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ABSTRACT 

Attenuation correction (AC) remains a challenge in pelvis PET/MR imaging. In addition to 

the segmentation/model-based approaches, deep learning methods have shown promise 

in synthesizing accurate pelvis attenuation maps (μ-maps). However, these methods 

often misclassify air pockets in the digestive tract, which can introduce bias in the 

reconstructed PET images. The aims of this work were to develop deep learning-based 

methods to automatically segment air pockets and generate pseudo-CT images from 

CAIPIRINHA-accelerated MR Dixon images. Methods: A convolutional neural network 

(CNN) was trained to segment air pockets using 3D CAIPIRINHA-accelerated MR Dixon 

datasets from 35 subjects and was evaluated against semi-automated segmentations. A 

separate CNN was trained to synthesize pseudo-CT μ-maps from the Dixon images. Its 

accuracy was evaluated by comparing the deep learning-, model- and CT-based μ-maps 

using data from 30 of the subjects. Finally, the impact of different μ-maps and air pocket 

segmentation methods on the PET quantification was investigated. Results: Air pockets 

segmented using the CNN agreed well with semi-automated segmentations, with a mean 

Dice similarity coefficient of 0.75. Volumetric similarity score between two segmentations 

was 0.85  0.14. The mean absolute relative change (RCs) with respect to the CT-based 

μ-maps were 2.6% and 5.1% in the whole pelvis for the deep learning and model-based 

μ-maps, respectively. The average RC between PET images reconstructed with deep 

learning and CT-based μ-maps was 2.6%. Conclusion: We presented a deep learning-

based method to automatically segment air pockets from CAIPIRINHA-accelerated Dixon 

images with comparable accuracy to semi-automatic segmentations. We also showed 

that the μ-maps synthesized using a deep learning-based method from CAIPIRINHA-



accelerated Dixon images are more accurate than those generated with the model-based 

approach available on integrated PET/MRI scanner.  
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INTRODUCTION 

Accurately accounting for annihilation photons attenuation is essential for quantitative 

positron emission tomography (PET). In integrated PET and computed tomography 

(PET/CT) scanners, CT data are scaled to generate attenuation maps (μ-mapCT) that are 

used for PET attenuation correction (AC). In integrated PET and magnetic resonance 

imaging (PET/MRI) scanners, AC has been a challenge as MRI does not directly provide 

information about tissue attenuation properties (1). The method initially implemented on 

one of the commercially available PET/MRI scanners, the Biograph mMR scanner 

(Siemens Healthineers, Erlangen, Germany), segmented the Dixon MR images into four 

compartments (i.e., background, lung, fat and soft tissue) and assigned known linear 

attenuation coefficients (LACs) to each of these classes to generate 4-compartment 

segmented μ-maps (μ-mapMR4C) (2). As properly accounting for bone tissue attenuation 

is important, particularly in the pelvis, a model-based approach was subsequently 

developed to add bone tissue to the μ-mapMR4C. This whole-body 5-compartment model-

based μ-map (μ-mapMR5C) generation approach uses a database of aligned MR images 

and bone segmentations for major body bones and involves co-registration of the 

subject's MR image to the MR model (3,4). The current method implemented on the 

Biograph mMR (software version VE11P) leverages the controlled aliasing in parallel 

imaging results in higher acceleration (CAIPIRINHA)-accelerated Dixon 3D-VIBE 

sequence to acquire diagnostic quality images with improved spatial resolution within the 

typical 18 second acquisition. In addition to providing diagnostic quality images, this 

sequence was previously shown to improve the accuracy of the μ-mapMR4C (5).  



Although the 5-compartment approach reduces the bias in the PET data 

quantification compared to the 4-compartment approach, it has several limitations when 

imaging the pelvis, the main focus in this work. First, air pockets (i.e., digestive tract gas) 

are difficult to identify and segment based on the MRI data, which leads to biased PET 

data quantification. Second, this AC method is prone to registration errors and does not 

account for the intra- and inter-subject variability in bone density.   

Deep learning-based methods are being rapidly adopted in the medical imaging 

field with many applications in image segmentation(6–8), image registration (9,10), image 

classification (11,12), etc. Such approaches that use convolutional neural networks 

(CNNs) and Generative Adversarial Networks have also been implemented in PET and 

PET/MR imaging for various purposes, including image synthesis of CT images for PET 

AC (or radiotherapy planning) (13–15). In the context of pelvis AC, deep learning methods 

have been used to create synthetic CT images using Dixon MR and proton-density-

weighted zero-echo-time (16), standard Dixon (17,18) and T1-weighted LAVA Flex water-

only and T2-weighted MR images  (19). All of these studies reported improvements in the 

accuracy of μ-maps and reduced bias in the reconstructed PET images compared to 

those obtained using the standard segmentation-based μ-maps.  

Previously proposed deep learning-based methods cannot synthesize accurate 

pseudo-CTs from pelvis MR images is the presence of air pockets as they have similar 

intensity to bone structures in the standard MR images. Furthermore, perfectly matched 

CT and MR images required for training CNNs are not available since these images are 

acquired on separate scanners at different times. Therefore, the locations and sizes of 

the air pockets change between the two scans, leading to errors in both MR-CT co-



registration and image synthesis tasks. As an initial solution, Torrado-Carvajal et al. (17) 

filled the air pockets with values corresponding to soft tissue in the estimated μ-map 

images. Leynes et al. (16) filled the air pockets present in the CT images with soft tissue 

Hounsfield unit (HU) values prior to training the CNN model. They reported artefacts in 

their pseudo-CTs due to air pockets being assigned bone HUs. Both groups excluded the 

air pocket voxels from the PET data bias analyses. Alternatively, Bradshaw et al. (19)  

used a technique which involved an intensity-based threshold, morphological closing and 

manual adjustments to localise air pockets and place them on μ-maps.  

In this work, we trained and evaluated CNNs to automatically segment air pockets 

from Dixon MR images and assessed the quantitative impact on the reconstructed PET 

images. Furthermore, we used the higher quality CAIPIRINHA-accelerated Dixon images 

within a deep-learning framework to generate pelvis pseudo-CT maps, compared them 

to the μ-mapMR5C and μ-mapCT and evaluated the impact of using these μ-maps on PET 

data quantification. Consideration of bowel gas positioning during the PET data 

acquisition will likely significantly impact accurate assessment of pelvic lesion uptake, and 

have potential impactful clinical ramifications in both staging and longitudinal treatment 

assessment. While outside the scope of the current study, our work therefore provides 

the technical foundation for future prospective studies to assess the impact of the 

proposed techniques. 

 

MATERIALS AND METHODS 

This retrospective study included data from 30 oncological patients (age: 5710, 

19 females/11 males, weight 6915 kg) who underwent successive, same day PET/CT 



(as part of standard care) and PET/MR (research) examinations. CAIPIRINHA-

accelerated MR Dixon data acquired from five additional subjects (age: 57  5, 3 

females/2 males, weight 72  8 kg) were also included in this study and used only in the 

development and evaluation of the air pocket segmentation method. All patients gave 

written informed consent, and the local Institutional Review Board approved the study.  

PET/MR Data: Simultaneous PET and MR data were acquired using the Biograph 

mMR scanner. Whole body 18F-FDG PET data were acquired in 4 bed positions (injected 

dose: 568  78 MBq) for 20 minutes approximately 2 hours after radiotracer 

administration. Whole body MR data were acquired in 4 bed positions using the 

CAIPIRINHA-accelerated Dixon 3D Vibe sequence (TR: 3.96 ms, TE1: 1.23 ms, TE2: 

2.46 ms, FA: 9°, scan duration 18 seconds) approximately 10 minutes after injection of 

Gadolinium-based MR contrast agent (Dotarem). This sequence provides in-phase, 

opposed phase, water and fat T1-weighted images that are typically used in the model-

based μ-map estimation method. MR images were reconstructed with a voxel size of 

2.1×2.6×2.1 mm3. 

CT Data: Low-dose CT data were acquired as part of the PET/CT acquisitions 

using Discovery 710 (GE Healthcare, WI, USA) (n=26) and Siemens Biograph 64 (n=4) 

(Siemens Healthineers, Erlangen, Germany) PET/CT scanners (voltage: 120 kV, tube 

current: 150 mA). The CT images were reconstructed with a voxel size of 0.98×0.98×5 

mm3. The CT data obtained from the two scanners were considered equivalent for the 

purpose of this study.  

Image processing: MR images were first corrected for low frequency intensity non-

uniformity using N4 bias correction (20). The scanner bed was removed from the whole-



body CT images using intensity thresholding and morphological operations. 

Subsequently, the pelvis region was manually cropped from the whole-body images. 

CT/MR pairs were co-registered using affine and non-rigid transformations using NiftyReg 

(21). Finally, the images were resampled to generate a volume with 256×256×n voxels. 

Voxel size of each volume was approximately 2.0×1.6×2.0 mm3. 

 

Air Pockets Segmentation 

Air pockets present in the CT images were segmented using an image 

thresholding algorithm (HU values < -700). Air pockets in the MR images were segmented 

using a region growing algorithm implemented in the ITK SNAP software (22). This semi-

automatic procedure required manual placement of seeds on air pockets and editing of 

the resulting segmentations by experienced radiologists. These air pockets were used to 

train a CNN. A UNet (6,23) architecture with residual units, consisting of 4 down-sampling 

and 4 up-sampling layers, with rectified linear unit (ReLU) used as the activation function, 

was chosen for this task. 3D MR Dixon in-phase volumes were used as input data. The 

acquired images were resampled to an isotropic volume with voxel size of 1 mm3 and 

multiple patches with a fixed matrix size of 96×96×96 voxels were extracted. To avoid 

overfitting during the training, data augmentation was performed by applying ±10% image 

scaling and a random rotation with ±10 angle. The MR volumes were normalised to zero 

mean and unity variance. The network was trained and evaluated on a dataset of 35 

subjects using a five-fold cross-validation, where for each fold, the data was split into 80% 

training (28 subjects) and 20% validation/testing data (7 subjects). Dice similarity 



coefficient (DSC) was used as the loss function and the network was trained using an 

Nvidia Tesla V100 GPU.  

The accuracy of the segmentation network was evaluated by computing 

segmented air pocket volumes, DSC, and Hausdorff distance (24) at 95th percentile 

between the segmentations obtained using the CNN and the semi-automatic methods.  

DSC and Hausdorff distance are two metrics commonly used in evaluating image 

segmentation methods and are measures of similarity and largest segmentation error 

between two segmented regions. Volumetric similarity (VS) (25) was also computed using 

equation 1: 

𝑉𝑆 = 1 −
|𝑉−𝑉𝑟𝑒𝑓|

𝑉+𝑉𝑟𝑒𝑓
                                             Eq. 1 

where V is the test volume and Vref is the volume of semi-automatically segmented air 

pockets.  

 

Pelvis Attenuation Map Synthesis 

A separate network also based on the UNet (6) architecture was trained to 

synthesize pseudo-CT images from the four Dixon 2D axial images (17). Mean absolute 

error (MAE) was used as the loss function. During the training, data augmentation was 

performed by applying random displacements of 5 voxels and a random flip in the slices. 

The Dixon volumes were normalised to have zero mean and unity variance. A five-fold 

cross-validation was performed where data was split to 80% training (24 subjects) and 

20% validation/testing data (6 subjects).  

The HU values of the output pseudo-CT images were scaled to obtain the μ-maps 

(26). Voxels belonging to air-pockets were assigned a LAC of zero. μ-mapMR5C and μ-



mapCT were also generated. All μ-maps were smoothed using a Gaussian filter with 4 mm 

full width at half maximum (FWHM) kernel to match the resolution of the PET images. 

The percentage absolute and non-absolute relative change (RC) were computed using 

equation 2: 

𝑅𝐶 (%) = 100 
|𝐼−𝐼𝑟𝑒𝑓|

𝐼𝑟𝑒𝑓
         Eq. 2 

where I is the test image and Iref is the reference image. CT based μ-maps with CNN-

derived air pockets were used as the reference image. Absolute and non-absolute RCs 

were evaluated voxelwise in the whole pelvis and within 3 ROIs: bone, fat- and water-

based soft tissue. These ROIs were segmented using a thresholding algorithm on the 

ground truth μ-mapCT. Bones were obtained by excluding voxels with LACs < 0.105 cm-1 

and applying a flood-fill operation in order to capture the bone marrow. Water-based soft 

tissue ROI was obtained by only keeping non-bone voxels within the 0.090-0.105 cm-1 

range and fat-based soft tissue ROI was obtained by only selecting voxels with LACs in 

the 0.080-0.090 cm-1 range. 

 

Impact on PET Data Quantification  

To evaluate the effects of using different μ-map generation methods on PET images, 

PET image reconstruction was performed using (as also shown in Figure 1):  

1. Model-based μ-map with no added air pockets, as generated and used on the 

Biograph mMR scanner (μ-mapMR5C).  

2. MR and CT-based μ-maps with CNN predicted air pockets from MR Dixon images 

(μ-mapMR5C-CNNAIR, μ-mapMRDL-CNNAIR, μ-mapCT-CNNAIR, respectively).  



The PET images were reconstructed with the Siemens e7-tools (version VE11P) using 

the ordered subsets expectation maximization (OSEM) algorithm (3 iterations and 21 

subsets), with a voxel size of 2.1×2.1×2.0 mm3 and smoothed using a post-reconstruction 

Gaussian filter with a FWHM of 4 mm. Absolute and non-absolute percentage RCs 

between the PET images attenuation corrected using the μ-maps generated with the 

different methods were computed and reported for the whole pelvis and ROIs listed 

above. To further study the effects of misclassified air pockets on the PET estimates in 

adjacent structures, a fourth ROI was obtained by dilating the semi-automatically 

segmented air pocket masks in all directions by 3 cm and subtracting the air pocket voxels 

from the dilated region.  

 

RESULTS 

Example Dixon in-phase MR images with air pockets semi-automatically 

segmented and predicted by the CNN algorithm are shown in Figure 2.  The proposed 

method was able to segment both large and small volume air pockets, and to distinguish 

between air pockets and other structures with low signal intensity on MR Dixon in-phase 

images, particularly bladder and bones, achieving a DSC of 0.75  0.15, averaged across 

the testing/validation folds (Figure 3a). Segmented air pocket volumes for each subject 

are shown in Figure 3b. The volumetric similarity between the two segmentations was 

0.85  0.14. Overall, there was no statistically significant difference between the air pocket 

volumes obtained using the two methods (paired t-test, p = 0.30). Subject 30 had a 

significantly lower DSC and VS than other subjects. This subject had one of the smallest 

volumes of air pockets and the CNN misclassified the bladder as air, causing a large 



difference in segmented volumes (Supplementary Figure 1). The average 95th percentile 

Hausdorff distance between segmentations obtained with each method was 51.0 ± 52.4 

mm.  

The μ-maps generated using model-based method without (μ-mapMR5C) and with 

added air pockets (μ-mapMR5C-CNNAIR), CT (μ-mapCT-CNNAIR), the deep learning-based 

method (μ-mapMRDL-CNNAIR) are shown in Figure 4 for a representative subject. 

Qualitatively, the deep learning-based method appears to distinguish fat- and water-

based soft tissue more accurately than the model-based method.  Better representation 

of bone structures was also seen in μ-maps generated using the proposed method.  

As shown in table 1, the quantitative assessment confirmed these findings, μ-

mapMRDL-CNNAIR being more similar to μ-mapCT-CNNAIR than the μ-mapMR5C-CNNAIR, with lower 

global and regional RCs. When all the voxels in the pelvis were compared, absolute RC 

was decreased from 5.1% to 2.6% when μ-maps were generated using the deep learning 

rather than the 5-compartment model-based method. This difference was statistically 

significant (p < 0.001).  The largest improvement was seen in the fat soft tissue where the 

absolute RC was reduced by a factor of 2.6. The difference between absolute and non-

absolute RC values were statistically significant in fat-based soft tissue and water-based 

soft-tissue ROIs. Although there were no significant group differences in the RC values 

obtained in the bones, the 5-compartment model-based approach failed to assign bone 

LACs in majority of bones in two subjects (Supplementary Figure 2).  

PET images obtained using each μ-map and air pocket segmentation method and 

the corresponding RC maps with respect to PETCT-CNNAIR are shown for a representative 

subject in Figure 5. PETMRDL-CNNAIR had lower global RC values compared to PETMR5C-



CNNAIR. It can also be seen that PETMR5C had an area under the bladder with significantly 

higher 18F-FDG uptake compared to the other PET reconstructions. This area 

corresponds to an air pocket misclassified as soft-tissue in the μ-mapMR5C.  

Averaged across all subjects, PETMR5C and PETMR5C-CNNAIR had larger non-

absolute and absolute RC values than PETMRDL-CNNAIR compared to PETCT-CNNAIR, both 

globally and regionally. Globally, the mean absolute RC values decreased from 7.1% to 

4.9%, and to 2.6% for PETMR5C, PETMR5C-CNNAIR and PETDL-CNNAIR, respectively. As seen 

in Figure 6, improvements were also observed in all the ROIs. PETMR5C had an RC of 

20% and 12% in bone regions for the two subjects where model-based μ-maps did not 

include major bone structures.  

In the ROI surrounding air pockets, PETDL-CNNAIR had an absolute RC of 3.0 ± 1.4% 

(range: 0.1% - 6.2%), while PETMR5C had an average absolute RC of 11.0 ± 6.5% (range: 

0.7% - 31.6%). In this ROI, PETMR5C images of two subjects had an absolute RC greater 

than 22% as their μ-maps had large volumes of misclassified air pockets near bladder.  

 

DISCUSSION 

Previous studies have highlighted the important role PET (combined with both CT 

and MRI) plays in staging pelvic malignancies, treatment planning for chemoradiation, 

and assessment of therapeutic response using multiple different tracers. With the 

anticipated FDA-approval of PSMA-targeting agents, the clinical need for reliable 

depiction of pelvic uptake using PET/MRI will only increase. In addition, PET/MRI imaging 

is actively being explored for evaluation in inflammatory bowel disease (27). For all the 

applications above, accurate estimation of uptake will likely impact prognosis and choice 



of therapy and treatment response assessment, therefore motivating our current study. 

First, misclassifying the air pockets as soft tissue could lead to false positives due to 

overestimation of PET activity in these voxels. Second, lesions with increased uptake 

located in the vicinity of air pockets could be missed due to the decreased lesion-to-

background contrast. Third, the bias introduced in adjacently located lesions could impact 

the assessment of longitudinal changes. Finally, from a methodological perspective, 

completely separating the air pocket segmentation from the pelvis attenuation map 

generation tasks when using deep learning approaches, might increase the performance 

of the latter techniques as the related anatomical mismatches between the MR and CT 

images used for training could be eliminated (i.e., by filling the air pockets with soft tissue 

in both datasets).  

The first aim of this work was to develop a deep learning-based approach to 

automatically segment air pockets present in the pelvis region from high resolution 

CAIPIRINHA-accelerated Dixon MR images. Semi-automatic segmentation of air pockets 

is a laborious and subjective process especially when additional manual editing is 

required. The proposed CNN trained using semi-automatically segmented air pockets 

was able to accurately predict air pocket in new datasets with an average DSC of 0.75, 

suggesting it could be used to minimize this source of bias in the reconstructed PET 

images. Our results also showed that misclassifying air pockets as soft tissue can 

introduce bias in the reconstructed PET images, particularly in the adjacent structures, 

which could interfere with the clinical interpretations (28).  

High resolution CAIPIRINHA-accelerated Dixon in-phase images were used in the 

delineation of air pockets to provide ground-truth data. However, these images contain 



similar signal in air pockets and some other structures such as bones, spinal cord and 

some ligaments. Moreover, some of the subjects had a high number of small air pockets 

trapped between faeces that were missed in the semi-automatic segmentation step but 

correctly identified by the CNN. Furthermore, CAIPIRINHA-accelerated Dixon in-phase 

images were acquired approximately 10 minutes after administration of Gadolinium-

based contrast agent, which caused the bladder to be separated into bright and dark 

areas, the latter being incorrectly classified as large air pockets in some subjects by the 

CNN. Acquisition of CAIPIRINHA-accelerated Dixon images before contrast agent 

administration will eliminate this issue and can potentially improve the performance of the 

air pocket segmentation method. While these infrequent outliers could be corrected 

during the quality control step, the performance of the proposed method would likely 

increase if a larger number of datasets were available for training. In principle, this could 

be explored in future studies using only MR data. The segmentation method proposed 

could be combined with any pelvis μ-map generation approach to generate maps that 

accurately reflect the physiological state during the PET data acquisition. 

Finally, although PET and MR images were acquired in a single scan using an 

integrated PET/MR scanner, air pockets could have moved during the data acquisition 

due to peristalsis. In this study, we segmented the air pockets from a single CAIPIRINHA-

accelerated Dixon acquisition and used the resulting μ-maps to attenuation correct the 

PET data collected over a longer duration. One way to address this potential issue could 

be repeating the CAIPIRINHA-accelerated Dixon acquisitions to detect potential air 

pocket movements over the course of the PET/MR scan. 



A second aim of this work was to train and test a separate CNN to generate more 

accurate pelvis μ-maps than those generated using the approach currently available on 

the Biograph mMR scanner (μ-mapMR5C). Qualitative and quantitative analyses indicate a 

CNN trained with CAIPIRINHA-accelerated Dixon MR images is able to generate μ-maps 

with a better resemblance to μ-mapCT than μ-mapMR5C. We noticed the overall absolute 

RC in the pelvis was reduced by a factor of 2, which was a similar improvement to that 

reported by Leynes et al. (16), Torrado-Carvajal et al. (17), and Pozaruk et al. (18). 

Compared to previous findings, we observed reduced differences in bony regions 

between the deep learning and model-based μ-maps. This was due to the fact that the 

bone tissue is no longer misclassified as soft tissue in the μ-mapMR5C generated using the 

most recent method available on the Biograph mMR scanner.  

The proposed image synthesis method uses a supervised CNN to perform a voxel-

to-voxel regression of MR intensities to CT HU values. This approach assumes perfect 

registration between the MR and CT images which is hard to achieve. Our MR and CT 

data were acquired on different scanners with differences in patient positioning, 

particularly in thighs flexion and rotation. Although we have used a combination of affine 

and non-rigid transformations to coregister the MR and CT data of the training and 

validation datasets, some registration errors might still be present. Unsupervised learning 

techniques, such as CycleGAN network incorporating cycle consistency loss function (29–

31), can be used to alleviate the need for perfect alignment of MR-CT pairs. However, 

these methods require access to larger pools of data for training and they have to be 

properly validated for AC of PET data.  

 



CONCLUSIONS 

We presented a deep learning-based method to automatically segment air pockets 

from CAIPIRINHA-accelerated MR Dixon images. We also showed that a deep learning-

based method can be used to synthesize μ-maps more similar to reference CT based μ-

maps than the ones generated with the 5-compartment model-based approach as 

implemented commercially. Although our results suggest this method might improve the 

confidence intervals in studies requiring the use of quantitative PET metrics, additional 

studies in patients with pathological changes are required to demonstrate its clinical utility.    
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KEY POINTS 

Question: Can we use CAIPIRINHA-accelerated Dixon MR images to automatically 

segment air pockets in the pelvis area and synthesize accurate pseudo-CT images for 

attenuation correction of PET data? 

Pertinent Findings: A convolutional network to segment air pockets was trained and 

evaluated using CAIPIRINHA-accelerated Dixon images of 35 subjects. A separate 

network to synthesize pseudo-CT images was trained and tested using the Dixon images 

of 30 subjects who underwent sequential PET/CT and PET/MR examinations. In a region 

surrounding the air pockets, an improvement by a factor of 3.7 was observed when PET 

images were reconstructed using deep learning-based μ-maps instead of standard 

model-based μ-maps.  

Implications for Patient Care: The proposed deep learning-based method can be used 

to accurately generate μ-maps with air pockets and can reduce the PET estimation bias 

in the regions surrounding air pockets.  
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TABLES 

 

Table 1: Average regional non-absolute and absolute RCs between model-based and 

deep learning-based μ-maps, compared to CT-based μ-maps.  

 μ-mapMR5C-CNNAIR μ-mapMRDL-CNNAIR Paired t-test 

Pelvis 

RC (%) 2.95 ± 2.06 -0.13 ± 0.96 p<0.001 

Absolute RC 

(%) 
5.10 ± 1.41 2.60 ± 0.63 p<0.001 

Bones 

RC (%) -3.21 ± 3.41 -3.07 ± 2.79 p=0.81 

Absolute RC 

(%) 
5.31 ± 2.45 4.54 ± 1.91 p=0.08 

Fat-based  

soft tissue 

RC (%) 6.20 ± 2.46 1.28 ± 0.79 p<0.001 

Absolute RC 

(%) 
6.76 ± 2.17 2.57 ± 0.69 p<0.001 

Water-

based soft 

tissue 

RC (%) 1.20 ± 2.44 -0.77 ± 0.96 p<0.001 

Absolute RC 

(%) 
3.20 ± 1.50 2.02 ± 0.60 p<0.001 

 

 

  



 

Figure 1: Overview of the methodology. 



  

Figure 2: Air pockets segmentation for a representative subject (subject 21). Axial, 

coronal and sagittal views of the Dixon in-phase MR image are shown with semi-

automatic segmentations of the air pockets (red) and segmentation predicted by the CNN 

(blue).  

 



 
 
 
Figure 3: (a) Dice coefficients between the CNN-predicted and semi-automatic 

segmentations for 35 subjects. The horizontal line represents the mean coefficient. (b) 

Volume of air in segmented regions obtained using the semi-automatic and the CNN 

approach. 



 
 

Figure 4: CT- and MR-derived attenuation maps for a representative subject (upper 

panels). The CT-derived attenuation map with air pockets predicted by the CNN was used 

as a reference to compute the corresponding relative change maps shown in the lower 

panels.  



 
 
Figure 5: PET images reconstructed using the CT- and MR-based attenuation correction 

approaches (upper panels).  The RC maps for reconstructions performed using each 

method with respect to the CT-based approach are shown in the lower panels. The arrow 

indicates an air pocket region which was incorrectly assigned to soft tissue linear 

attenuation coefficients in μ-mapMR5C. 

 



 
 
Figure 6: Box plots of (a) absolute and (b) non absolute percentage change in 

reconstructed PET images using different attenuation correction and air pocket 

segmentation methods. Box plots were grouped for five ROIs. For each box, median is 

marked using the central horizontal line and edges represent 25th and 75th percentiles of 

the dataset. Whiskers were determined as 1.5 times the interquartile range, and data 

points outside this range were identified as outliers. PETCT-CNNAIR was used as reference 

image in these calculations.  
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SUPPLEMENTARY FIGURES 
 

 
 
 
Supplementary Figure 1: Misclassification of bladder voxels in the presence of MR 

contrast agent.  Axial, coronal and sagittal views of the Dixon in-phase MR image, semi-

automatic segmentations of the air pockets (red voxels) and segmentation predicted by 

the CNN (blue voxels) for one representative dataset (subject 1). In this scan, half of the 

bladder was dark on the MR DIXON images while the remaining half towards the back of 

the patient had high signal.  



 
 
Supplementary Figure 2: Model derived attenuation maps of two subjects where 

assignment of linear attenuation coefficients has failed in majority of bone structures.  

 


