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ABSTRACT 

Digital autoradiography (DAR) is a powerful tool to quantitatively determine the distribution of a 

radiopharmaceutical within a tissue section and is widely used in drug discovery and development. However, 

the low image resolution and significant background noise can result in poor correlation, even errors, between 

radiotracer distribution, anatomical structure, and molecular expression profiles. Differing from conventional 

optical systems, the point spread function (PSF) in DAR is determined by properties of radioisotope decay, 

phosphor and digitizer. Calibration of an experimental PSF a priori is difficult, prone to error, and impractical. 

We have developed a content-adaptive restoration algorithm to address these problems. 

Methods: We model the DAR imaging process using a mixed Poisson-Gaussian model, and blindly restore the 

image by a Penalized Maximum-Likelihood Expectation-Maximization algorithm (PGPEM). PG-PEM 

implements a patch-based estimation algorithm with “Density-Based Spatial Clustering of Applications with 

Noise” to estimate noise parameters, and utilizes L2 and Hessian Frobenius (HF) norms as regularization 

functions to improve performance. 

Results: First, PG-PEM outperformed other restoration algorithms at the denoising task (p<0.01). Next, we 

implemented PG-PEM on pre-clinical DAR images (18F-FDG treated mice tumor and heart, 18F-NaF treated 

mice femur) and clinical DAR images (bone biopsy sections from 223RaCl2 treated castrate resistant prostate 

cancer patients). DAR images restored by PG-PEM of all samples achieved significantly higher effective 

resolution, contrast to noise ratio (CNR), and a lower standard deviation of background (STDB) (p<0.0001). 

Additionally, by comparing the registration results between the clinical DAR images and the segmented bone 

masks from the corresponding histological images, the radiopharmaceutical distribution was significantly 

improved (p<0.0001).  

Conclusions: PG-PEM is able to increase resolution and contrast while robustly accounting for DAR noise, and 

demonstrates the capacity to be widely implemented to improve pre- and clinical DAR imaging of 

radiopharmaceutical distribution. 
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INTRODUCTION 

Autoradiography is a powerful, high resolution and quantitative molecular imaging technique used to study the 

tissue distribution of radioisotopes in biologic systems and for analytic assays (1–4). Originally, radioactivity 

distributions were acquired using photographic emulsions which are high resolution, but require time consuming, 

fickle, and variable processes. Currently, phosphor imaging plate-based digital autoradiography (DAR) has 

supplanted film due to its linear activity response, non-destructive approach, no chemical-processing 

requirement, large dynamic range and considerable sensitivity (2,4,5). 

Generally, DAR is performed by placing tissue samples containing radioactivity apposed to the phosphor 

screen which absorbs and stores the energy of the radioactive emissions, creating a “latent image” of activity 

distribution (Fig. 1A). Except for very low energy beta emitters (tritium), the phosphor layer and the specimens 

are typically separated by low-attenuation film to prevent contamination of the screen itself, and exposure lasts 

hours to days. The phosphor plate is raster scanned with a small focal-spot red laser, and the photostimulated 

light is collected by a photomultiplier tube to form a digital image (Fig. 1B). The intensity of emitted light is 

proportional to the amount of radioactivity in the tissue sample. 

Suboptimal image quality in DAR limits assessment of radioligand evaluation. Unlike optical 

microscopy systems, DAR does not utilize an aperture or collimator, and the solid angle subtended at the samples 

by the imaging plate is almost 2π. Therefore, the point spread function (PSF) results from isotropic emission and 

is dependent on a combination of energy dispersion in the phosphor, plate properties (lattice and grain size) and 

readout laser, and physical properties also make the PSF isotope-dependent. Additionally, replicating relevant 

features of the signal for DAR acquisitions in a phantom is difficult. In aggregate, it is thus not practical to 

calibrate the PSF beforehand. 

Apart from blurring effects caused by PSF, background signal is always present in imaging process 

caused by environmental radiation. DAR noise can be attributed to multiple sources: Poisson noise exists in the 

photon counting imaging system; Gaussian noise comes from the imaging reader readout process, phosphor 
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sheet inhomogeneities and grain (6). Few approaches have been tested to overcome noise and blur-related 

artifacts: a regularized iteration method after noise filtration (7) and the modeling of noise features (8). The 

results from these investigations are not ideal and have not been widely adopted, in part, because several have 

used an emulsion film-based system (the predecessor to phosphor storage plate technology) and noise 

amplification effects. Common to these approaches are pre-calibration of PSF by non-ideal resolution phantom. 

In order to model the noise in DAR systems of many isotopes, a blind estimation approach for restoration 

is preferred. Recently, a mixed noise model has been employed to denoise digital images, which can improve 

the quality of images contaminated by Poisson and Gaussian noise sources (9–12). A key step in such a model 

is estimation of noise parameters. For single image restoration, patch-based (9), segmentation-based (11) or 

Fourier-based (12) methods have been developed; and several blind and non-blind image restoration techniques 

for biomedical images have been advanced (13–19). For the specific task of blind restoration, the regularizations 

for PSF and specimen are considered in some of these methods, providing a path forwards for blind DAR 

estimation. 

Here, a blind image restoration algorithm based on a mixed Poisson-Gaussian noise model and penalized 

maximum likelihood expectation maximization (MLEM) algorithm, PG-PEM, is presented. We first describe 

this model in the context of the DAR imaging process along with a patch-based noise parameter estimation 

method. We incorporate a penalized MLEM algorithm to jointly estimate the restored specimen image and 

corresponding PSF. L2 and Hessian Frebonius (HF) norms are implemented for PSF and specimen signal 

separately, to improve quality of the restored image. PG-PEM improves resolution, contrast, and suppresses 

noise more effectively than contemporary restoration approaches, using both pre- and clinical applied diagnostic 

and therapeutic radiopharmaceuticals. 
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MATERIALS AND METHODS 

Mice Tumor, Heart and Femur Preparation 

Experiments were performed in accordance with approved protocols (Institutional Animal Care and Use 

Committee Protocol #2019006). Male C57Bl/6 mice (6-10 weeks) from Jackson Laboratory (Bar Harbor, Maine) 

were administered approximately 200 µCi (7.4 MBq) of either 18F-FDG or 18F-NaF and sacrificed at 1 h. Tissues 

were embedded in optimal cutting temperature media, frozen on dry ice, and sectioned at 8 µm by cryostat 

(CM188, Leica). For all radiographic exposures, MS phosphor plates were exposed at -20 °C and read using a 

Cyclone Plus (Perkin Elmer) with unit of “digital light unit” (DLU). We then used ImageJ (20) to crop regions 

of interest. 

 

Human Bone Biopsy Preparation 

Bone biopsies were obtained from seven metastatic castrate resistant prostate cancer (mCRPC) patients 

under fluoroscopic guidance following a bone scan, 24 h after injection of 223RaCl2. The institutional review 

board approved this study (Human Research Protection Office Protocol #201411135) and all subjects provided 

written informed consent. The biopsy was fixed in 4% paraformaldehyde for 24 h and transferred to 30% sucrose 

for 24h, frozen, cut and imaged (above). 

 

Staining and Imaging 

Sections were stained with hematoxylin and eosin (H&E) and scanned at 10× (Nikon Eclipse Ti2 for the 

mice tumor, heart and femur slides; Zeiss Axio Scan Z1 for human bone biopsy slides). 

 

Overview of Image Formation Model and Restoration Algorithm 

According to the DAR imaging process, its physical model can be expressed as Eq. (1), 

                                                   𝑅𝑝 = 𝛼𝑄𝑝 + 𝑁𝑝, 𝑄𝑝~𝒫[(𝑋 ∗ ℎ)𝑝 + 𝑏𝑝], 𝑁𝑝~𝒩(0, 𝜎𝐺
2), (1) 
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where p is the pixel index, R the raw image, α the scaling factor corresponding to the gain of the imaging system, 

X the “clean” radioactive signal, h the PSF, b the mean of background, 𝒫[𝑥] the Poisson noise with mean x, and 

𝒩(0, 𝜎𝐺
2) the Gaussian-distributed readout noise with mean of 0 and standard deviation 𝜎𝐺. Here, we assume bp 

is invariant because of the homogeneous radiation around the tissue. 

To estimate X, a careful modelling of Gaussian noise 𝒩(0, 𝜎𝐺
2)   and Poisson noise 𝛼𝒫[𝑏]  from 

background b is necessary. We implement a noise model to jointly estimate parameters of the two components. 

This is based on the fact that Poisson distribution can be feasibly approximated by a Gaussian distribution when 

b > 3 (21) (Supplementary Fig. 1). Notably, this condition is always satisfied for DAR imaging and therefore, 

the two independent noise features are summed into a new single Gaussian-distributed noise (Supplementary 

Note 1.1). Consequently, the raw image can be re-organized into Poisson-distributed signal: 𝛼𝒫[𝑋𝑝 ∗ ℎ] and 

Gaussian-distributed noise: 𝒩(𝜇𝑁, 𝜎𝑁
2)  with mean of αb and variance of 𝛼2𝑏 + 𝜎𝐺

2 . Obviously, 𝒩(𝜇𝑁, 𝜎𝑁
2) 

describes the statistical characterization of the background of DAR images. 

Non-tissue areas in DAR should only have background and noise, and be highly similar to each other. 

From this assumption, we propose a patch-based estimation algorithm based on “density based spatial clustering 

of applications with noise” (22) (Fig. 1C(1), Supplementary Note 1.2 (23), Supplementary Algorithm 1 and 

Supplementary Fig. 2) to robustly segment background and estimate 𝜇𝑁and 𝜎𝑁. 

The PG-PEM algorithm uses these noise parameters and the raw image to blindly estimate X based on a 

penalized MLEM algorithm (Fig. 1C(2), Supplementary Notes 1.3 and 1.4 (24,25)). The E step aims to eliminate 

the Gaussian-distributed noise 𝒩(𝜇𝑁, 𝜎𝑁
2)  by calculating the expectation of X ∗ h while the M step deconvolutes 

the blurry image corrupted by Poisson-distributed data by jointly estimating h and X. In practice, the blind 

deconvolution problem is highly ill-posed. Through the iteration process, h tends to converge towards a delta 

function because of high frequency noise in the specimen image. To avoid the trivial solution and considering 

the smooth characteristics of h, it is regularized by L2 norm. L2 norm is linearly correlated to the power of h. 

Therefore, the smaller L2 norm, the smaller the power of h is and thus, the smoother h is. During the same 
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process, the noise of the estimated X may be amplified. Total variation (TV) is a popular approach (16,19) to 

suppress such noise by restraining the summation of the derivative of an image, according to the empirical 

summary that signals are usually successive while noise arises randomly. However, TV oversharpens boundaries 

between different regions, generating a “staircase” effect. To avoid this artifact, we implemented HF norm 

regularization to enable smoother transitions between different regions and to suppress noise simultaneously 

(15,17,18). Compared to TV regularization, HF is a second-order derivative norm and forces the second-order 

derivative to be sparse. The continuity between different pixels agrees more with the characteristics of biological 

autoradiogram data. The regularization strengths for h and X are controlled by their regularization parameters 

𝜆ℎ and 𝜆𝑋, respectively. 

For our novel PG-PEM, initial estimates for h and X are needed. The raw image R is set as the initial 

guess of X divided by α. h can be initialized based on the imaging model. Apart from even scattering, making h 

circularly symmetric, the finite focal point effect of the image reader and the modulation transfer function of the 

phosphor plate have minor effects on h. However, it is unnecessary to build a PSF model accounting for all 

effects in a blind restoration framework. Instead, h is initialized based on the inverse square law (26) when only 

considering the scattering (Supplementary Note 1.5, Supplementary Fig. 3). Finally, the scaling factor α must be 

calibrated. Methods previously presented for optical imaging (11,18) are insufficiently robust for DAR images 

because it is difficult to find enough homogeneous regions to calibrate α. Empirical calibration is impractical 

and generally infeasible because of the stochastic decay process and short half-lives in DAR. Fortunately, the 

mixed Poisson-Gaussian data can be approximated as a shifted-Poisson form (18) and further in the 

deconvolution of Poisson-distributed images, results are not affected by this scaling parameter. Thus, PG-PEM 

yields a calibration-free algorithm when α is set in a proper range (Supplementary Note 1.6). The detailed 

algorithmic framework and runtime analysis are summarized (Supplementary Note 1.7, Supplementary 

Algorithm 2 and Supplementary Table 1). 
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Quality Metrics 

For experiments, the full-width half-maximum (FWHM), standard deviation of the background (STDB) 

and contrast to noise ratio (CNR) are set as the accuracy metrics due to the lack of ground truth. FWHM and 

STDB can evaluate the resolution and noise level separately, while CNR assessed overall performance. 

For DAR it is difficult to measure FWHM using micro-beads. Alternatively, we use a recently published 

decorrelation-based method (27) (Supplementary Fig. 4). This method does not estimate the theoretical 

resolution of the imaging system, but the highest frequency with sufficiently high signal in relation to noise. We 

refer to the estimated FWHM as effective resolution. 

For simulations, accuracy metrics include root mean squared error, signal power to noise power ratio 

(SNR) and structural similarity (SSIM) (28), with which the estimated images can be compared with the ground 

truth directly. These metrics along with CNR are defined in Supplementary Note 2. 

 

Statistical Analysis 

Quantitative data are presented as box-and-whisker plots (center line, median; limits, 75% and 25%; 

whiskers, maximum and minimum). We used paired two-side Student’s t-test to compare data of Raw and PG-

PEM restored DAR images, and the paired one-way analysis of variation to compare all other data (Prism 8; 

GraphPad Software Inc.). Statistical significance at P<0.05, 0.01, 0.001 and 0.0001 are denoted by *, **, *** 

and ****, respectively. 
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RESULTS 

Assessment of Image Enhancement 

We benchmarked performance of several restoration frameworks: Richardson-Lucy (RL) (13), RL with 

wavelet-based residue denoising (RD) (29), Shift-Poisson (SP) (18), PG-PEM with no regularization for X (NP) 

and PG-PEM with TV regularization (TV). For comparison, we have applied our novel background reduction 

and blind restoration to all approaches, and tuned h to be similar (Supplementary Notes 3.1–3.5). PG-PEM 

together with the five modified reference algorithms were implemented on both simulated (Supplementary Note 

4.1) and experimental images. Regularization parameters are tuned (Supplementary Note 4.2, Supplementary 

Figs. 5–6) and comparisons on simulated data are analyzed (Supplementary Note 4.3, Supplementary Figs. 7–

11). 

DAR images (n=10) acquired from the mouse hindlimb following 18F-NaF PET imaging were used as 

experimental data and to evaluate the performance of image restoration approaches. As is standard for short lived 

diagnostic radioisotopes and required tissue-processing, sectioning and exposure times, the SNR of the raw 

images are low, providing a model setting for comparison. Visual assessment and analyses (Figs. 2 and 3, 

Supplementary Fig. 12) show implementation of restoration algorithms improved resolution and suppressed 

noise to varying magnitudes. Log-scale images reveal NP, TV and PG-PEM have more homogeneous 

background than other methods, a result of splitting the image components into Poisson-distributed signal and 

Gaussian-distributed noise. The non-homogeneous background in RL, RD and SP correspond to noise and false 

positive signal generated in their restoration process. 

Next we assessed the log-scale amplitude of the Fourier space. Because h is isotropic, the resolution of 

DAR images should be at least quasi-isotropic. Curiously, we observed that high frequencies tended along the 

horizontal direction and are highly non-isotropic, which correspond to the noise. By comparing the frequency 

maps of NP, TV and PG-PEM, the non-isotropic components of NP have the highest energy. TV produces a 

broader non-isotropic frequency portion than PGPEM and a “staircase” effect. These along with STDB and CNR 
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indicate that PG-PEM is the best denoiser. Meanwhile, RL, SP, NP, TV and PG-PEM share similar quasi-

isotropic areas in the dotted black circles, while that of RD has the lowest energy. The resolution of RD is the 

lowest because wavelet-denoising processes remove fine details. With a MLEM restoration framework (and the 

same regularization strategy for PSF h), RL, SP, NP, TV and PG-PEM share similar resolutions. Notably, due 

to the lack of a regularization strategy for X, the resolution of NP may be slightly higher than those of the other 

methods, which can be neglected due to the impact of noise. The effective resolution improves at least 5-fold 

after restoration by PG-PEM (P<0.0001). These data along with the simulation results demonstrate that PG-

PEM is the best performer for blind restoration of DAR images. 

 

 

PG-PEM Improves DAR of Diagnostic Radiopharmaceuticals 

To determine whether PG-PEM could improve the quality of DAR images in diagnostic 

radiopharmaceuticals we investigated distribution of the widely used metabolic tracer 18F-FDG, and bone 

seeking 18F-NaF, in tissue samples from mice tumor, heart and femur (n=10 per group). We used PG-PEM to 

restore these data, calculated STDB, CNR, and effective resolution for comparison to the raw images (Fig. 4). 

These results demonstrate the image quality improvement after restoration. Notably, non-glycolytic (prostate) 

tumor section which takes up little 18F-FDG has extremely low SNR. Nevertheless, PG-PEM suppresses 

background noise and improves resolution of regions of uptake (Supplementary Fig. 13). RL and SP algorithms 

were chosen as references to restore the same DAR images from 18F-FDG treated tumors (Supplementary Fig. 

14). Compared with PG-PEM, the results of RL and SP, especially their background components, have more 

apparent noise. The corresponding STDB and CNR reveal that PG-PEM is superior to restore DAR images under 

extremely low SNR conditions, with a P<0.0001. 

We next asked if higher SNR images, from 18F-FDG in the heart and 18F-NaF in the bone, could likewise 

be improved by PG-PEM. From the raw cardiac images, radioisotope signal is almost homogeneous. By contrast, 
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the PG-PEM restored data has higher resolution and improved contrast which may better reflect the spatial 

distribution of the tracer (Supplementary Figs. 13 and 15). We further compared the H&E, raw and restored 

DAR images of the murine femur (Fig. 5, Supplementary Fig. 16). After restoration the endosteal and periosteal 

surfaces are clearly visualized, and the proximal head of the femur is resolved. Because the positron range of 18F 

is considerable, its DAR is blurred compared to lower energy beta emitters or high-linear energy transfer alphas, 

which hinders assessment of radiopharmaceuticals distribution. Our results indicate that PG-PEM can ameliorate 

this issue, underscoring pre-clinical utility. 

 

Enhanced Targeted Alpha Particle Radiotherapy Evaluation by PGPEM 

Targeted delivery of alpha particle emitting radionuclides is an emerging application for metastatic 

cancer treatment (30,31). Analyzing the dose distribution for alpha particle therapy near the cell-scale plays a 

key role in predicting the treatment response and assessing the toxicity of this targeted paradigm, especially as 

their path length is at the microscopic scale. Current small-scale dosimetry methods are predominately based 

upon idealized computational anatomical models (32,33). While useful, these provide limited real-world 

information in heterogeneous patient populations. 

We investigate alpha particle emitter activity distributions from a dataset of 10 bone biopsy slides of 

mCRPC patients treated with 223RaCl2 (Fig. 6, Supplementary Fig. 17). The raw DAR images suffer from blur 

and noise due to the imaging process, distorting the true radiotracer distribution. This can cause large errors in 

registration, and degrades treatment response assessment and toxicity analysis. 223Ra will adsorb on the bone 

surface (34) and the high activity regions should be located here. Based on this knowledge, DAR and 

histopathology images can be registered, and restoration algorithms evaluated. 

After registration (Supplementary Fig. 18), raw and restored DAR images were fused with an anatomical 

bone mask (Supplementary Fig. 19). PG-PEM can not only improve the resolution and remove noise in these 

DAR, but also results in more accurate correlation with underlying anatomy. Quantitatively, line profiles, STDB 
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and CNR improve, and the effective resolution increases by approximately 1.7 folds over raw data (Fig. 7). We 

then calculated the SSIM between the high activity regions of DAR images with their segmented bone masks, 

and evaluated a Fusion Index, defined as the ratio of total activity at bone surfaces (Supplementary Fig. 20). 

Note that the higher SSIM and Fusion Index are, the better correlation between the modalities. The evaluation 

results show PG-PEM is able to improve these two accuracy metrics significantly (P<0.0001). Consequently, 

PG-PEM can be of great use in personalized targeted alpha particle radiotherapy assessment. 

 

DISCUSSION 

Autoradiography is an important technique in drug development and evaluation of radiolabeled 

compounds for imaging and targeted therapy (35–38). In particular, there is considerable academic, 

pharmaceutical industry and clinical interest to assess targeted alpha and beta particle emitters for endotherapy. 

Unlike external beam radiation delivery, systemically administered radionuclides can irradiate all tissues in the 

body and. localized distribution is central to calculate absorbed doses and to predict both treatment response and 

off-target toxicities. Conventional image formation methods using DAR suffer from noise and other image 

artifacts. In this work, we have defined and implemented a novel PG-PEM algorithm to restore blurred and noisy 

DAR data. 

PG-PEM is based upon the DAR imaging process and a mixed Poisson-Gaussian noise model. The noise 

parameters are estimated with a patch-based algorithm after a Poisson-Gaussian distribution conversion. A 

penalized MLEM approach is then used to jointly estimate the specimen image and its corresponding PSF, 

simultaneously. Specifically, we used L2 norm to regularize the PSF to ensure its smoothness and avoid the 

trivial solution; and HF norm to regularize the estimated specimen image to ensure its continuity and to suppress 

noise. Notably, this approach effectively eliminates the “staircase” effect caused by TV regularization. As a 

consequence, even low SNR images are robustly restored. To the best of our knowledge, this is the first attempt 

to combine MLEM with Hessian norm-based regularization. 
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After analyzing the scaling factor α, we prove it is free of pre-calibration in PG-PEM. Subsequently, the 

algorithm was quantitatively compared against alternative approaches across multiple datasets. Because of the 

blind restoration framework, PG-PEM is not a convex problem and we cannot guarantee it can converge to a 

global solution. Nevertheless, simulation and experimental results show that PG-PEM is the lead performer, 

providing improved correlation between signal and tissue features.  

Interestingly, even though both SP and PG-PEM are based upon the mixed Poisson-Gaussian noise model, 

PG-PEM has lower noise and reduced background false positive signal. This difference comes from the iteration 

process: PG-PEM first filters Gaussian-distributed noise in the E step and then filters Poisson-distributed noise 

in the M step. In addition, we have also compared the PSFs estimated from different isotopes (223RaCl2 treated 

human bone biopsy and 18F-NaF treated mouse hindlimb). Clearly, the kernel size of the PSF from the hindlimb 

is larger than that from the biopsy (Supplementary Fig. 21), consistent with the physics of alpha/positron travel, 

further validating the blind restoration approach. 

Recently, convolutional neural networks have proved effective in biomedical image restoration (39,40). 

However, it may not be well suited for DAR restoration because of multiparametric factors influencing PSF, 

noise characteristics for each isotope and tissue, and the lack of clean label data. 

 

CONCLUSION 

We have developed the PG-PEM algorithm for improved DAR image quality. Predicated on a complete 

image formation model for DAR and implementation of a signal and background segmentation approach, this 

blind image restoration approach reduced background noise and image blur in simulated and primary image 

samples. For both high and low SNR datasets, of diagnostic and therapeutic radionuclides, there were significant 

improvements in DAR resolution, contrast and accuracy of localization. This method will be widely applicable 

to both pre-clinical and clinical sample autoradiograms to improve radiotracer and radiotherapy agent evaluation. 
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KEY POINTS: 

QUESTION: Can developments in computational imaging tools be leveraged to improve diagnostic tracer and 

therapeutic radionuclide distribution assessment on the tissue scale? 

PERTINENT FINDINGS: A combination of noise-reduction along with automated image restoration leads to 

significantly enhanced digital autoradiographs. Background noise can be efficiently reduced, improved contrast, 

and enhanced resolution. Particular benefits are found for low SNR images as demonstrated on clinical bone 

biopsies from men treated with alpha particle emitting Radium-223. 

IMPLICATIONS FOR PATIENT CARE: Improved understanding of radioisotope distribution at the tissue scale 

is expected to benefit target engagement studies for drug development and to enable more accurate dose 

distribution.  
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Fig. 1: DAR imaging process and PG-PEM algorithmic framework. (a) Latent image generation, in which S0 

and S1 are two point sources, detected at S’ and S”. (b) DAR image generation. (c) PG-PEM framework: (1): 

noise parameters estimation; (2): PSF and specimen image estimation. Scale bar: big figures: 2.3 mm, small 

figures: 0.54 mm.  
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Fig. 2: Blind restoration improves DAR. (A) Raw DAR image from the mouse hindlimb following 18F-NaF PET 

imaging and its restoration results using modified restoration algorithms. Estimated PSFs are inset in grey scale. 

(B) Log-scale transformed images from (A) for background appraisal. (C) Log-scale amplitude of the Fourier 

transform of raw and restored images from (A). Scale bar: (A): 4.95 mm, (A1) and (A2): 0.86 mm. 
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Fig. 3: Quantitative assessment of different blind restoration approaches. (A) Profiles of the dashed lines in Fig. 

2(A). (B) STDB, CNR and effective resolution comparisons of the approaches.  
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Fig. 4: STDB, CNR and effective resolution assessment of PG-PEM for pre-clinical DAR images.  
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Fig. 5: PG-PEM improves DAR images of 18F-NaF treated femur sections. (A) H&E stained, raw and PG-PEM 

restored DAR images. (B) Zoomed-in regions of the corresponding boxes in (A). Scale bar: H&E and raw: 5 

mm; (B1)–(B4): 1.2 mm.  
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Fig. 6: PG-PEM restoration in alpha particle radiotherapy specimens. From left to right: H&E stained 

histological image of 223RaCl2 treated mCRPC patient bone biopsy, and the corresponding Raw and PG-PEM 

restored DAR. Scale bar: H&E: 1 mm; Raw: 2.3 mm; Sub-regions (1) and (2): 0.5 mm.  
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Fig. 7: Quantitative assessment of PG-PEM for the human bone biopsy DAR. (A) Profiles of the dashed lines in 

Fig. 6. (B) STDB, CNR, effective resolution, SSIM and fusion indices assessment for raw and restored DAR 

images. 
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Supplementary Note 1: PG-PEM algortihm

1.1 DAR imaging model

According to the DAR imaging process, its physical model can be expressed as:

Rp = αQp +Np, Qp ∼ P[(X ∗ h)p + bp], Np ∼ N(0, σ2
G), (S1)

where p is the pixel index (p ∈ {1, 2, ..., P}), R is the raw DAR image of a tissue, α is a scaling

factor corresponding to the gain of the imaging system, X is the “clean” image, h is the PSF,

b is the mean of background, P[x] refers to the Poisson noise with mean x, N(0, σ2
G) represents

Gaussian noise and σG is its standard deviation. Because Q and N are both random fields in

Eq. (S1), R is also a random field. Thus, we define r as the available observations of R.

According to the definition of Poisson process,

P[(X ∗ h)p + bp] = P[(X ∗ h)p] + P[bp]. (S2)

Supplementary Figure 1. Possion distributions approximated as Gaussian dist-
sributions. (A) Poisson-distributed data (dots) for different values of photon flux λP and
the corresponding Gaussian fitting functions N(λP , λP ) (solid lines). (B) The relative error
between the two distributions, in which σP and σG are the standard deviation of the Possion-
and Gaussian-distributed data, respectively. Based on these results, Poisson distribution can
be feasibly approximated as a Gaussian distribution when λP > 3.

When b > 3, P[b] ≈ N(b, b) [1] (Suppmentary Fig. 1). In the DAR images, b is normally

assumed to be spatially invariant around the tissue and larger than 3. Therefore, Eq. (S3) is

derived from Eqs. (S1) and (S2),

R = αP[X ∗ h] + αN(b, b) +N(0, σ2
G)

= αP[X ∗ h] +N(μN , σ
2
N).

(S3)
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where μN = αb and σN =
√
α2b+ σ2

G. Notably, the raw image can be splitted into Poisson-

distributed signal and Gaussian-distributed noise. To estimate the noise parameters μN and

σN , the background part needs to be extracted.

1.2 Patch-based estimation of noise parameters

As Eq. (S3), the raw image can be splitted into Poisson-distributed signal αP[Xp ∗ h] and

Gaussian-distributed noise N(μN , σ
2
N). Because of the unknown true PSF and the non-white

noise, the frequency domain-based noise parameters estimation method in [2] cannot be used.

To estimate the noise parameters, the background part needs to be extracted. Due to the con-

tinuity of the histogram of DAR images (Supplementary Fig. 2B, H), simple thresholding

method based on intensity values will result in signal pixels aberrantly being classified as back-

ground, known as false negative in detection theory. In fact, most of the areas without tissues

in DAR images normally should not have radioactive signal from the tissues. Thus, these areas

should only have background and noise and be highly similar to each other. Based on this

assumption, we propose a patch-based estimation algorithm with Density-Based Spatial Clus-

tering of Applications with Noise [3] (DBSCAN) by searching patches with similar features

to robustly estimate the noise parameters. The process is as Supplementary Algorithm 1

shows.

Supplementary Algorithm 1 Patch-based estimation of noise parameters

Input: Observation of the raw image, r;
Patch size, (M , N);

Output: Mean, αb;
Standard deviation,

√
α2b+ σ2

G;
1: Split r (Supplementary Fig. 2A, G) into multiple patches with size of M rows and N

columns (Supplementary Fig. 2C, I);
2: Calculate the mean, standard deviation, skewness and kurtosis of every patch;
3: Use the Z-score means method to normalize the data and cluster them by DBSCAN

(Supplementary Fig. 2D, J);
4: Select the background patches based on the cluster result and form a new dataset: {Xp|p =

1, 2, ..., T}, where T is the total pixel number of the extracted background;
5: The final values are estimated by MLEM algorithm based on the histograms of the ex-

tracted background (Supplementary Fig. 2E, K).
6: return αb, α2 + σG.

In this algorithm, M and N are usually set as 10 for our dataset. Besides, it should

be noted that when the noise level of the raw image is very high (Supplementary Fig.

2G), the corresponding histogram may be cut off at 0 (Supplementary Fig. 2H). Under

this circumstance, a truncated Gaussian distribution parameters estimation method based on

maximum likelihood expectation maximization (MLEM) algorithm is needed [4].

3



Supplementary Figure 2. Noise parameters estimation. (A,G) Raw DAR images
with low and high noise levels; (B,H) The histogram of the raw images; (C,I) Split the
raw images into multiple patches and calculate the mean, standard deviation, skewness and
kurtosis of each patch; (E,K) Plot of the sorted (minPts-1)-th nearest distance of every patch;
(E,K) DBSCAN results for the patches; (F,L) The histograms of the extracted background
field which can be fitted by a Gaussian distribution; while (B) and (H) cannot be. The
green dotted lines in (D) and (J) correspond to the ε used in (E) and (K). The histogram in
(H) is truncated at 0 while that in (B) is not. To estimate the parameters of the truncated
histogram, we apply the truncated MLEM method. Scale bar: (A): 2.3 mm, (G): 4.65 mm.
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When implementing DBSCAN, its two parameters ε and minPts needs to be manually set,

in which ε is a parameter specifying the radius of a neighborhood with respect to the same

point and minPts is the minimum number of points required to form a dense region. As a

rule of thumb, minPts is usually twice as the dimension number of the features. Therefore, we

set minPts as 8 in PG-PEM. Meanwhile, we use k-nearest neighbour algorithm to determine

ε. In detail, a k-distance graph is first built based on the data, and then we find every

point’s (minPts-1)-th nearest distance, sort them in the order from low to high and plot them

(Supplementary Fig. 2D and J). Next, unlike the approach [3] which select the “elbow”

point as ε, we experimentally select the distance before the first 25% position in the range

as ε, which is far from the “elbow” point for our DAR images. This approach could ensure

enough points to form the Gaussian-shape histograms in Supplementary Fig. 2F and L.

Simultenously, it could also avoid classify signal as background by mistake.

1.3 MLEM algorithm for the mixed Poisson-Gaussian model

By simple variable substitutions using Eq. (S4), Eq. (S3) can be simplified as Eq. (S5), where

R′ and X are both 2D matrices with P pixels and h is a 2D kernel with S pixels. For our

DAR images, normally S � P .

R′ =
R

α
, μ′

N =
μN

α
= b, σ′

N =
σN

α
=

√
b+

σ2
G

α2
, (S4)

R′ = P[X ∗ h] +N(b, b+
σ2
G

α2
). (S5)

Here we donate Q as P[X ∗ h] and U as N(b, b +
σ2
G

α2 ), whose elements follow Poisson

and Gaussian distributions, respectively. Our goal is to estimate the unknown parameters

θ = (X, h) with the given parameters r′ (the available observations of R′), b and b +
σ2
G

α2 by

following the assumptions for the Poisson-distributed signal and Gaussian-distributed noise

in Eq. (S5): 1) they are mutually independent; 2) their components are independent. Under

these assumptions, Eq. (S6) is obtained by applying Bayes rule, which is the mixed continuous-

discrete probability distribution of (R′
p, Qp) for every p ∈ {1, 2, ..., P}.

PrR′
p,Qp(r

′
p, qp|θ) = Pr(Qp = qp|θ)fR′

p|Qp=qp(r
′
p|b, b+

σ2

α2
)

= Pr(Qp = qp|θ)fUp(r
′
p − qp|b, b+ σ2

α2
).

(S6)

where fR′
p|Qp=qp(·|b, b+ σ2

α2 ) is the conditional probability density function (PDF) of R′
p knowing

that Qp = qp and fUp(·|b, b+ σ2

α2 ) is the PDF of Up. In detail,
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Pr(Qp = qp|θ) = exp[(−X ∗ h)p] (X ∗ h)qpp
qp!

, (S7)

fUp(r
′
p − qp|b, b+ σ2

α2
) =

1

(2π)1/2(b+
σ2
G

α2 )1/2
exp
(
− (r′p − qp − b)2

2(b+
σ2
G

α2 )

)
. (S8)

Therefore, the likelihood of Eq. (S5) takes the form as Eq. (S9):

fR′(r′|θ) =
P∏

p=1

+∞∑
qp=0

PrR′
p,Qp(r

′
p, qp|θ)

=
1

(2π)P/2(b+
σ2
G

α2 )P/2

P∏
p=1

exp[(−X ∗ h)p]

+∞∑
qp=0

exp
(
− (r′p − qp − b)2

2(b+
σ2
G

α2 )

)(X ∗ h)qpp
qp!

.

(S9)

To solve the parameters θ in Eq. (S9), an iterative MLEM approach is utilized:

θ(n+1) = argmaxθJ(θ|θ(n)), (S10)

where J(θ|θ(n)) = EQ|R′=r′,θ(n) [lnPrR′,Q(R
′, Q|θ)] and PrR′,Q(R

′, Q|θ) =∏P
p=1 PrR′

p,Qp(R
′
p, Qp|θ).

According to Eq. (S6),

lnPrR′,Q(R
′, Q|θ) = − 1

2(b+
σ2
G

α2 )P/2

P∑
p=1

(R′
p −Qp − b)2 − P

2
ln(2π(b+

σ2
G

α2
))

−
P∑

p=1

(X ∗ h)p +
P∑

p=1

ln(X ∗ h)pQp −
P∑

p=1

ln(Qp!)

(S11)

By dropping the terms that are independent of θ, Eq. (S10) is simplified as:

θ(n+1) = argminθJ̃(θ|θ(n)), (S12)

where

J̃(θ|θ(n)) =
N∑
p=1

(X ∗ h)p −
N∑
p=1

ln(X ∗ h)pEQp|R′
p=r′p,θ(n)(Qp). (S13)
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For every p ∈ {1, 2, ..., P}, we have

EQp|R′
p=r′p,θ(n)(Qp) =

+∞∑
qp=0

qpPr(Qp = qp|R′
p = r′p, θ

(n))

=

∑+∞
qp=0 qpPrR′

pQp(r
′
p, qp|θ(n))

fR′
p
(r′p|θ(n))

=

∑+∞
qp=0 qpPrR′

pQp(r
′
p, qp|θ(n))∑+∞

qp=0 PrR′
p,Qp(r

′
p, qp|θ(n))

.

(S14)

By combining Eqs. (S6)-(S8), Eq. (S14) simplifies to:

EQp|R′
p=r′p,θ(n)(Qp) =

∑+∞
qp=1 exp

(
− (r′p−qp−b)2

2(b+σ2
G/α2)

)
(X∗h)qpp
(qp−1)!∑+∞

qp=0 exp
(
− (r′p−qp−b)2

2(b+σ2
G/α2)

)
(X∗h)qpp

qp!

. (S15)

Therefore, a 2D matrix EQ|R′=r′,θ(n)(Q), sharing the same shape with R′ and X, is ac-

quired. When implementing Eq. (S15), there is an issue calculating the infinite terms of qp on

numerator and denominator. Nonetheless, the infinite terms are bounded and the Lambert

W function is used to estimate the terms of summarizations, as described previously [5]. The

iteration process is done by differentiating Eq. (S13) with respect to X and h and setting the

derivative to zero [6–8]. The resulting iterative scheme is given by alternating:

ĥ(n+1) = ĥ(n) ·
[(

EQ|R′=r′,θ(n)(Q)

ĥ(n) ∗ X̂(n)

)
∗ X̂(n),m

]
, (S16)

X̂(n+1) = X̂(n) ·
[(

EQ|R′=r′,θ(n)(Q)

ĥ(n) ∗ X̂(n)

)
∗ ĥ(n),m

]
, (S17)

where ĥ(n),m and X̂(n),m are the mirrored results of ĥ(n) and X̂(n), respectively. In addition,

ĥ has three constraints: circularly symmetric constraint, non-negativity (∀s, ĥs > 0) and and

norm to 1 (
∑S

s=1 ĥs = 1). To ensure the circularly symmetric constraint, ĥ is averaged in

the angular direction as Eq. (S18), where r is the magnitude and φ is the phase in the polar

coordinate system; To ensure
∑S

s=1 ĥs = 1, Eq. (S19) is conducted; To ensure ∀s, ĥs > 0 ,

Eq. (S20) is conducted.

ĥ′(r) =
1

2π

∫ π

−π

ĥ(rcosφ, rsinφ)dφ. (S18)

ĥ =
ĥ′∑S
s=1 ĥ

′
s

. (S19)
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∃ĥs < 0, set ĥs = 0. (S20)

1.4 Regularization for h and X

In practice, the blind deconvolution problem is highly ill-posed, so regularizations for both

h and X are needed. Through the iteration process h tends to converge as a delta function.

To avoid this trivial solution and considering the smooth characteristics of h, h is regularized

by L2 norm. The noise of X may amplify in the iteration process, so total variation (TV) is

normally added for X [8, 9]. Nevertheless, TV penalty always oversharpens the boundaries

between different regions, generating “staircase” effect. To avoid this, we adopted a Hessian

Frobenius penalty for the estimatedX to enable smoother transitions between different regions

and to suppress noise simultaneously [10–12]. As a result, this leads to a penalized MLEM

algorithm as Eq. (S21), where λh and λX are the regularization parameters for h and X,

Ph = exp(−1
2

∑S
s=1 h

2
s) and PX = exp(−∑P

p=1 |HX|p) are the prior probability functions for

h and X, respectively. Here, H is a Hessian operator and defined as [∂xx, ∂xy; ∂xy, ∂yy], where

∂xx = ∂2/∂x2, ∂xy = ∂2/∂x∂y and ∂yy = ∂2/∂y2. |HX| is the Hessian Frobenius (HF) norm

for X and defined as
√
(∂xxX)2 + (∂yyX)2 + 2(∂xyX)2.

θ(n+1) = argminθ[J̃(θ|θ(n)) + λh

S∑
s=1

h2
s + 2λX

P∑
p=1

|HX|p]. (S21)

The penalized optimization process for h and X can both be implemented by a forward-

backward splitting algorithm similar to [13]. In [13], this algorithm was originally designed for

TV regularization. Nevertheless, since the regularization terms for h and X are all convex and

the data fidelity term can be extended to a Kullback-Leibler functional without affecting the

stationary points [14], which is the same as the condition of TV regularization, the algorithm

framework still works for our problem. Therefore, the original Eq. (S16) is modified as EM

step and L2 norm regularization step:

⎧⎪⎪⎨
⎪⎪⎩
ĥ(n+ 1

2
) = ĥ(n) ·

[(
E

Q|R′=r′,θ(n)(Q)

ĥ(n)∗X̂(n)

)
∗ X̂(n),m

]
(EM step)

ĥ(n+1) = argminh

{∑S
s=1

(ĥs−ĥ
(n+1

2 )
s )2

ĥ
(n)
s

+ λh

∑S
s=1 ĥ

2
s

}
(L2 norm regularization step).

(S22)

Expand the L2 norm regularization step:

ĥ(n+1) = argminh

{
S∑

s=1

1

ĥ
(n)
s

[(
1 + λhĥ

(n)
s

)
ĥ2
s − 2ĥ

(n+ 1
2
)

s ĥs + const
]}

. (S23)
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By setting the derivative of every ĥs to be zero, we get

ĥ(n+1)
s =

ĥ
(n+ 1

2
)

s

1 + λhĥ
(n)
s

. (S24)

Therefore, the solution of Eq. (S22) is

ĥ(n+1) = ĥ(n) ·
[(

EQ|R′=r′,θ(n)(Q)

ĥ(n) ∗ X̂(n)
p

)
∗ X̂(n),m

p

]/(
1 + λhĥ

(n)
)
. (S25)

Likewise, the original Eq. (S17) is modified as EM step and HF norm regularization step:

⎧⎪⎪⎨
⎪⎪⎩
X̂(n+1) = X̂(n) ·

[(
E

Q|R′=r′,θ(n) (Q)

ĥ(n)∗X̂(n)

)
∗ ĥ(n),m

]
(EM step)

X̂(n+1) = argminX

{∑P
p=1

(X̂p−X̂
(n+1

2 )
p )2

X̂
(n)
p

+ 2λX

∑P
p=1 |HX̂|p

}
(HF norm regularization step).

(S26)

The HF norm regularization step can be solved by themajorization−minimization (MM)

framework [10]. Based on this method, the point-wise regularization term can be transformed

as Eq. (S27). Its equality holds if and only if |HX̂|p = |HX̂(n)|p, which can be achieved when

the iteration converges.

|HX̂|p ≤ |HX̂(n)|p
2

+
|HX̂|2p

2|HX̂(n)|p
. (S27)

Thus, minimizing the HF norm regularization step in Eq. (S26) can be conducted by

minimizing a surrogate function as Eq. (S28), where W = [∂xx, ∂yy,
√
2∂xy]

T .

X̂(n+1) = argminX

{
P∑

p=1

(X̂p − X̂
(n+ 1

2
)

p )2

X̂
(n)
p

+ λX

P∑
p=1

|HX̂|2p
|HX̂(n)|p

+ const

}
. (S28)

Expanding Eq. (S28), we have:

X̂(n+1) = argminX

⎧⎨
⎩

P∑
p=1

1

X̂
(n)
p

⎡
⎣
⎛
⎝1 + 2λX

(
WT WX̂(n)

|HX̂(n)|

)
p

⎞
⎠ X̂2

p − 2X̂pX̂
n+ 1

2
p + const

⎤
⎦
⎫⎬
⎭ .

(S29)

By setting the derivative of X̂p to be zero, Eq. (S28) is solved as Eq. (S30), where

Ξ = ∂
∂xx

+ ∂
∂yy

+
√
2 ∂
∂xy

.
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X̂(n+1)
p =

X̂
(n+1/2)
p

1 + λX

(
Ξ WX̂(n)

|HX̂(n)|

)
p

. (S30)

Therefore, the solution of Eq. (S26) is derived as:

X̂(n+1) = X̂(n) ·
[(

EQ|R′=r′,θ(n)(Q)

ĥ(n) ∗ X̂(n)

)
∗ ĥ(n),m

]/[
1 + λX

(
Ξ
WX̂(n)

|HX̂(n)|

)]
. (S31)

1.5 PSF model

The DAR imaging system involves exposing the plate to the radioactive section which produces

a latent image through a trapping of electron-hole (Supplementary Fig. 3A), and then

scanning a laser over the latent image on the phosphor plate to stimulate release of photons

(Supplementary Fig. 3B). As discussed in the paper, h is circularly symmetric, also affected

by the finite focal point of the laser scanner and the modulation transfer function (MTF) of

the phospher plate. However, in blind restoration it is not needed to consider all these points

to initialize a PSF. Instead, we model it based on the scattering effect using the inverse square

law [15]. In Supplementary Fig. 3A, the energy of one point in the latent image can

be expressed as Eq. (S32), where ES is the total energy of its source S, EC is the cut-off

energy of the phosphor plate, dΩ is the unit solid angle corresponding to each pixel. Here, we

assume dΩ is the same for each pixel under the blind restoration framework. As a result, h

is approximated as Eq. (S33) when initializing, in which a controls its size. Then its sum is

normalized to 1. In fact, because of the regularization for h, the initial value of a does not

have a good impact on the result. In our application, we set a as 1.

Supplementary Figure 3. DAR imaging process and PSF modelling. (A) Expose
the plate to the radioactive section to produce a latent image; (B) Scan a laser over the latent
image on the phosphor plate to generate the corresponding digital autoradiographic image. d
is the distance between the tissue section and the phosphor plate. In uv -plane, the coordinate
of S and S’ are (uo,vo) and (u′,v′) seperately.
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ES′ =

⎧⎨
⎩

ES

4π[(u′−uo)2+(v′−vo)2+d2]
dΩ when ES′ > EC

0 else
. (S32)

h =

⎧⎨
⎩

1
a[(u−uo)2+(v−vo)2]+1

when ES′ > EC

0 else
. (S33)

1.6 The impact of the scaling factor α

According to Eqs. (S1), (S4) and (S5), the scaling factor α needs to be pre-calibrated. How-

ever, this process is very time-consuming and may not be robust as discussed in the paper.

Here, we investigate the impact of α on the restoration result. Assuming α is not calibrated

correctly and the calibrated scaling factor is α∗ = βα. Then Eq. (S5) is transformed as Eq.

(S34), where X ′ is the estimated image under this condition.

R′

β
= P[X ′ ∗ h] + N(b, b+

σ2
G

α2 )

β
. (S34)

By using Poisson distribution to estimate Gaussian distribution, Eq. (S34) is estimated as

a shift-Poisson format [12] as Eq. (S35), in which b/β and (b+
σ2
G

α2 )/β
2 can both be estimated

from R′/β with Algorithm 1.

R′ − b

β
+

b+
σ2
G

α2

β2
= P[X ′ ∗ h+

b+
σ2
G

α2

β2
]. (S35)

Based on Eq. (S35), the likelihood of the Poisson statistics is as Eq. (S36), where kp =

r′p−b

β
+

b+
σ2
G

α2

β2 (p ∈ {1, 2, ..., P}).

fK(k|θ) =
P∏

p=1

exp

[
−(X ′ ∗ h)p −

b+
σ2
G

α2

β2

]
[
(X ′ ∗ h)p + b+

σ2
G

α2

β2

]kp
kp!

. (S36)

Therefore, the negative log-likelihood of Eq. (S36) is:

− lnfK(k|θ) =
P∑

p=1

{
(X ′ ∗ h)p +

b+
σ2
G

α2

β2
− kpln

[
(X ′ ∗ h)p +

b+
σ2
G

α2

β2

]
+ ln(kp!)

}
. (S37)

By setting the deriative of every (X ′ ∗ h)p to be 0, we have:
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1−
[
(X ′ ∗ h)p +

b+
σ2
G

α2

β2

]/(
r′p − b

β
+

b+
σ2
G

α2

β2

)
= 0. (S38)

Under the MLEM iterative framework, the result of Eq. (S38) can be expressed as Eq.

(S39), where E(r′p) is the expectation of r′p.

(X ′ ∗ h)p =
E(r′p)− b

β
. (S39)

Thus, when the estimated PSF h is the same, the relationship between the results using

α∗ and α can be approximated as Eq. (S40),

X = βX ′. (S40)

Based on these results, the scaling factor α does not have an appreciable impact on the

restoration result except as a multiplier parameter β. The reason is that the Gaussian-

distributed noise parameters μN and σN are estimated directly from the background, and

this condition is quite similar to that of pure Poisson noise, whose scaling parameter is not

required to be calibrated. In fact, digital light unit (DLU) itself is meaningless. When imple-

menting dosimetry calculation, several phantoms should be built for calibrating the mapping

relationship between DLU and dosimetry values. In this sense, α will not affect the result of

Eq. (S15) and is not needed to be pre-calibrated for DAR image restoration if Eqs. (S34) and

(S35) are approximately equal to each other. However, when α∗ is too large, the computation

process in Eq. (S15) will generate sampling errors, especially for the low intensity regions of

the images. To maintain this accurate Gaussian-Poisson (continuous to discrete) transforma-

tion, we should make sure
b+

σ2
G

α2

β2 = b
β2 + (σG

α∗ )
2 � 1. Therefore, we empirically set σG

α∗ ≥ 10.

In real applications, we can directly use α∗ to replace α. Before the restoration process, the

raw image could be divided by a large α to decrease the number of summations in Eq. (S15)

and then multiply the same α after estimation to maintain the final result with the same scale

with the raw image. Then, we set α ≤ σG

10
. In practice, we set α as σG

10
considering both the

computation efficiency and the accuracy of PG-PEM.
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1.7 PG-PEM algorithm summary, software availability and run-

time analysis

The algorithm is summarized as Supplmentary Algorithm 2.

Supplementary Algorithm 2 PG-PEM algorithm

Initialization:
Estimate αb and α2b+ σ2

G using Algorithm 1.
Rescale r, αb and α2b+ σ2

G to r′, b and b+ σ2
G/α

2 using the pre-set α and (S4).
Set the raw image observation r′ as the initial X.
Initialize the PSF h using Eq. (S33).
Set the regularization parameters λX and λh.

Iteration:
1: for each i = 1, 2, ..., N do
2: E step: Use Eq. (S15) to estimate EQ|R′=r′,θ(n)(Q).
3: M step: Use Eq. (S31) to estimate X.
4: Use Eq. (S25) to estimate h.
5: Use Eqs. (S18), (S19) and (S20) to normalize h.

6: if
√∑P

p=1(X̂
(n+1)
p − X̂

(n)
p )2

/√∑P
p=1(X̂

(n)
p )2 < threshold then

7: break
8: end if
9: end for

All the codes for PG-PEM were written in Matlab 2019a (MathWorks). The software

supporting all proposed methods and example data are available upon reasonable request

from the corresponding author.

The runtime of PG-PEM mainly depends on the image size, the number of summation

terms in Eq. (S15) and the value of the threshold in Algorithm 2. In our experiments, we

typically set the value of the threshold from 0.0005 to 0.001. In such a range, the iteration

numbers are usually around 100. Here we report the performance of our software under various

image sizes both with and without graphics processing unit (GPU, NVIDIA Quadro RTX

6000) on a workstation using 12 cores Intel(R) Xeon(R) W-2133, 3.60GHz central processing

unit (CPU). Specifically, we set the iteration numbers as 100 for all the groups. Besides, the

number of summation terms in Eq. (S15) is set as around 700, which can satisfy the criteria

in Supplementary Note 1.6. The results are presented in Supplementary Table 1.

From the table, when the image size is small, CPU-based restoration runs fast. However,

as the image sizes grow larger, GPU-based restoration performs better than CPU. Fortunately,

the size of all the DAR images utilized in research practice are smaller than 500x500 pixels

(pixel size: 0.042x0.042mm2). Therefore, CPU can fulfill most of the requirements. Notably,

PG-PEM could be slower than the algorithm based on the shifted-Poisson model [12] due

to the computation of Eq. (S15). Nevertheless, PG-PEM achieves much better denoising

13



Supplementary Table 1. Computational speed of PG-PEM in different conditions

Image Size (px) CPU GPU

250x250 12.3s 42.6s
500x500 85.5s 62.6s
750x750 193.6s 90.7s

performance especially for the images with high noise level. Meanwhile, compared to the very

long exposure time of the DAR imaging process (several hours to several days), our PG-PEM

algorithm still runs very fast (from several seconds to less than 2 minutes).
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Supplementary Note 2: Quality metrics

The root mean squared error (RMSE) is an pixel-wise difference between two input images,

where the ideal value is zero. It is computed as Eq. (S41), where Y est is the estimated image,

Y true is the ground truth, p is the pixel index and P is the total pixel number for every image.

RMSE(Y est, Y true) =

√√√√ 1

P

P∑
p=1

(Y est
p − Y true

p )2 (S41)

The signal power to noise power ratio (SNR) indicates the ratio of the power of a signal to

the power of background noise. It is defined as Eq. (S42), where Y est is the estimated image

from restoration algorithms and Y true is the ground truth.

SNR(Y est, Y true) = 10log

∑P
p=1(Y

true
p )2∑P

p=1(Y
est
p − Y true

p )2
(S42)

The structure similarity [16] (SSIM) is a perception-based model that considers image

degradation as perceived change in structural information, while also incorporating important

perceptual phenomena, including both luminance masking and contrast masking terms. Com-

pared to RMSE and SNR, it is supposed to give more information about image distortion by

the computation of local image structure, luminance and contrast into a single local quality

score. In this paper, the luminance and contrast are normalized and SSIM is defined as Eq.

(S43),

SSIM(Y est, Y true) =
2μY estμY true + C1

μ2
Y est + μ2

Y true + C1

· 2σY estY true + C2

σ2
Y est + σ2

Y true + C2

(S43)

where Y est is the estimated image from restoration algorithms, Y true is the ground truth, μY est ,

μY true , σY est , σY true and σY estY true are the local means, standard deviations and cross-covariance

for images Y est and Y true, C1 and C2 are the regularization constants to avoid instability for

image regions where the local mean or standard deviation is close to zero.

Contrast to noise ratio (CNR) is defined as Eq. (S44),

CNR = (Csig − Cbg)/σbg (S44)

where Csig and Cbg are the mean of the signal and background and σbg is the standard deviation

of the background. In this metric, the signal area is defined as the high activity region in the

DAR images, and the background is extracted by our patch-based estimation method.

Effective resolution is estimated based on the recently published decorrelation-based method

[17]. This method estimates the highest frequency with sufficiently high signal in relation to

noise (Supplementary Fig. 4).
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Supplementary Figure 4. Effective resolution estimation by decorrelation analysis.
(A,G) Two Raw DAR images with low and high noise levels, respectively. (D,J) The corre-
sponding PG-PEM restored images of A and G. (B,E,H,K) The corresponding decorrelation
analysis of (A),(D),(G) and (J). (C,F,I,L) The log-scale frequency map of (A),(D),(G)
and (J) labeled with cut-off frequency estimated from (B),(E),(H) and (K), respectively.
Scale bar: (A): 1.8 mm. (B): 5.3 mm.
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Supplementary Note 3: Reference methods

We modified five restoration algorithms as referenced to blind restore DAR images, namely

Richardson-Lucy (RL) [6], RL with wavelet-based residue denoising (RD) [18], Shift-Poisson

(SP) [12], PG-PEM with no regularization for X (NP) and PG-PEM with TV regularization

(TV).

3.1 RL algorithm

RL algorithm is fit for Poisson-distributed data. For DAR image restoration problem, it

assumes the imaging model is:

R = αP[X ∗ h+ b]. (S45)

Based on this model, Eq. (S46) demonstrates the iterative deconvolution scheme without

regularization.

ĥ(n+1) = ĥ(n) ·
[(

r′

ĥ(n) ∗ X̂(n) + b

)
∗ X̂(n),m

]
,

X̂(n+1) = X̂(n) ·
[(

r′

ĥ(n) ∗ X̂(n) + b

)
∗ ĥ(n),m

]
.

(S46)

3.2 RD algorithm

Different from RL, RD algorithm performs residual denoising during each iteration. In [7, 8],

the authors utlized median filter as the denoising algorithm. Not the same as them, wavelet

denoising algorithm [18] is applied here. The basic scheme of RD is as Eq. (S47), where

Denoise() represents wavelet denoising algorithm.

r′(n) = r′ − ĥ ∗ X̂(n),

r′(n) = Denoise(r′(n)),

ĥ(n+1) = ĥ(n) ·
[(

ĥ(n) ∗ X̂(n) + r′(n)

ĥ(n) ∗ X̂(n) + b

)
∗ X̂(n),m

]
,

X̂(n+1) = X̂(n) ·
[(

ĥ(n) ∗ X̂(n) + r′(n)

ĥ(n) ∗ X̂(n) + b

)
∗ ĥ(n),m

]
.

(S47)

In the wavelet denoising algorithm, the input image is decomposed for 7 levels, and Stein’s

Unbiased Risk Estimate (SURE) and a soft-thresholding approach are conducted.
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3.3 SP algorithm

As discussed in Section 1.6, Eq. (S5) can be transformed to a shifted-Poisson distribution:

R′ +
σ2
G

α2
= P[X ∗ h+ b+

σ2
G

α2
]. (S48)

Based on this equation, the iteration scheme can be conducted as Eq. (S49).

ĥ(n+1) = ĥ(n) ·
[(

r′ + σ2
G

α2

ĥ(n) ∗ X̂(n) + b+
σ2
G

α2

)
∗ X̂(n),m

]
,

X̂(n+1) = X̂(n) ·
[(

r′ + σ2
G

α2

ĥ(n) ∗ X̂(n) + b+
σ2
G

α2

)
∗ ĥ(n),m

]
.

(S49)

3.4 NP and TV algorithms

Note that NP and TV have almost the same framework with PG-PEM except the regu-

larization for X. We aim to show the competitive performance of Hessian Frobenius norm

regularization in DAR images by comparing it with NP and TV. NP does not have regular-

ization for X while TV algorithm utilizes TV norm as its regularization for X as Eq. (S50),

in which 
 represents [ ∂
∂x
, ∂
∂y
] and div = ∂

∂x
+ ∂

∂y
.

X̂(n+1) = X̂(n) ·
[(

EQ|R′=r′,θ(n)(Q)

ĥ(n) ∗ X̂(n)
p

)
∗ ĥ(n),m

]/[
1− λXdiv

(

X̂(n)

| 
 X̂(n)|

)]
. (S50)

3.5 Regularization strategies for the reference methods

RL, RD and SP have the same regularization strategies for both h and X with PG-PEM, while

NP and TV have the same regularization stragegy for h. Further, similar to PG-PEM, the

scaling parameter α here does not impact the estimation result except a multiplier parameter.
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Supplementary Note 4: Simulations

4.1 Simulated data generation

We use Eq. (S51) to generate simulated data, in which p is the pixel index, X the ground

truth, h the pre-set PSF, b the background, α the scaling factor and N(0, σ2
G) the Gaussian

noise with mean of 0 and standard deviation of σG. Here, α and σG control the level of Poisson

and Gaussian noises, respectively. Note that we divide X ∗h+b with α to ensure the generated

images with the same range with the ground truth.

R = αP

[
X ∗ h+ b

α

]
+N(0, σ2

G) (S51)

Because it is impossible to acquire a “clean” raw DAR image without noise and blurring

effect, the ground truth image needs to be generated. To do so, we selected a raw DAR

image with low noise level and blurring effect. Then, it was blindly restored by PG-PEM.

The regularization parameters were carefully tuned so that the restored image could achieve

its best quality. After restoration, the background of the image was cleared to further remove

background noise. The pre-set PSF was generated using a more blurred raw DAR image so

that the kernel size of the PSF is larger. To do this, we aim to better test the deblurring

ability of the restoration algorithms. The generated ground truth image and PSF are both

shown in Supplementary Fig. 5A.

4.2 Characterization of the regularization parameters of PG-PEM

To test the impact of regularization parameters, different λX (0 to 0.1) and λh (0 to 10) were

selected to test the performance of the algorithm using a simulated image. To generate the

image, the ground truth image was convoluted with the pre-set PSF, to which a constant

background was added (b=4000) and then corrupted with Poisson noise (α=20) and Gaus-

sian noise with standard deviation (σG) of 1500. The generated image (Supplementary

Fig. 5C) was restored using the PG-PEM algorithm with the different regularization param-

eters. The results are shown in Supplementary Fig. 5D-L. Meanwhile, several restoration

results and their corresponding PSFs with different regularization parameters are shown in

Supplementary Fig. 6. Here, RMSE, SSIM and SNR are set as the accuracy metrics.

From Supplementary Fig. 5, the regularization parameters indeed increases the restora-

tion accuracy compared to the condition without regularizations. The results are very similar

across the range of λh. For example, in Supplementary Fig. 5E, the optimal value for λh

is approximately 1.2, but the results are very close to each other when λh is in [0.7, 1.7]. On

the contrary, in Supplementary Fig. 5F, the optimal value for λX is in a narrow range

of approximately 0.0005 to 0.0015. In fact, λX should be a small value so as to keep the
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Supplementary Figure 5. Data generation for simulation and accuracy metrics for
different parameters. (A) Ground truth image and corresponding PSF; (B) Blurred image
with background; (C) Noisy image; (D) RMSE, SSIM and SNR for all the parameters; (E)
RMSE, SSIM and SNR with different λh when λX = 0.001; (F) RMSE, SSIM and SNR with
different λX when λh = 1.2. Note that in the figures the dots indicate the optimal values.

estimated X from being over-smoothed.

From Supplementary Fig. 6, the parameters λh and λX control the strength of regu-

larization on the PSF h and specimen image X, respectively. With larger λX , the restored

images tend to become less noisy. But when it is large enough, the restored images will lose

fine details and become blurry. Therefore, it is essential to set λX properly in order to restore

the raw images with a good quality. Combined with the conclusion from Supplementary

Fig. 6, λX is experimentally set as a small value around 0.001 to suppress the noise while

preserving the resolution simultaneously. When λh=0, the kernel size of h is very small, indi-

cating the estimated h tends to converge as a delta function in this condition. As λh increases,

the kernel size of the estimated h becomes larger, and the restored image becomes less noisy

and blurry. This validates that the regularization is able to ensure its smoothness and to

prevent h from converging to a delta function. However, when λh is large enough, parts of the

restored images become over-smoothed. In this case, the restored images lose some details due

to the over-estimated h. This phenomenon can be interpreted in frequency domain (k-space).

When λh is smaller, the corresponding optical transfer function (OTF) in k-space is broader.

Therefore, there will be more high frequency noises and the restoration results are not ideal.

On the contrary, when λh is larger, the OTF is narrower. As a result, more high frequency

signal is filtered out and X looks more blurry. In this sense, the regularization strategy for h is

very similar to a Wiener filter. Because λh impacts the size of the OTF, it should be positively
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Supplementary Figure 6. Restoration images and corresponding PSFs using PG-
PEM algorithm with λh from 0 to 10 and λX from 0 to 0.1. With λh increasing,
the kernel size of the estimated PSF become larger and larger, and the restored images tend
to become less noisy. But when the PSF kernel is large enough, the restored images become
blurry. With λX increasing, the image noise is also suppressed. But with too large λX , the
images lose fine details and become blurry.
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correlated to the noise level of the input images. For our DAR images, the parameter λh is

normally set between 0 and 4, determined by the noise level of the input images. In our work,

we use the reciprocal of the CNR of the images to reflect their noise levels.

Noise level = σbg/(Csig − Cbg), (S52)

where Csig and Cbg are the mean of the signal and background and σbg is the standard deviation

of the background. The same is done for CNR; the signal area is defined as the high activity

region in the DAR images, and the background is extracted by our patch-based estimation

method. Reasonably, this can reflect the normalized noise after considering both the noise

power and the averaged signal energy. We also found that λh grows slower with the noise

level increasing because the E step in Eq. (S15) can also suppress parts of the noise. We thus

emperically set λh as:

λh = 4
√
Noise level. (S53)

In fact, according to the results in Supplementary Fig. 5 and 6, the restored data are

quite similar along a range of λh, which brings more flexibility to our empirical setting of λh

in Eq. (S53). We can further tune the λh manually, for example, by visual assessment or with

the help of the decorrelation analysis method [17]. The most optimal λh should correspond to

the point with the best signal-noise trade-off.

4.3 Comparison with the reference algorithms

Next, to evaluate the denoising performance of PG-PEM algorithm, the simulated image had

added to it a constant background (b=4000), blurred by the same PSF again and corrupted

with two different levels of Poisson noise (α=20 and 100) and Gaussian noise with different

standard deviations (σG) from 0 to 3000 with interval of 500. We generated 10 groups of data

for each noise level. In this way, by generating simulated images with different Poisson and

Gaussian noise levels, we aim to have a thorough comparison of the algorithms under different

conditions.

The PG-PEM algorithm was compared with RL, RD, SP, NP and TV. In this simulation,

λX is set as 0.001. RL, RD and SP shared the same λX but different λh to make sure the

PSFs of these algorithms have the same shape. We did this to eliminate the impact of PSF

and only focused on the different frameworks of these models. RMSE, SSIM and SNR were

used to compare the restoration performance between different algorithms. The results are

shown in Supplementary Fig. 7.

R′ = P[X ∗ h] + γP(b/γ) (S54)
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Supplementary Figure 7. Evaluation results for different parameters and methods
when α=20 and 100. (A) RMSE evaluation when α=20; (B) SSIM evaluation when α=20;
(C) SNR evaluation when α=20; (D) RMSE evaluation when α=100; (E) SSIM evaluation
when α=100; (F) SNR evaluation when α=100. From the figures, PG-PEM is the best
performer among all the conditions regarding RMSE, SSIM and SNR.

From Supplementary Fig. 7, in the parametric space where the standard deviation of the

Gaussian noise is small, RL outperforms RD and is similar to SP and PG-PEM. However, with

additional noise, RD algorithm performs better than RL. This can be interpreted using Eq.

(S54) estimated from Eq. (S5), where (γ−1)b = σ2
G/α

2. When σ2 is small, the Gaussian noise

part can be approximated as a Poisson distribution; while σ2 is large enough, the Gaussian

distribution will be truncated. Therefore, the approximation will cause large errors. This is

why as Gaussian noise increases above a level, the performance of RL decreases dramatically.

In aspects of RMSE and SNR, the performances of SP and PG-PEM are comparable, both of

which are not worse than those of RL and RD. When the level of Gaussian noise is higher,

the SSIM of PG-PEM is much better than that of SP. Next, NP, TV and PG-PEM were

compared to evaluate the different regularization strategies for X. For all the conditions

with different noise levels, PG-PEM always outperforms TV and NP is the worst of all. In

summary, PG-PEM is the best performer in aspects of RMSE, SSIM and SNR for simulated

image data restoration. Parts of the restored images with their log-scale versions are shown in

Supplementary Figs. 8-11. The same as the results from the accuracy metrics, PG-PEM

outperforms alternative methods by means of visual inspection.
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Supplementary Figure 8. Restoration results from different noise levels and meth-
ods when α=20.
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Supplementary Figure 9. Restoration results from different noise levels and meth-
ods when α=20 (log scale). It is easier to compare the denoising ability between different
methods using the log-scale images.
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Supplementary Figure 10. Restoration results from different noise levels and
methods when α=100.
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Supplementary Figure 11. Restoration results from different noise levels and
methods when α=100 (log scale). It is easier to compare the denoising ability between
different methods using the log-scale images.
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Supplementary Figures 12-21

Supplementary Figure 12. Assessment of PG-PEM in comparison with alternative
blind restoration algorithms. (A,E) Raw DAR images from the mouse hindlimb following
[18F]NaF PET imaging and the restoration results with the corresponding PSFs using modified
restoration algorithms, PSF estimation and patch-based segmentation. The corresponding
estimated PSFs are inset by grayscale. The lower images are the magnificiation of dash-
outlined regions from the raw and restored images in (A,E). (B,F) Log-scale transformed
images from (A,E) for background appraisal. (C,G) Log-scale magnitude of the Fourier
transform of the raw and restored images in (A,E), respectively. (D,H) Line profiles of the
images in (A,E) along the corresponding dashed lines. Scale bar: (A): upper images: 4.7
mm, lower images: 1.4 mm. (E): upper images: 4.85 mm, lower images: 0.59 mm.
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Supplementary Figure 13. Content-adaptive blind restoration improves pre-
clinical DAR. (A), (B) Raw and PG-PEM restored DAR images of mice tumor and heart
treated with 18F-FDG. (C), (D) The corresponding H&E stained tumor and heart tissues.
Scale bar: (A): 4.2 mm, (A1): 1.4 mm; (B): 3.7 mm, (B1): 0.75 mm; (C): 1.5 mm; (D):
1.25 mm.
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Supplementary Figure 14. PG-PEM outperforms RL and SP in the restoration of
raw DAR images from [18F]FDG uptake by xenograft tumors. (A) A H&E stained
tumor tissue image. (B) The corresponding raw DAR image of (A). (C) The restored image
of (B) using PG-PEM. (D,E) Magnified regions of the two dashed areas in (B,C). (F)
Another two groups of raw DAR images with the corresponding restored results using RL, SP
and PG-PEM. By observing the dashed yellow circles in the raw images and the corresponding
regions in the restored results of RL, SP and PG-PEM, PG-PEM can effectively suppress the
noise in the circles while RL and SP cannot. (G,H) STDB and CNR assessment of totally
10 groups of DAR images. These results demonstrate that PG-PEM performs significantly
better than RL and SP in denoising. Scale bar: (A): 2 mm. (B): 3.6 mm. (D): 1.5 mm. (F):
first row: 3.3 mm, second row: 3.28 mm.
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Supplementary Figure 15. PG-PEM improves the DAR image quality from
[18F]FDG administered murine heart. (A,J) Raw DAR images of mice heart sections.
(B,K) Corresponding restored images of (A,J). (C–F) Zoomed-in regions of the four dashed
boxes in (A,B). (L–O) Magnified Regions of Dashed Box Regions in (J,K). (G,P) H&E
stained tissue images corresponding to (A,J). (H,I,Q and R) Line profile comparison along
the corresponding dashed lines in (C,E,L and N). Scale bar: (A): 2.4 mm. (C,E): 0.75 mm.
(G): 1.2 mm. (J): 2.7 mm. (L,N): 0.84 mm. (P): 1 mm.
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Supplementary Figure 16. PG-PEM improves DAR image quality from [18F]NaF
administered mouse femurs. (A,I) H&E stained mice femur images. (B,J) Corresponding
raw DAR images of (A,I). (C,K) The restored DAR images of (B,J) by PG-PEM. (D,L)
Line profile comparison along the corresponding dashed lines in (B,J). (E–H) Zoomed-in
regions of the four dashed boxes in (B,C). (M–P) Zoomed-in regions of the four dashed
boxes in (J,K). Scale bar: (A): 2.25 mm. (B): 3.15 mm. (E,G): 0.67 mm. (I): 2.3 mm. (J):
3.2 mm. (M,O): 0.68 mm.
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Supplementary Figure 17. PG-PEM improves DAR images of alpha particle radio-
therapy. (A,E) H&E stained histopathological images of two human bone biopsy sections.
(B,F) Corresponding Raw DAR images of the same section in (A,E). (C,G) PG-PEM re-
stored images of (B,F). In (B,C,F,G), the lower two images are the zoomed-in regions of
the two dashed boxes in the upper images. (D,H) Line profiles in (B,C,F,G) along the
corresponding dashed lines. Scale bar: (A): 1 mm. (E): 1.1 mm. (B,F): first row: 2.3 mm,
second row: 0.44 mm.
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Supplementary Figure 18. Image resgistration process. (A) The segmented bone
mask from a H&E stained histopathological image. (B) The corresponding PG-PEM restored
DAR image. (C) Fused image before registration. (D) Initial registration: the bounding
boxes of the two images are first found. Then the centers, areas and angles of the two boxes
can be estimated. Next, the initial registration can be achieved by registering these two boxes
including scaling, rotation and translation. (E) Final registration: maximize the mutual
information between the two modalities by scaling, rotation and translation. Because the final
registration algorithm is very easy to converge to a local minimum, the initial registration is
essential. In our registration, we made the DAR image the fixed image and the bone mask
the moving one. This is reasonable because 1) the pixel number of the bone mask is much
bigger than that of the DAR image, and 2) the activity of the DAR image will be re-sampled
and not the same as the original distribution if it is the moving image. Scale bar: (A): 1 mm.
(B): 2.3 mm.

34



Supplementary Figure 19. Manually segmented bone mask, co-registered images
of bone mask and DAR before and after restored by PG-PEM. (A) Figure 6. (B)
Supplementary Fig 17(A)–(C). (C) Supplementary Fig 17(E)–(G).
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Supplementary Figure 20. SSIM and Fusion index estimation. (A) A raw DAR
image of the human bone biopsy section. (B) The corresponding PG-PEM restored image.
(C) The segmented bone mask from the corresponding H&E stained histopathological image.
(D) High activity region of (A). (E) High activity region of (B). The estimation of the
high activity region is achieved by a simple threshold method followed by removing small
region. (F) The estimated bone surface from (C) using morphological operations: The bone
mask is dilated and eroded by a small disk separately. Then the bone surface is estimated by
subtracting the two results. We compare (A), (B) with (F) to compute Fusion index and
(D), (E) with (C) to compute SSIM. Scale bar: (A): 2.3 mm.
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Supplementary Figure 21. PSF comparison. (A) The estimated PSF from a 223RaCl2
treated human bone biopsy image. (B) The estimated PSF from a 18F-NaF treated mouse
hindlimb image. To increase the image contrast, we have applied a false coloured “jet” col-
ormap. The estimated full-width half-maximum and full-width tenth-maximum of (A) are
approximately 0.159 mm and 0.344 mm, while those of (B) are 0.216 mm and 0.66 mm,
respectively. These results are consistent with the physics of alpha/positron transport: alpha
particles have a significantly shorter path length than positrons. This is also why the raw
autoradiographic images from 223Ra treated human bone biopsy have higher resolution than
those from 18F treated sections. It should be noted that while several beta particles are pro-
duced by its daughters, the vast majority of the 223Ra decay energy is in the form of alpha
particles.
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