Bringing VISION to Nuclear Medicine: accelerating evidence and changing paradigms with theranostics

Michael S. Hofman

1 Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
2 Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia

Keywords: prostate specific membrane antigen, theranostics, tumour heterogeneity, positron emission tomography

Correspondence to:
Professor Michael S. Hofman
Molecular Imaging and Nuclear Medicine Therapeutics
Peter MacCallum Cancer Centre
305 Grattan Street
Melbourne VIC AUSTRALIA 3000
Email: michael.hofman@petermac.org
Orchid ID: 0000-0001-8622-159X
Twitter: @DrMHofman

Word count: 779

120 character summary for Twitter: Bringing VISION to Nuclear Medicine: accelerating evidence and changing paradigms with theranostics
I first became excited about prostate specific membrane antigen (PSMA) as a game changing target for nuclear medicine at the 2011 European Association of Nuclear Medicine (EANM) meeting in Birmingham. The target had been identified two decades prior(1)(2). A new approach using radiolabeled small molecule ligands that target the extra-cellular domain of the PSMA receptor, however, showed striking tumor-to-background contrast in both preclinical models with 99mTc and $^{124I}/^{131I}$ and in a 68Ga first-in-human image in a patient with prostate cancer. I recorded PSMA as my “image of the conference”. The images provided the clarity needed for groups to rapidly adopt in clinical practice and trials in both imaging and therapy. A decade has passed, and we now have two FDA approved PSMA ligands, 68Ga-PSMA-11 and 18F-DCFPyL. And we also have VISION, a phase 3 trial of radioligand therapy, that has led to FDA Breakthrough Approval of 177Lu-PSMA-617.

The VISION trial, presented at the ASCO 2021 meeting and recently published in NEJM(3) included men with metastatic castration resistant prostate cancer who had previous treatment with at least one taxane chemotherapy and one androgen receptor pathway inhibitor. 13% were excluded after 68Ga-PSMA-11 PET/CT selection. 551 men were randomized to 177Lu-PSMA-617 and 280 to standard-of-care. Whilst the standard-of-care can be criticised for being protocol-defined and potentially limiting optimal clinical care options, the trial was designed with a goal of FDA approval and the results will enable widespread availability for men with prostate cancer globally. This is expected to follow given the improvement in overall survival of 15.3 months with 177Lu-PSMA-617 compared to 11.3 months with SOC. This was consistent across pre-specified stratification factors including LDH, liver metastases or androgen-receptor pathway inhibitors planned as part of SOC. Other endpoints such as response on CT (RECIST response 42% vs. 3%) and PSA decline over 50% (46% vs 7%) also impressively favor 177Lu-PSMA-617.

Like many other types of radionuclide therapy that are now widely available, 177Lu-PSMA-617 has followed a development pathway that is unusual compared to conventional pharmaceuticals. The very first treatments were compassionate access treatments at Bad Berka(4) and University of Heidelberg(5) in Germany in men who had progressed after standard therapies. The unique ability to see what you treat with theranostics enabled the confidence to administer a treatment never tested before in a human. Years of experience with 68Ga/177Lu-DOTATATE in neuroendocrine tumours enabled estimation of an appropriate administered radioactivity. Post treatment dosimetry instantly validated high tumor targeting with low normal organ uptake(6). Such a direct mechanistic treatment paradigm has features more analogous to external beam radiotherapy enabling rapid translation to the clinic.

At the Peter MacCallum Cancer Centre, we designed a prospective phase II study in 2014. Our vision was that a small prospective trial would provide the type of evidence required to evaluate activity, safety, and move this treatment into the mainstream. The results of this 30 patient trial was published in Lancet Oncology(7), and is currently in the top ten most highly cited manuscripts in the journal since 2008. Without a commercial sponsor but with support from ANZUP Clinical Trials Group and grant funding, this led directly to the first randomised controled trial of 177Lu-PSMA-617, the TheraP trial. ABX (Radeburg, Germany), manufacturer and owner of the PSMA-617 intellectual property at the time, and ANSTO who manufacture 177Lu in
Australia, kindly agreed to the support trial. Our expanded 50 patient cohort(7) provided Endocyte with compelling phase 2 evidence contributing to their purchase of PSMA-617 and design of the phase 3 VISION trial(8). A little of a year later, Novartis purchased Endocyte and spearheaded global commercialization.

We now have two randomised trials of 177Lu-PSMA-617 providing complementary evidence. VISION provides definitive survival data in men who have exhausted current therapeutic options. TheraP trial places PSMA theranostics once step earlier by comparing to cabazitaxel(9) showing greater efficacy, lower toxicity and better patient reported outcomes. VISION demonstrates efficacy in a broader population whilst TheraP employed quantitative PET and also FDG PET/CT for patient selection. It remains an open question whether men with relatively low intensity PSMA uptake or FDG-positive PSMA-negative disease benefit from this treatment.

We recently celebrated the first administration of radio-iodine by Saul Hertz on March 31, 1941. Eighty years later, the nuclear medicine community continues to innovate with truly personalised medicine. As a last line of treatment, outcomes with 177Lu-PSMA remain modest for many men, although some experience truly exceptional and durable responses. I'm hopeful that multiple efforts are also underway to evaluate novel combinations and use of 177Lu-PSMA earlier, even as a first-line of treatment(10,11), will further improve outcomes for men with prostate cancer.

Disclosure Statement: MSH has received speaker fees, travel support or fees for advisory board participation from Astella, AstraZeneca, Janssen, Merck/MSD, Mundipharma, Point Biopharma; and research support from Endocyte and Advanced Accelerator Applications (Novartis companies). MSH was the principal investigator of the TheraP study, funded by the Prostate Cancer Foundation of Australia (PCFA) with community support from Movember, It’s a Bloke Thing Foundation and Can4Cancer; ANSTO supplied no carrier added 177Lu.

Acknowledgements: MSH is supported by the Prostate Cancer Foundation (PCF) funding the Prostate Cancer Theranostics and Imaging Centre of Excellence (ProTIC) with additional grant funding from Movember, Victorian Cancer Agency (VCA) and U.S. Department of Defence.
References

