Values of ⁶⁸Ga-DOTATOC and Carbidopa-assisted ¹⁸F-DOPA PET/CT for insulinoma localization

Authors and affiliations:

Alessio Imperiale, MD, PhD^{1, 2}, Caroline Boursier, MD³, Nicolas Sahakian, MD⁴, Eric Ouvrard, MD¹, Elodie Chevalier, MD³, Frédéric Sebag, MD, PhD⁵, Pietro Addeo, MD, PhD⁶, and David Taïeb, MD, PhD^{4, 7}

- Nuclear Medicine and Molecular Imaging, Institut de Cancérologie de Strasbourg Europe (ICANS), Université de Strasbourg, Strasbourg, France
- 2. Molecular Imaging DRHIM, IPHC, UMR 7178, CNRS/Unistra, Strasbourg, France
- 3. Nuclear Medicine, University Hospital of Nancy, Nancy, France
- Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France
- Endocrine Surgery, Conception University Hospital, Aix-Marseille University, Marseille, France
- Hepato-Pancreato-Biliary Surgery and Liver transplantation, University Hospitals of Strasbourg, University of Strasbourg, Strasbourg, France
- European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France

Running Title: ⁶⁸Ga-DOTATOC vs. ¹⁸F-DOPA for insulinoma

Keywords: neuroendocrine tumors; pancreas, insulinoma; ¹⁸F-DOPA; ⁶⁸Ga-DOTATOC

Corresponding author:

Prof. Alessio Imperiale, MD, PhD

Médecine Nucléaire et Imagerie Moléculaire

Institut de Cancérologie de Strasbourg Europe (ICANS)

17, rue Albert Calmette, 67093 Strasbourg, France

Tel:+33368767448

Fax : +33368767256

E-mail: a.imperiale@icans.eu

Disclosure summary: The authors declare that they have no conflict of interest

Abstract: 146; Document: 2733; Tables: 1; Figures: 2

ABSTRACT

To assess the value of ⁶⁸Ga-DOTATOC and carbidopa-assisted ¹⁸F-DOPA in 21 hypoglycaemic patients.

Methods. All patients who underwent ⁶⁸Ga-DOTATOC and/or carbidopa-assisted ¹⁸F-DOPA PET/CT for suspicion of insulinoma from January 2019 to January 2021 were retrospectively analysed. Insulinoma final diagnosis was defined according to pathological reports or consensus. **Results.** During the study period, 21 patients underwent both ⁶⁸Ga-DOTATOC and ¹⁸F-DOPA PET/CT. A final diagnosis of insulin-secreting tumour was reached in 12 cases, including 11 insulinomas and 1 small mixed neuroendocrine/non-neuroendocrine neoplasm. ¹⁸F-DOPA and ⁶⁸Ga-DOTATOC PET/CT were positive in 5 (45%) and 7 (64%) of 11 cases, respectively, with 4 concordant positive findings. Moreover, 1 insulinoma was visualized exclusively by ¹⁸F-DOPA PET/CT and 3 by ⁶⁸Ga-DOTATOC PET/CT only. ¹⁸F-DOPA and ⁶⁸Ga-DOTATOC PET/CT were falsely positive in 1 non-functioning pancreatic neuroendocrine tumour.

Conclusions. When ⁶⁸Ga-exendin-4 is not available, ⁶⁸Ga-SSTR PET/CT should be the first choice for insulinoma functional imaging.

INTRODUCTION

In adults, endogenous hyperinsulinaemic hypoglycaemia is commonly related to insulinoma. Insulinoma can induce severe debilitating and life-threatening hypoglycaemia. The average incidence of insulinoma is 1-4 cases per million persons per year, and more than 90% of insulinomas are solitary, sporadic and benign. In adults with hypoglycaemia and/or suggestive symptoms, the diagnosis of hyperinsulinaemic hypoglycaemia relies on a positive fasting test (1). In 5-10% of cases, insulinoma can occur in multiple endocrine neoplasia type-1. Parenchyma sparing (enucleation/pancreatic resection) surgery is the optimal strategy (cure rate: 98%), but it can be associated with complications. It is therefore of primary importance to accurately localize insulinoma.

Imaging work-up of patients with hyperinsulinaemic hypoglycaemia often requires a combination of anatomic and functional imaging modalities (2). ⁶⁸Ga-exendin-4, which targets the glucagon-like peptide 1 receptor, is expected to become the first-choice radiopharmaceutical for PET detection of benign insulinoma (*3*). However, it is available in only a few centres and is currently used as a part of clinical trials. A special advantage of ⁶⁸Ga-exendin-4 over other tracers is its unique value for distinguishing insulinoma from other neuroendocrine tumours – a condition of particular interest in the setting of multiple endocrine neoplasia type-1 patients, who often present with concomitant functioning and nonfunctioning pancreatic tumours. When ⁶⁸Ga-exendin-4 is not available for clinical use, either ⁶⁸Ga-radiolabelled somatostatin analogues (⁶⁸Ga-DOTA-SSA) or ¹⁸F-fluorodihydroxyphenylalanine (¹⁸F-DOPA) can be used (*4*). ⁶⁸Ga-DOTA-SSA has shown encouraging preliminary results for insulinoma imaging in two recent retrospective studies (*5*,*6*). However, insulinoma detection remains challenging, mainly due to these tumours' limited SSTR2 expression profile and small size, and to the physiologically high ⁶⁸Ga-DOTA-SSA uptake

in the uncinate process (7). On the other hand, the value of ¹⁸F-DOPA PET/CT is hampered by the relatively short duration of ¹⁸F-DOPA tumour retention in insulinoma and the diffuse uptake in normal pancreatic parenchyma that may potentially mask insulinoma (8). To circumvent these major drawbacks, we previously proposed a revised imaging protocol based on dual-phase imaging acquisition and patient premedication with carbidopa (a peripheral aromatic amino acid decarboxylase inhibitor) to prevent ¹⁸F-DOPA physiological pancreatic uptake (9).

Currently, there remains a certain degree of uncertainty regarding the optimal first-choice tracer for patients with insulinoma suspicion in the absence of ⁶⁸Ga-exendin-4. The aim of the present study was to describe the value of ⁶⁸Ga-DOTA-SSA and carbidopa-assisted ¹⁸F-DOPA in a retrospective series of hypoglycaemic patients evaluated by both tracers.

MATERIALS AND METHODS

Patients

This retrospective study was conducted in the departments of nuclear medicine of 3 university hospitals in France (Strasbourg, Marseille, and Nancy). We performed a comprehensive search of our databases to identify all patients evaluated by ⁶⁸Ga-DOTA-SSA and/or carbidopa-assisted ¹⁸F-DOPA PET/CT for clinical, biological, and/or radiological suspicion of insulinoma-related HH from January 2019 to January 2021 (Figure 1). Concerning patients underwent ¹⁸F-DOPA and ⁶⁸Ga-DOTA-SSA PET/CT, only those studied within a 3-months period without therapeutic intervention or change between the two PET studies were included. All data (clinical, biological and imaging) were extracted from institutional medical datafiles (Table 1). The

Institutional review board approved this retrospective study and the requirement to obtain informed consent was waived.

Imaging Protocols

All examinations were performed by combined PET/CT devices equipped with 3D-time of flight technology. Patients were injected with 2-3 MBq/kg ⁶⁸Ga-DOTATOC and 3-4 MBq/kg ¹⁸F-DOPA (2h after carbidopa premedication, 200-mg orally) without fasting before radiotracer administration. ⁶⁸Ga-DOTATOC included a whole-body acquisition from the upper thigh to the top of the skull (3-5 min/step), starting at 60 min after radiotracer injection. Dual-time-point ¹⁸F-DOPA PET/CT included an early scan of the upper abdomen (at 5 min, 10-min step) and a delayed whole-body acquisition (at 30 min, 3-5 min/step). In all cases, a low dose non-enhanced CT was performed and used for attenuation correction.

A pancreatic abnormality was defined as a focal area of increased radiotracer uptake compared to surrounding tissue, considering potential pitfalls for both tracers. For ¹⁸F-DOPA PET/CT, a positive early phase, followed by a negative delayed scan, was considered a pathological study. Semi-quantitative analysis was performed by placing a spherical VOI centred on the uptake foci.

Gold Standard

The final diagnosis of insulinoma was defined according to pathological results when available. In the remaining patients, the diagnosis was reached by a consensus considering clinical, biological (positive fast test), and radiological (CT/MRI typical enhancement) parameters and follow-up.

Statistical Analysis

The results for continuous data are expressed as the mean \pm standard deviation or median and range as appropriate, whereas categorical variables are presented as numbers and percentages. Detection rate, sensitivity, and specificity are provided for both modalities.

RESULTS

Patient Population

A total of 32 patients were evaluated during the study period: 9 with ¹⁸F-DOPA PET/CT alone, 2 with only ⁶⁸Ga-DOTATOC PET/CT, and 21 with both tracers (Figure 1). The latter 21 cases constituted the study population. The patients' characteristics are summarized in Table 1.

Fourteen of 21 patients had a positive 72-h fasting test, whereas 7 had doubtful results. In patients with borderline biochemical and imaging findings, the indication for further evaluation was decided in the setting of institutional multidisciplinary meetings.

A final diagnosis of an insulin-secreting tumour was reached in 12 patients, including 11 insulinomas (one occult) and 1 small mixed neuroendocrine/non-neuroendocrine neoplasm with 15% insulin cell positivity. Among them, the fasting test was positive in 10 patients, and inconclusive in the remaining 2 cases. Among the 11 insulinomas, 8 were pathologically proven, and in the latter 3 cases, the diagnosis was reached by consensus. In 7 patients without detectable

pancreatic target lesion on both anatomic and functional imaging, the diagnosis of insulinoma was excluded by follow-up. In the other 2 cases, the diagnosis turned out to be nonfunctioning pancreatic neuroendocrine tumours confirmed by surgery or endoscopic ultrasound-guided fine-needle aspiration biopsy and follow-up.

PET/CT Findings

The PET/CT findings are summarized in Figure 1. For insulinoma, ¹⁸F-DOPA and ⁶⁸Ga-DOTATOC PET/CT were positive in 5/11 and 7/11 cases, respectively, with concordant positive findings in 4 patients. Moreover, 1 insulinoma was visualized exclusively by ¹⁸F-DOPA PET/CT, and 3 were visualized only by ⁶⁸Ga-DOTATOC PET/CT (Figure 2). On ¹⁸F-DOPA PET/CT, delayed phase imaging failed to detect one insulinoma that was correctly identified by early ¹⁸F-DOPA petr/CT, delayed phase and ⁶⁸Ga-DOTATOC PET/CT (Figure 2). In this case, the insulinoma was related to multiple endocrine neoplasia type-1 syndrome, and the patient had a previous history of 3 benign insulinomas that were positive on somatostatin receptor scintigraphy and successfully treated by surgery. In the other cases, insulinomas were sporadic. One 10-mm G1 mixed neuroendocrine-non neuroendocrine neoplasm remained occult for both ¹⁸F-DOPA and ⁶⁸Ga-DOTATOC PET/CT, likely due to the small percentage of the neuroendocrine component.

Among 2 cases with non-functioning pancreatic NETs, ¹⁸F-DOPA and ⁶⁸Ga-DOTATOC PET/CT were falsely positive in one case and negative in the latter case. The diagnosis of insulinoma was excluded in 7 additional cases without identifiable pancreatic target images on both PET imaging studies. Overall, detection rate, sensitivity, and specificity were respectively 45%, 42%, 89% for ¹⁸F-DOPA, and 64%, 58%, 89% for ⁶⁸Ga-DOTATOC PET/CT.

The tumour-to-background uptake ratios were more favourable with ⁶⁸Ga-DOTATOC than with ¹⁸F-DOPA PET. The mean values of tumour SUVmax and tumour SUVmax/normal pancreas SUVmean were 6.7 and 1.5 for early phase ¹⁸F-DOPA, 6.3 and 2.7 for delayed phase ¹⁸F-DOPA, and 45.2 and 10.8 for ⁶⁸Ga-DOTATOC PET/CT, respectively.

DISCUSSION

The present study aimed to describe the values of ⁶⁸Ga-SSTR PET/CT and carbidopa-assisted ¹⁸F-DOPA in a series of hypoglycaemic patients. The principal conclusions that can be drawn from this study include: firstly, a high detection rate of ⁶⁸Ga-DOTATOC PET/CT in insulinoma, although its value is less than that for nonfunctioning pancreatic NETs due to a lack of SSTR2 expression in a subgroup of insulinomas (*10*); and secondarily, ⁶⁸Ga-DOTATOC PET/CT can be positive when ¹⁸F-DOPA fails (3 cases) and vice versa (1 case). The latter point is easily comprehensible due to the various molecular determinants of tracer uptake and retention in both conditions.

Although our study was not designed to perform a reliable comparison between 68 Ga-SSTR PET/CT and 18 F-DOPA (mainly due to its retrospective nature and the limited number of included cases), we suggest using 68 Ga-SSTR PET as the first-choice tracer when 68 Ga-exendin-4 is not available. This position could be supported by several arguments. Two recent retrospective studies showed very promising results concerning the use of 68 Ga-SSTR PET/CT in patients with insulinoma-related HH, allowing for the identification of pancreatic secreting tumours in 9 of 10 (90%) and 11 of 13 cases (85%), respectively (5,6). The greater sensitivities described in these studies compared to our study could be related to the inclusion of solely pathologically proven insulinomas (5,6), excluding cases with non-operated 68 Ga-SSTR-negative insulinoma.

Furthermore, based on the widely admitted expression of SSTR2 in two-thirds of insulinomas (*10*), it is expected that ⁶⁸Ga-SSTR PET/CT sensitivity in real-life situations should be less than previously reported with an *on-off* uptake pattern, depending on SSTR2 expression. The use of ⁶⁸Ga-SSTR PET/CT also has practical advantages over ¹⁸F-DOPA in terms of availability and cost for teams skilled and suitably equipped for ⁶⁸Ga-radiolabelling.

While the use of carbidopa-assisted ¹⁸F-DOPA PET/CT remains controversial (*11*), the present study showed that it can be useful for SSTR-negative insulinoma and therefore can be considered a second-choice tracer when ⁶⁸Ga-SSTR PET/CT fails to detect the tumour. The lower rate of positivity of ¹⁸F-DOPA PET/CT compared to previous reports could also be related to selection bias. As highlighted in the flow chart, 5 insulinomas, including 4 with ¹⁸F-DOPA positive findings, did not undergo ⁶⁸Ga-SSTR PET/CT. With these patients, the rate of positivity would therefore be 56% (9/16). Physicians should be aware that imaging protocol should be adapted including carbidopa premedication We previously showed in a preclinical model that the use of carbidopa did not inhibit insulinoma ¹⁸F-DOPA uptake (*12*), a phenomenon that was described for beta-cell hyperplasia (*13*). In the present study, delayed acquisition missed one insulinoma, and early acquisition was never inferior to delayed acquisition. In a previous study that included 24 patients, 4 cases were only detected by early phase acquisition (*14*).

CONCLUSION

Despite the limitations that have been pointed out, this study provided new data on both tracers in this rare but curable disease. When ⁶⁸Ga-exendin-4 is not available, we suggest using SSTR analogues as first-choice PET tracer and considering carbidopa-assisted ¹⁸F-DOPA as a valid alternative in cases of inconclusive results.

ACKNOWLEDGEMENTS

None

KEY POINTS

Question

What is the best radiopharmaceutical for insulinoma localization in absence of ⁶⁸Ga-exendin-4?

Pertinent findings

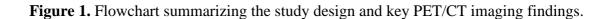
When ⁶⁸Ga-exendin-4 is not available, ⁶⁸Ga-SSTR should be considered as the first-choice PET tracer. Carbidopa-assisted ¹⁸F-DOPA PET remains a valid option in cases of inconclusive results.

Implications for patient care

⁶⁸Ga-SSTR PET/CT enables detection of insulinoma, allowing curative sparing surgery

(enucleation/pancreatic resection) and resolution of preoperative symptoms.

REFERENCES


- 1. Service FJ, Natt N. The prolonged fast. J Clin Endocrinol Metab. 2000;85:3973-3974.
- 2. Ambrosini V, Kunikowska J, Baudin E, et al. Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. *Eur J Cancer*. 2021;146:56-73.
- Antwi K, Fani M, Heye T, et al. Comparison of glucagon-like peptide-1 receptor (GLP-1R) PET/CT, SPECT/CT and 3T MRI for the localisation of occult insulinomas: evaluation of diagnostic accuracy in a prospective crossover imaging study. *Eur J Nucl Med Mol Imaging*. 2018;45:2318-2327.
- 4. Pattison DA, Hicks RJ. Molecular imaging in the investigation of hypoglycaemic syndromes and their management. *Endocr Relat Cancer*. 2017;24:R203–21.
- Prasad V, Sainz-Esteban A, Arsenic R, et al. Role of (68)Ga somatostatin receptor PET/CT in the detection of endogenous hyperinsulinaemic focus: an explorative study. *Eur J Nucl Med Mol Imaging*. 2016;43:1593–600.
- Nockel P, Babic B, Millo C, et al. Localization of insulinoma using 68Ga-DOTATATE PET/CT scan. J Clin Endocrinol Metab. 2017;102:195–9.
- Imperiale A, Meuter L, Pacak K, Taïeb D. Variants and Pitfalls of PET/CT in Neuroendocrine Tumors. *Semin Nucl Med.* 2021:S0001-2998(21)00014-3 (in press).
- Tessonnier L, Sebag F, Ghander C, et al. Limited value of 18F-F-DOPA PET to localize pancreatic insulin-secreting tumors in adults with hyperinsulinemic hypoglycemia. J Clin Endocrinol Metab. 2010;95:303-7.
- Imperiale A, Sebag F, Vix M, et al. 18F-FDOPA PET/CT imaging of insulinoma revisited. *Eur J Nucl Med Mol Imaging*. 2015;42:409–18.

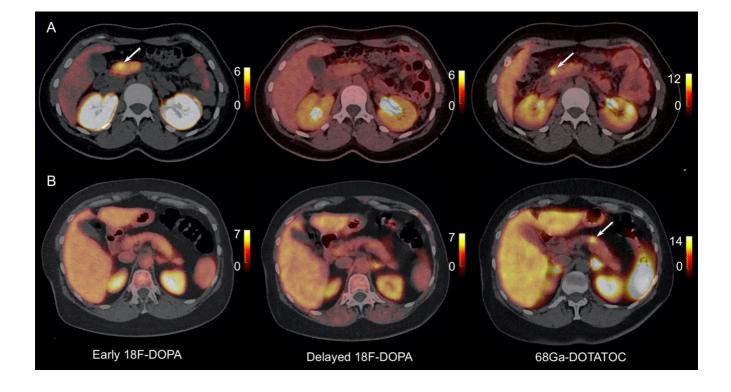

- Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. *Eur J Nucl Med Mol Imaging*. 2003;30:781-93.
- Bozkurt MF, Virgolini I, Balogova S, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F-DOPA. *Eur J Nucl Med Mol Imaging*. 2017;44:1588-1601.
- Detour J, Pierre A, Boisson F, et al. Effect of Carbidopa on 18F-FDOPA Uptake in Insulinoma: From Cell Culture to Small-Animal PET Imaging. *J Nucl Med.* 2017;58:36-41.
- Kauhanen S, SeppänenM, Nuutila P. Premedication with carbidopa masks positive finding of insulinoma and beta-cell hyperplasia in [18F]-dihydroxy-phenyl-alanine positron emission tomography. J Clin Oncol. 2008;26:5307–8.
- 14. Leroy-Freschini B, Amodru V, Addeo P, et al. Early (18)F-FDOPA PET/CT imaging after carbidopa premedication as a valuable diagnostic option in patients with insulinoma. *Eur J Nucl Med Mol Imaging*. 2019;46:686-695.

Table 1. Patient population with suspected insulinoma who underwent both carbidopa-assisted ¹⁸F-DOPA and ⁶⁸Ga-DOTATOC PET/CT imaging.

Pt	Age (y)	Sex	24h-Fast test	Medical treatment	CT/MRI	EUS	Early/delayed ¹⁸ F- DOPA/SSTR-PET/CT	Final diagnosis	Gold standard
1	62	W	positive	diazoxide	+/+, head	+, head	+/+/+, head	Insulinoma, 10-mm, grade-1, Ki67:2%	Pathology (surgery)
2	31	W	doubtful	diazoxide	-/-	?, body	-/-/-	Insulinoma excluded	Consensus
3	16	W	positive	diazoxide	-/-	-	-/-/-	Insulinoma excluded	Consensus
4	70	М	positive	diazoxide	+/+, tail		+/+/+, tail	Non-functioning pNET, 66-mm, grade-3, Ki67:25%	Pathology (surgery)
5	19	W	positive		-/-		-/-/-	Insulinoma excluded	Consensus
6	62	W	positive		+/na, body	+, body	-/-/+, body	Insulinoma, 17-mm	Pathology (FNAB)
7	71	W	doubtful		-/na	-	+/+/+, head	Insulinoma, 18-mm, grade-1, Ki67:1%	Pathology (surgery)
8	77	W	doubtful		-/-	?, tail	-/-/-	Insulinoma excluded	Consensus
9	65	М	positive		-/-	+, body	-/-/-	MiNEN, 10-mm, grade-1 (IHC:15% insulin+, 90% SST+),	Pathology (surgery)
10	48	W	positive		+/+, tail		+/+/+, tail	Insulinoma, 17-mm, grade-1, Ki67:1%	Pathology (surgery)
11	78	W	positive	diazoxide	+/na, tail		-/-/-	Insulinoma, 12-mm, grade-1, Ki67:2%	Pathology (surgery)
12	64	W	positive		-/-		-/-/-	Insulinoma excluded	Consensus
13	27	W	doubtful		+/+, head		+/-/+, head	Insulinoma, 10-mm (MRI)	Consensus
14	64	М	doubtful		-/-		-/-/-	Insulinoma excluded	Consensus
15	78	W	doubtful		-/na		-/-/-	Insulinoma excluded	Consensus
16	29	W	positive		-/+, tail		+/+/-, tail	Insulinoma, 12-mm, grade-1, Ki67:1%	Pathology (surgery)
17	67	W	positive	diazoxide	-/-	-	-/-/-	Insulinoma (occult)	Consensus
18	64	W	doubtful		-/+, body	+, body	-/-/-	No-functioning pNET, 5-mm, grade-1, Ki67:1%	Pathology (FNAB)
19	72	М	positive	diazoxide	+/na, head	+	-/-/+, head	Insulinoma, 10-mm	Pathology (FNAB)
20	93	М	positive	diazoxide	+/na, tail	-	-/-/+, tail	Insulinoma, 13-mm	Consensus
21	52	М	positive		na/+, head	+, head	-/-/-	Insulinoma, 22-mm	Pathology (FNAB)

Figure 2. Discordant results of carbidopa-assisted ¹⁸F-DOPA and ⁶⁸Ga-DOTATOC PET/CT in two patients with pathologically proved insulinoma (arrows). (**A**) Early ¹⁸F-DOPA+/Delayed ¹⁸F-DOPA -/⁶⁸Ga-DOTATOC+. (**B**) Early ¹⁸F-DOPA-/Delayed ¹⁸F-DOPA-/⁶⁸Ga-DOTATOC+.

Graphical Abstract

⁶⁸Ga-SSTR PET should be the first choice for insulinoma functional imaging if ⁶⁸Ga-exendin-4 is not available. Carbidopa-assisted ¹⁸F-DOPA PET remains a valid alternative in cases of inconclusive results.

CE-CT

¹⁸F-DOPA PET/CT

68Ga-DOTATOC PET/CT

Pathology