which the measurement is made. 

The model therefore assumes that the value of measurement 𝑖 of a given feature y in VOI 𝑗 is possibly 

affected by additive and multiplicative effects that depend on the scanner, protocol or even observer who 

made the measurement. These effects are common to all measurements 𝑗of that same quantity y made 

using the same scanner, protocol or observer. Based on multiple measurements 𝑦𝑖𝑗  of the same feature y 

made in VOI j in different images coming from different scanners 𝑖, the site effects 𝛾𝑖 and 𝛿𝑖 can be 

estimated using conditional posterior means (16) and subsequently corrected using: 

𝑦𝑖𝑗
𝐶𝑜𝑚𝐵𝑎𝑡 =

𝑦𝑖𝑗−𝛼̂−𝛾𝑖̂

𝛿𝑖̂
+ 𝛼̂                                                                    (2) 

where 𝛼̂, 𝛾𝑖̂ and 𝛿𝑖̂ are estimators of 𝛼, 𝛾𝑖 and 𝛿𝑖and 𝑦𝑖𝑗
𝐶𝑜𝑚𝐵𝑎𝑡  is the transformed 𝑦𝑖𝑗  measurement devoid 

of the site i effect. 

 

ComBat is a data-driven method that does not require any phantom acquisition to estimate the 

site effect but requires data from the different sites with sufficient sample size. The site effect can be 

estimated and corrected directly from the available image feature values measured at different sites 

without having to perform any image processing or any new measurements in the images. ComBat always 

theoretically improves the alignment of the mean and standard deviation of the distributions given the 

criterion optimized by the method. A Kolmogorov-Smirnov (KS) test can be used to determine whether 

the statistical distributions of two sets of feature values are significantly different, in which case ComBat 

is needed, and to check the effectiveness of the applied transformation.  A non-significant KS test suggests 
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that there is no evidence of differences in the two distributions, implying that any subsequent analysis 

should not be affected by a detectable difference between the distributions.  

 

EXAMPLE 

We numerically generated 3000 values drawn from three Gaussian distributions with different 

means [µ]=8 or 12 or 14 and standard deviations [SD]=3 or 4 or 5 (Table 1), mimicking, for example, 

SUVmax measured in 3 sets of highly metabolic tumors but with 3 scanners of different generations, of 

which one had a much higher spatial resolution compared to the others (hence higher SUVmax due to 

reduced partial volume effect (18)). As shown in Figure 1, ComBat can be used in two ways: either to 

realign the distributions of the three sites to a "virtual" site (11), which is neither site A nor site B nor site 

C, or to realign the data from sites B and C to site A chosen as the “reference” site (or vice versa) (19). 

Contrary to what has been reported (20), both approaches lead to the same ranking of the patients, hence 

identical receiver operating curves for classification tasks, and only the absolute value of the feature 

changes. Aligning the data to a reference site may be preferable for feature value interpretation, but the 

reference site selection has no impact on the quality of the realignment. In the following, harmonization 

will always be performed with respect to a reference site. 

 

COMBAT TO COMPENSATE FOR PROTOCOL DIFFERENCES 

The straightforward application of ComBat in medical imaging is to compensate for differences in 

radiomic feature values obtained from images acquired using different protocols. To illustrate this, we 

used PET images of 49 lesions from 15 lymphoma patients reconstructed according to the EARL1 and 

EARL2 standards (8), called the “EARL experiment” thereafter. Without harmonization, we observed a 

systematic deviation between the SUVmax values of the two reconstructions (KS: p-value=0.0002, Figure 
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2). After applying ComBat considering the EARL2 reconstruction as a reference site, we observed a better 

concordance of the SUVmax values (p-value=0.6994). 

 

NEED FOR TISSUE-SPECIFIC AND TUMOR-SPECIFIC TRANSFORMATIONS 

Since ComBat is a data-driven method, the realignment transformation (Eq 2) is specific to the 

input data. It is therefore specific to the tissue or tumor type and/or patient population from which it is 

estimated. For example, in (12), the ComBat transformation appropriate for SUVmax was different for liver 

tissue and breast tumors when pooling 63 patients from site A and 74 patients from site B (Figure 3). In 

that example, values from site B were realigned to values measured in site A, and the resulting 

transformations were 𝑆𝑈𝑉𝑚𝑎𝑥(𝐴) = 1.05 × 𝑆𝑈𝑉𝑚𝑎𝑥(𝐵) + 0.07 for liver tissue and 𝑆𝑈𝑉𝑚𝑎𝑥(𝐴) =

1.13 × 𝑆𝑈𝑉𝑚𝑎𝑥(𝐵) + 1.84 for tumor tissue. This effect of the imaging protocols is different as a function 

of the structure of interest. SUVmax in the liver is not much impacted by the partial volume effect, as the 

liver is a large region; hence, it is relatively robust to the difference in spatial resolution in the images 

produced by the two sites. Therefore, the slope of the transformation was close to 1, and the intercept 

close to 0. In contrast, the SUVmax in breast tumors is affected by the partial volume effect. This translates 

into a slope further from 1 and an intercept further from 0. Therefore, unlike what is stated in (21), 

phantom measurements cannot be used to determine the transformations to be applied to feature values 

measured in one site to convert them to values that would have been obtained at the other site a priori. 

Given the ComBat assumptions, Eq 2 can only be applied to data affected by the site effect in the same 

way as the data used to estimate the alpha, gamma and delta parameters of the model. This implies that, 

for example, a transformation derived for lung tumors should not be applied to lymphoma tumors unless 

the biomarker of interest is affected by the site effect in the same way in the two tumor types. 
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NEED FOR A FEATURE-SPECIFIC TRANSFORMATION 

Just as transformations are specific to each tissue, they are also specific to each index. For 

example, using the same data as above (Figure 3), the equations differ for SUVmax (𝑆𝑈𝑉𝑚𝑎𝑥(𝐴) =

1.05 × 𝑆𝑈𝑉𝑚𝑎𝑥(𝐵) + 0.07 for liver tissue) and for the Homogeneity feature (𝐻𝑜𝑚𝑜𝑔(𝐴) = 1.06 ×

𝐻𝑜𝑚𝑜𝑔(𝐵) − 0.14). The transformation has to be estimated for each feature independently because not 

all features are affected in the same way by the site effect. Some features are relatively immune to the 

site effect (for example, shape features), unlike others (e.g., SUVmax or metabolic tumor volume). 

 

USING COMBAT TO ADJUST CUTOFF VALUES BETWEEN DIFFERENT SITES 

Aligning data from different sites might be extremely useful to adjust the cutoff used to distinguish 

between groups. Let us take the example of lymphoma patients, for whom it is well known that the total 

metabolic tumor volume (TMTV) calculated from 18F-FDG PET images is a valuable prognostic factor of 

progression-free and overall survival (22). However, the cutoff value to identify patients with a poor 

prognosis depends on the segmentation method used for TMTV calculation, and there is no consensus on 

the optimal segmentation method (23). ComBat can thus be used to automatically determine how the 

cutoff value appropriate for a segmentation method should be shifted to be applicable to TMTV measured 

using a different segmentation method. To illustrate this, we studied a diffuse large B-cell lymphoma 

cohort of 280 patients from the REMARC trial (NCT01122472), for whom TMTV was calculated from 18F-

FDG PET images using two segmentation methods (24). Method 1 (M1) used a threshold of 41% of SUVmax 

to segment lesions previously identified by a nuclear medicine physician. Method 2 (M2) used a 

convolutional neural network model (25). Using M1, the optimal TMTV cutoff value was 242 mL (TM1) to 

best distinguish between patients with short and long progression-free survival. Applying that cutoff to 

TMTV values measured with M2, the Youden Index (YI=Sensitivity+Specificity-1) was 0.18 (Se=41%, 

Sp=77%, Table 2). Based on TMTV distributions obtained by the two methods (Supplemental Figure 1A-C), 
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ComBat identified the transformation needed to convert M1 TMTV values to values that would have been 

obtained if M2 segmentation was used: 𝑇𝑀𝑇𝑉𝑀2 = 0.61 × 𝑇𝑀𝑇𝑉𝑀1 − 28.64. This formula can be used 

to determine how the cutoff appropriate for M1 TMTV should be shifted to be applicable to TMTV 

measured with M2, which was 119 mL (=0.61 x 242 -28.64). With that cutoff value, the YI was 0.22 

(Se=64%, Sp=58%), close to the performance obtained when optimizing the cutoff value directly on the 

M2 TMTV (YI=0.23). These results demonstrate the ability of ComBat to determine how a cutoff should be 

shifted to account for differences in the segmentation method. 

 

 

WHEN IS A COVARIATE NEEDED? 

Equation (1) above corresponds to the simplest version of ComBat, which is applicable when the 

two distributions of features to be realigned are drawn from the same population, and only differ because 

of a site effect. However, in many examples, each of these distributions is itself composed of 2 or more 

distributions. For example, a feature value distribution might be different in patients with different tumor 

stages. If the subcategories (patients with different stages) are not present with the same frequencies in 

the two sites, then the feature distributions observed in the two sites will differ in two respects: because 

of the site effect and because of the different frequencies of subcategories. Equation 1 will not apply unless 

the subcategory covariate is introduced. Equation 1 then becomes: 

𝑦𝑖𝑗 = 𝛼 + 𝑋𝑖𝑗𝛽 + 𝛾𝑖 + 𝛿𝑖𝜀𝑖𝑗                                                       (3) 

where 𝑋 is the design matrix for the covariates of interest, and 𝛽 is the vector of regression coefficients 

corresponding to each covariate. The values after realignment are obtained using: 

𝑦𝑖𝑗
𝐶𝑜𝑚𝐵𝑎𝑡 =

𝑦𝑖𝑗−𝛼̂−𝑋𝑖𝑗𝛽̂−𝛾𝑖̂

𝛿𝑖̂
+ 𝛼̂                                                                    (4) 
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To illustrate the impact of using a covariate, we performed 5 experiments, as listed in Table 1 

(Experiments 2-6). In all experiments, we assumed we had data from 2 different sites and that in each site, 

there were patients with “limited” stage or “advanced” stage diseases. 

 

In experiment 2, the numbers of patients with limited-stage and advanced-stage disease were 

identical at both sites. Using ComBat with or without the stage covariate yields almost identical results 

(Figure 4). The differences are because only one transformation is estimated without a covariate, 

compared to two transformations corresponding to each of the two stages in the version including a 

covariate. As the proportion of patients of each stage is exactly the same, so the stage covariate does not 

introduce confounding factors. The covariate is thus not necessary, but using it does not influence the 

ComBat results. 

 

In experiment 3, the samples were the same as in experiment 2, but there were no advanced-stage 

patients in site B. Without the covariate “stage”, ComBat realigns patients in site A (limited and advanced-

stages) with patients in site B (limited-stage only), as shown in Figure 5. Although the realignment of the 

two distributions seems to be satisfactory, a closer analysis shows that limited-stage patients of site A and 

site B are not well aligned because ComBat assumed that all site A patients were drawn from a single 

distribution, identical to that of the site B patients. When stage information is provided as a covariate, the 

distributions of limited-stage patients from site B are properly realigned with those of limited-stage 

patients from site A. 

 

The frequency of the covariate may also differ between the two sites, such as in experiment 4 

(Table 1). Similar to what was observed for experiment 3, the stage covariate must be introduced in the 

model to obtain a correct realignment for each stage (Figure 4). 
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Applying ComBat with a covariate is different from performing ComBat for each subcategory 

separately. Using a covariate assumes that the site effect is identical for the two (or more) subcategories 

composing the sample and that only the proportion of individuals in the subcategories differs between the 

sites. The transformations associated with each subcategory are then constrained to have the same slope 

and will differ in their intercept only, as the intercept expression includes the design matrix X 

(Supplemental Figure 2). If that assumption can be made, using ComBat with a covariate should be 

preferred to performing ComBat independently for each subcategory, as ComBat parameter estimates will 

benefit from a larger sample. If the site effect is expected to be different for the subcategories (e.g. for 

different tissue types), then ComBat should be performed for each subcategory independently. However, 

introducing covariates implies that the transformation will be determined from a smaller number of 

patients, which may lead to a less reliable estimate. The need for a covariate must therefore be carefully 

considered.  

 

COMBAT COVARIATES DO NOT INTRODUCE SPURIOUS INFORMATION 

Introducing covariates does not artificially add information to the data, as demonstrated by 

experiment 5 (Figure 4). In that setting, the data were the same as in experiment 4, except that at site B, 

limited- and advanced-stage patients yielded features with the exact same distribution. When using 

ComBat with the stage covariate, limited-stage patients from both sites are realigned, advanced-stage 

patients from both sites are realigned, and the differences in limited and advanced-stage patient feature 

distributions are reduced after pooling the data from both sites, given that there was a real difference 

between the 2 stages in site A but not in site B. The stage covariate did not introduce any illegitimate 

differences between the two stages in patients scanned in site B (Figure 4). 
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Similarly, when the difference between two categories (here stages) is more detectable on feature 

values measured in one site (here site B) compared to the other (site A), applying ComBat using a covariate 

will not corrupt the results (Figure 4). In experiment 6, the gap between the limited and advanced stages 

is 4 times larger at site B than at site A. After realigning the distributions with ComBat and the stage 

covariate, the gap between the two stages remains larger in site B (interquartile range (IQR) of feature 

values from site B after ComBat with covariate=7.5) than in site A (IQR=4.2), thus preserving the original 

properties of the site B distributions (IQR=8.4) compared to without covariate (IQR=4.7). 

The fact that ComBat does not introduce false positives even with the addition of a covariate has 

been previously demonstrated using sham experiments (15). 

The covariate can also take continuous values. In the “EARL experiment”, the addition of the 

metabolic tumor volume of the VOI in milliliters as a covariate also slightly improved the agreement 

between the SUVmax obtained with the EARL1 and EARL2 reconstructions (Figure 2). With a reduction in 

the standard deviation of the Bland-Altman plot from 2.1 SUV to 1.9 SUV. 

 

 

COMBAT VERSUS A Z-SCORE 

Another frequent harmonization method that can be applied a posteriori on feature values is the 

calculation of z-scores at each site independently (26). The feature values at site A are converted into z-

scores using the average feature value and associated standard deviation observed over all patients in site 

A. The same procedure is used for data from site B, using the mean and standard deviation of all 

measurements made at site B. In doing so, values measured at the 2 sites become comparable. 

Supplemental Figure 3 shows the result after calculating a z-score from the SUVmax values in the lesions 

for centers A and B in comparison with Figure 3. Yet, this does not preserve the original range of values, 

since SUV values vary between -1.5 and 3.6 when expressed in z-scores, against 1.2 SUV and 35.8 SUV on 
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the original data. A second limitation is that it is not possible to account for a covariate. Supplemental 

Figure 4 shows that the absence of advanced-stage in site B for experiment 3 did not allow the distributions 

of the limited-stages in the two sites to be aligned correctly when using a z-score, in comparison to Figure 

5. 

 

WHEN WILL COMBAT FAIL? 

For ComBat to be useful, some basic assumptions must be fulfilled: 

1. The distributions of the features to be realigned must be similar except for shift (additive factor) 

and spread (multiplicative factor) effects. This can be checked by plotting the distributions of the 

feature values from the 2 sites. ComBat can be used even for non-Gaussian distributions. A log-

transformation before applying ComBat (followed by exponentiation after ComBat) can further 

improve ComBat effectiveness for heavy tailed distributions, as shown in Supplemental Figure 1D. 

2. Covariates, if any, that might explain different distributions in the two sites (see point 1 above) 

have to be identified and taken into account using the design matrix of Equation (3). 

3. The different sets of feature values to be realigned have to be independent. If not, it is unlikely 

that assumption 1 will be met; hence, ComBat will not provide any sound result. A practical 

example is the realignment of TMTV values as described above but between 2 segmentation 

methods M1 and M2, where M2 produces the same result as M1 in some examples and produces 

a different result in others. Unless the cases for which the two methods produce the same 

segmentation can be predicted and coded as a covariate (for example, in small lesions), ComBat 

should not be used. 

To illustrate the latter, we analyzed TMTV from 140 lymphoma patients. The M1 method corresponds 

to a threshold set to SUV of 4, and the M2 method corresponds to a majority vote between three 

segmentation approaches, including the M1 method. In 60 out of 140 cases, M2 led to exactly the 
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same TMTV as M1 and the TMTV was different for all other cases. The TMTV values to be aligned are 

not independent, which results in a misalignment with ComBat (Supplemental Figure 5), which should 

realign the cases where the TMTVs are identical and different separately. 

4. Determining a single transformation with ComBat from data with tissue or tumor types does not 

always lead to satisfactory data realignments. This is because different texture patterns are not 

necessarily affected identically by the image acquisition and reconstruction protocols, so it is not 

appropriate to realign them all using a single ComBat transformation. 

This fully explains why Ibrahim et al (27) did not realign the data correctly with ComBat since the 10 

phantom patterns in the investigated phantom were affected differently by the pixel spacing. When 

ComBat was applied separately for each of the textural patterns, the realignments were correct (28). 

 

WHICH AMOUNT OF DATA IS NEEDED TO USE COMBAT? 

The success of ComBat when only small datasets are available depends on the magnitude of the 

site effect and on the representativeness of the samples available for each site. In previous studies (13), 

ComBat was successful when the number of patients per site was as low as 20. To illustrate the impact of 

the number of patients, we re-analyzed data from (12) by aligning the feature distribution from site B (74 

patients) to site A (63 patients) after estimating the ComBat transformation using only a subset of site B 

data (74 to 5 patients, 100 repeated random selections). Before ComBat, the distributions from the two 

sites are different (KS p-value <5%) for SUVmax or Homogeneity measured in the lesions (Supplemental 

Table 1). After ComBat, the distributions were not significantly different in at least 95 out of 100 tests 

when the transformation was estimated using 25 patients or more from site B for SUVmax (20 patients for 

Homogeneity). Supplemental Figure 6 shows the increase in variability in estimating the intercept and the 

slope of the ComBat transformation when the estimation is based on less and less patients. These results 

support the recommendation of using ComBat when at least 20 to 30 patients per batch are available. 



15 
 

Note that small sample size to estimate the transformations can also lead to a non-significant KS test 

because the scanner effect becomes undetectable. In case a covariate is used, a minimum of 20-30 

patients per covariate in each batch is also recommended. 

A variant of ComBat named B-ComBat that uses a bootstrap approach to determine the 

parameters of the transformation has been proposed (20). However, the use of B-ComBat and the 

potential benefit of this more computationally demanding approach compared to ComBat have not yet 

been reported by independent groups. 

 

USING COMBAT IN PRACTICE 

Different implementations of ComBat are publicly available (R, Python, MATLAB) and are 

summarized in Table 3. ComBat can also be used without any third-party software or programming skills 

using a free online application: https://forlhac.shinyapps.io/Shiny_ComBat/. 

 

DISCUSSION 

In this article, we provide a guide to understand and use the ComBat harmonization method 

correctly. The main advantage of ComBat is that it can be used retrospectively and directly on image 

features that are already calculated without the need to perform phantom experiments. However, given 

that ComBat is a data-driven method, a highly recommended practice is to scrutinize the distributions of 

the feature values from the sites to be pooled before using ComBat. This usually makes it possible to 

quickly determine whether the assumptions underlying ComBat are fulfilled, especially whether the 

distributions observed in the different sites are similar except for shift and spread effects. When this is the 

case, ComBat can be used, otherwise, the reason should first be identified. Often, this is because of the 

presence of one or more covariate(s), such as patient age, disease stage, treatment, molecular subtype, 

metabolic volume. When covariates can be identified, it is easy to check if ComBat assumptions are met 

https://forlhac.shinyapps.io/Shiny_ComBat/
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for each dataset corresponding to a covariate value and whether the site effect impacts the sample 

corresponding to each covariate identically. If so, ComBat can be used by including that covariate. If the 

site effect impacts samples corresponding to each covariate differently, then a specific ComBat 

transformation should be estimated for each sample independently. Examination of feature distributions 

in tumors can sometimes be challenging, as the variability in the biological signal associated with tumor 

heterogeneity can hide other sources of variability associated with the site effect. An easy check is to 

segment a reference region of fixed size in a non-pathological tissue (eg, healthy liver) and observe feature 

values within that region in images from different sites. This is not sufficient, as it will not give precise 

information about site effects related to the spatial resolution in the images because the liver usually 

displays a low-frequency signal. However, we still find it useful to characterize how image quality differs 

between sites. 

ComBat users should keep in mind that data can be grouped in the same batch if they were 

extracted from images obtained using the same setting on the same scanner. If the image acquisition and 

reconstruction protocols vary on a scanner, a careful check is needed to ensure that this does not affect 

the image properties. Otherwise, different batches should be used for the same scanner corresponding to 

different settings. 

In prospective studies, the transformation to be applied with ComBat can be deduced from 

acquired data previously for the same patient population. The ComBat method is complementary to EARL 

standardization approach. We have summarized the pros and cons of both approaches in Table 4. EARL 

and ComBat can be used together if differences in feature distributions remain even with an EARL 

standardized imaging protocol. 

Harmonization in medical imaging can also be seen as domain adaptation, where the goal would 

be to produce images belonging to a single domain (here, corresponding to the image quality/accuracy 

obtained with a specific scanner and protocol) from images recorded in different domains. Promising 
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approaches for domain adaptation using, for example, generative adversarial networks (GANs) have been 

developed in recent years (29–31). The role of such approaches in harmonizing PET and SPECT images 

remains to be studied. Unlike ComBat, GANs act on the images and not on the already computed features, 

so this requires access to the images, which could be a limitation. 

 

CONCLUSION 

In this article, we provide a guide for using the ComBat method to compensate for multicenter 

effects affecting quantitative biomarkers extracted from nuclear medicine images and beyond. This 

harmonization method is largely employed in medical imaging and should facilitate large-scale multicenter 

studies needed to translate radiomics to the clinics. 
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Figure 1: Boxplot and feature value distributions for experiment 1 (details in Table 1). Blue: data for site A, 

green: data for site B, orange: data for site C. A, D) before ComBat. B, E, G) after ComBat by aligning the 

data from sites B and C to site A. C, F, H) after ComBat by aligning the data on a "virtual" site (intermediate 

between the three sites). The bottom graphs show the equations of the transformations.  

  



22 
 

 

Figure 2: Bland-Altman plots for SUVmax obtained using EARL1 and EARL2 reconstructions. A) before 

ComBat. B) after ComBat, in black w/o covariate and in red using the metabolic volume (mL) as continuous 

covariate. m: mean, sd: standard deviation. 
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Figure 3: Application of ComBat in the liver (blue and green) and tumor (orange and pink) tissues for A) 

SUVmax and B) Homogeneity. Left: distributions in the two sites before ComBat. Center: distributions after 

ComBat (site A: reference site). Right: values after ComBat plotted against value for the same index and 

tissue before ComBat. The equation is the transformation identified by ComBat to align the data from site 

B to site A.  
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Figure 4: Value distributions for experiments 2, 4, 5 and 6 (details in Table 1). Left: distributions before 

ComBat. Center: distributions after ComBat (without covariates). Right: distributions after ComBat and 

specifying stage as a covariate. Blue: data from site A and limited stage. Orange: site A/advanced-stage. 

Green: site B/limited-stage. Pink: site B/advanced-stage. 
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Figure 5: Distributions for experiment 3 (details in Table 1). Left: distributions before ComBat. Center: 

distributions after ComBat (without covariate). Right: distributions after ComBat and specifying stage as a 

covariate. Top:  by pooling data in each site. Bottom: data represented per site and stage. Blue: data from 

site A and limited stage. Orange: site A/advanced-stage. Green: site B/limited-stage. Gray: limited and 

advanced-stages from site A. Purple: limited-stage from site B. 
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Table 1: Description of the simulations. 

Note. µ: mean of the Gaussian distribution. SD: standard deviation. N: number of simulated samples. Ø: 
no simulation for this category. 
 

  

 Site A Site B Site C 

 limited-
stage 

advanced-
stage 

limited-
stage 

advanced-
stage  

limited- 
stage 

Experiment 1  
“Virtual site” 
Reference site=A 

N=1000 
µ=8 

SD=3 
ø 

N=1000 
µ=12 
SD=4 

ø 
N=1000 

µ=14 
SD=5 

Experiment 2 
Reference site=A 

N=1000 
µ=8 

SD=3 

N=1000 
µ=10 
SD=3 

N=1000 
µ=12 
SD=4 

N=1000 
µ=14 
SD=4 

ø 

Experiment 3 
Reference site=A 
W/o and with covariate 
(=stage) 

N=1000 
µ=8 

SD=3 

N=1000 
µ=10 
SD=3 

N=1000 
µ=12 
SD=4 

ø ø 

Experiment 4 
Reference site=A 
W/o and with covariate 
(=stage) 

N=1000 
µ=8 

SD=3 

N=1000 
µ=10 
SD=3 

N=200 
µ=12 
SD=4 

N=1800 
µ=14 
SD=4 

ø 

Experiment 5 
Reference site=A 
W/o and with covariate 
(=stage) 

N=1000 
µ=8 

SD=3 

N=1000 
µ=10 
SD=3 

N=1000 
µ=12 
SD=4 

N=1000 
µ=12 
SD=4 

ø 

Experiment 6 
Reference site=A 
W/o and with covariate 
(=stage) 

N=1000 
µ=8 

SD=3 

N=1000 
µ=10 
SD=3 

N=1000 
µ=12 
SD=4 

N=1000 
µ=20 
SD=4 

ø 
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Table 2: Summary of the results obtained with ComBat to adjust Total Metabolic Tumor Volume cutoff 
values between different sites. 

  

 Cutoff Youden Sensitivity Specificity 

Cut-off optimized for M1 242 mL 0.18 41% 77% 

Based on M1 cut-off, 
estimated cut-off for M2  

(ComBat without log-
transformation) 

119 mL 0.22 64% 58% 

Optimal cut-off for M2 112 mL 0.23 66% 57% 



28 
 

Table 3: Implementations of ComBat. 
 

Name Details 

neuroComBat 
Script 

https://github.com/Jfortin1/ComBatHarmonization 
Language: R, Python or MATLAB 

M-ComBat 
Script 

https://github.com/SteinCK/M-ComBat 
Language: R 

ComBaTool 
Standalone web 
application 

https://forlhac.shinyapps.io/Shiny_ComBat/ 
Language: R 

 

  

https://github.com/Jfortin1/ComBatHarmonization
https://github.com/SteinCK/M-ComBat
https://forlhac.shinyapps.io/Shiny_ComBat/
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Table 4: Opportunities and limitations of harmonization using EARL and ComBat. 

 Upfront harmonization (like EARL) ComBat 

Opportunities • Applicable without restriction 
on the number of patients  

• Valid for any pathology and 
feature 

• Applicable directly on the 
calculated radiomic feature 
values (no need to access 
images) 

• No need for phantom 
acquisition 

• Applicable retrospectively 

• Applicable prospectively if data 
have already been acquired for 
the same pathology with the 
same acquisition and analysis 
protocols and settings 

• Ability to realign data to a 
particular site 

Limitations • Not applicable retrospectively 

• Requires acquisition of 
phantom images, optimization 
of reconstruction settings and 
access to the machine 

• Minimum number of patients 
is needed (~20-30 patients per 
batch) 

• Specific transformation for 
each type of tissue, each type 
of tumor, each scanner, each 
material in a phantom, each 
analysis method (e.g., 
segmentation approach) and 
each feature 

• Not applicable prospectively if 
little or no previously acquired 
data 
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Supplemental Figure 1: Realignment of Total Metabolic Tumor Volume (TMTV) distributions
obtained using M1 segmentation method (in blue) on M2 values (in purple) before (A) and after
ComBat directly (C) or after a log-transformation of data (B, E, D). P-values are for Kolmogorov-
Smirnov tests between the two distributions.



Supplemental Figure 2: Graph of values after ComBat versus values before ComBat for
experiment 2 with site A as reference site: A) using ComBat without covariate, B) using ComBat
with the stage as covariate, C) using ComBat separately for limited and advanced stages I and II.
The equation shown on each graph gives the transformation identified by ComBat to align the data
from site B to site A.

Site B (limited-stage): y = 0.77 x - 0.89

Site B (advanced-stage): 
y = 0.77 x - 0.89

Site B (limited-stage): y = 0.75 x - 0.90

Site B (advanced-stage): 
y = 0.75 x - 0.39

A B

C

Site B (limited-stage): y = 0.74 x - 0.85

Site B (advanced-stage): 
y = 0.75 x - 0.45

Site A: limited-stage
Site A: advanced-stage
Site B: limited-stage
Site B: advanced-stage



Supplemental Figure 3: Application of z-score for SUVmax values from Figure 3 in tumor tissues.
Orange: SUVmax from site A. Pink: SUVmax from site B.



Supplemental Figure 4: Value distributions for experiment 3 (details in Table 1) after z-score
calculation in each site separately. Blue: data from site A and limited stage. Orange: site A-
advanced stage. Green: site B-limited stage.



Supplemental Figure 5: Graph of Total Metabolic Tumor Volume (TMTV, on the left) obtained for
140 lymphoma patients using a majority vote (M2) between three segmentation approaches versus
one of the methods (M1) and the corresponding Bland-Altman plot (on the right) A) before ComBat
and B) after ComBat.

m + 2.5SD = 1010

m = -108

m - 2.5SD = -1225

m + 2.5SD = 832

m = 0

m - 2.5SD = -832

A

B



Supplemental Figure 6: Evolution of the slope (left) and intercept (right) of the ComBat
transformation from site B to site A for Homogeneity (A) and SUVmax (B) as a function of the
number N of patients selected for site B (74 to 5 patients, 100 repeated random selections).

A

B



Supplemental Table 1: Number of Kolmogorov-Smirnov tests out of 100 runs with p-value lower
than 5% for Homogeneity and SUVmax before and after ComBat. The ComBat transformation from
site B to site A is estimated from a subset of patients from site B (from 74 to 5 patients) and then
applied to all patients at site B.

Number of patients for site B to 
estimate ComBat 
transformation

Homogeneity SUVmax

Before ComBat After ComBat Before ComBat After ComBat

74 100 0 100 0
70 100 0 100 0
65 100 0 100 0
60 100 0 100 0
55 100 0 100 0
50 100 0 100 0
45 100 0 100 0
40 100 0 100 0
35 100 0 100 0
30 100 0 100 0
25 100 0 100 5
20 100 2 100 9
15 100 11 100 8
10 100 16 100 28
5 100 50 100 57


