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1. Introduction 
 

Artificial intelligence (AI) continues to deliver remarkable impact in numerous and highly 

diverse fields, from physics, natural language processing, finance, human resources to 

image processing, protein folding [1] and prediction of viral mutations [2]. In broad terms, 

AI is any technology which can learn how to perform tasks from example data or 

experiences. This contrasts with the conventional paradigm of a human programmer or 

engineer providing extensive and exhaustive instructions in order for a task to be 

performed. 
 

The power of AI is beyond question, but its adoption, as with other ground breaking 

technologies, can initially lead to concerns, scepticism and even ethical questions. In 

particular, use of AI in medical imaging has demonstrated immense potential [3], but a 

key question is how much we can trust AI in the formation of images that inform clinical 

decisions, where lives of patients are often at stake. 

This brief article will consider the methodologies, benefits and concerns regarding AI for 

the case of the formation, or reconstruction, of PET images [4], and will focus on a sub-

discipline of AI, namely deep learning. We will define deep learning below, and use this 

term interchangeably with AI. 
 

2. Understanding AI and deep learning 
 

So what is deep learning exactly? Deep learning can be considered as a sequence of steps 

which operates on input data to perform a desired task, where the steps are learned from 

example inputs and outputs (training data). These sequences of operations are comparable 

to conventional computer code, which similarly executes a sequence of operations 

designed (without training data) to specifically accomplish tasks. Therefore deep learning 

can be more generally regarded as a data-informed, trainable version of our existing, well-

established algorithms. 

Taking the example task of PET image reconstruction, algorithms that have been 

developed by the PET reconstruction community over many decades, drawing upon 

experience and knowledge of imaging physics, maths and statistics, can now also be 

integrated into the learning AI paradigm. Better still, state of the art image reconstruction 

methods can likely be made even more reliable with AI-informed refinement. 
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However, AI has been frequently misunderstood, either due to the notion of AI being a 

black box, or as a result of conventional low-dimensional mathematical perspectives on 

fitting models to limited data. The black box misconception partly originates from the 

highly successful use of deep learning in computer vision tasks, where its performance has 

launched deep learning to its deserved level of current recognition. Early successes via the 

automated hierarchical feature learning of convolutional neural networks (CNNs) have 

resulted in large uptake and application of CNNs to other tasks, where there has been a 

temptation to use these large architectures without careful design considerations, relying 

instead on large numbers of trainable parameters. Use of poorly justified and highly-

parameterised architectures has made it easy to dismiss any chance of understanding (let 

alone designing) these sophisticated non-linear mappings, fuelling AI scepticism. As for 

conventional mathematical perspectives on feasibility of optimisation and overfitting to 

limited data, these have proven not to be the showstoppers that they were expected to be. 

On the contrary, deep learning’s success has revealed a need to revise our thinking on 

optimisation, regularisation and generalisation. 
 

Hence the rapid progress of AI methods, sometimes with loss of principled design choices 

and often to the surprise of conventional mathematical thinking, has resulted in concern 

over its interpretability and trustworthiness. This has not been helped by reduced levels of 

rigour arising from the surge of innovation and exciting successes. But block box 

concerns and conventional mathematical views on optimisation are becoming dated 

perspectives, particularly in the context of deep learning for signal and image processing, 

where increasingly meaningful design choices are being made by embedding the AI 

paradigm into conventional and well understood algorithmic processing (such as the 

discrete Fourier and Radon transforms). 
 

3. Why use AI for PET image reconstruction? 
 

In applying AI to image reconstruction for PET, we are recognising that PET image 

reconstruction actually needs help. First, improving spatial resolution and lowering noise 

in PET images will very likely assist in the clinical utility of PET. Second, even if current 

image quality is deemed acceptable, the desire for shorter acquisition times and/or reduced 

radiation doses will require more advanced techniques to try and retain standard image 

quality from lower count (noisier) data. Similarly, achieving higher temporal resolution, 

such as for improved motion correction, will likewise demand improved reconstruction. 
 

First, let’s recall what PET image reconstruction actually is: it is the use of raw list-

mode or projection data acquired from a PET scan in order to form an image 

representing a radiotracer’s spatiotemporal distribution within the human body. For 

conventional PET, the spatial resolution of such images is of the order of a few 



mm, and the temporal resolution is of the order of many seconds. These limitations are due 

to limited photon counts, scanner design and physics. Nonetheless, advances in statistical 

image reconstruction methods for PET have made greater use of the acquired data, 

lowering image noise, improving spatial and temporal resolution, through accurate 

modelling of the imaging physics and statistics, and through use of prior information 

(including from CT or MR). Even with such progress, the limited counts and resolution 

still place a performance ceiling on the potential of PET for clinical imaging, and, as 

mentioned, the desire to reduce the dose and to shorten scan times means that limited data 

poses ongoing challenges to PET image reconstruction. 
 

This is where AI can make a huge difference, in two main ways. Firstly, with sufficient 

example data, AI can learn the vast (but nonetheless highly restricted) realistic set of PET 

images that can ever be expected from a PET scan (this set is often referred to as the 

manifold). For example, we know a PET scan can never deliver a CT or MR image, let 

alone a natural photographic image. Yet the mathematics of current image reconstruction 

methods do not exploit any of this obviously robust prior information, but instead can 

readily accommodate wrong images. This is because current state of the art image 

reconstruction uses simple, mathematically-convenient priors for PET images, which are 

excessively general (e.g. requiring only that the images be smooth, to suppress noise but at 

the cost of resolution and details). This discards considerable amounts of a priori 

information. In contrast, AI’s learning of the manifold of all feasible PET images can be 

used to make better use of each and every acquired count in a PET scan. Acquired PET 

data can therefore be projected, or encoded, into this realistic manifold. 
 

Secondly, since this learned manifold of all feasible PET images can in fact be 

represented in infinitely many ways, AI can learn how to encode the acquired PET scan 

data into latent feature representations which best serve our desired goals. 

This includes reduced dimension representations (“bottlenecks”) to assist in noise 

reduction, and can also involve projection to higher dimensions to assist in classification 

tasks. The point is that AI can learn how best to capture and encode key explanatory 

information, salient to our task, from a given scan. 
 

Therefore the power of AI is not only its ability to learn how to encode into useful latent 

representations or feature maps, and learn transforms between them, but also its ability to 

learn how to decode from these latent representations, to generate outputs for various 

desired tasks. Thus could be generation of low-noise reconstructed PET images with high 

resolution, generation of radiological reports or indeed diagnostic and prognostic 

predictions. Learning encodings of acquired PET scan data into contextually-rich feature 

spaces consistent with the PET manifold, and decoding into task-specific forms, is the 

sublimely powerful ability of AI, which PET would do well to exploit more fully. 

 



4. How can we use AI in PET image reconstruction? 
 

There are currently three main approaches to using AI in PET reconstruction. The first 

group of approaches, direct AI (e.g. AUTOMAP [5] or DeepPET [6]), learns an encoding 

from the raw data, via a latent feature space, to decode to the desired image. The key point 

here is that the overall mapping is trained by supervised learning, in order to take noisy 

raw PET data and deliver inferences of the ground truth object or high quality reference 

image, according to the pairings of datasets used in the training phase. Direct AI can be 

easily understood by comparison to conventional curve fitting and regression tasks, except 

in the case of deep learning of PET reconstruction we are performing regressions with 

extremely high- dimensional vectors. The input raw PET data are fully 3D sets of 

measured (time- of-flight) sinograms (with ~108 - 109 bins), for mapping to output 3D 

images (with 

~107 voxels). At present, these direct deep learning methods look to be impractical, having 

only been demonstrated for small 2D reconstructions (e.g. 128×128 images), as they have 

colossal demands for computational memory and training set sizes (>105 datasets). 

Furthermore, they may not generalise well for unseen data (i.e. scan data that are too far 

from the example training data). Early tests of direct methods for real data 2D PET 

reconstructions have delivered images which have yet to convince some experts. 
 

By far the more promising methods, sometimes called physics-informed AI, take the 

learning paradigm from AI, and integrate this into our existing state of the art statistical 

iterative image reconstruction methods. Here, the standard iterative loop of an image 

reconstruction algorithm (such as OSEM) is “unrolled” or unfolded [7] into a deep network 

– the word “deep” meaning that there are many successive steps, as indeed in any piece of 

computer code. Iterative reconstruction is thus nothing more than a deep cascade of 

successive operations, each operation taking the raw PET data, and progressively 

transforming it (by a series of operations, primarily forward and back projections) into a 

reconstruction of the PET radiotracer distribution. Deep learning is then integrated into the 

unfolded reconstruction, to provide rich, data-informed, prior information to the iterative 

process which makes repeated use of the actual raw data throughout. Thus the benefits of 

decades of reconstruction research are combined with the power of the AI paradigm (i.e. 

learning from high quality reference datasets), allowing the manifold of feasible PET 

images to be used as a powerful, yet relatively safe (data consistent), prior in the image 

reconstruction process. Compared to direct AI methods, the need for training data in these 

unrolled methods is reduced by orders of magnitude, as the physics and statistics of PET 

data acquisition do not need to be learned from scratch. Furthermore, their scope for 

generalisation to unseen data is better than direct methods, as has been demonstrated in 

other imaging inverse problems [8]. 
 

The third main category of AI for PET reconstruction acts on existing, standard 

reconstructed PET images. Such post processing is much simpler to implement, 



and this is where advances are being quickly made, with commercial options already 

available (such as subtlePET [9], which seeks to map low count (25% dose) PET images 

to their full dose equivalents). Research in this area is burgeoning, with a myriad of 

differing deep network mappings being proposed, to denoise, upgrade and even mimic 

state-of-the-art PET reconstructions from higher- count data [10]. 
 

At present, nearly all AI methods for PET reconstruction have leaned heavily on CNN 

[11] mappings. However, the surge of more advanced data-mixing architectures, such as 

the immense success of transformers [12], with their powerful self-attention mechanism 

for rapid learning of long-range contexts in data, is still yet to reach the PET 

reconstruction community, but it is sure to come. These highly successful architectures 

should deliver still more powerful ways of harnessing all acquired PET data to generate 

feature-rich manifold embeddings, benefitting clinical imaging tasks and even ultimately 

aiding management of the patient pathway. 
 

5. Problems to tackle and outlook 
 

There have however been ongoing expressions of concern regarding AI. For example, in 

the context of MR imaging the risk of hallucinations / artificial features has been 

studied, and the risk of instability [13]. Such problems, even evidenced in physics-

informed approaches (unrolled iterative methods) will need comprehensive investigation, 

research and resolution for PET image reconstruction, in order to deliver the robustness 

required for clinical imaging. 
 

A crucial part of such research will be the need for benchmark datasets through which new 

AI algorithms for PET image reconstruction can be assessed. Such datasets ideally need 

international collaboration and contributions from clinicians and researchers in 

reconstruction from multiple institutions. Such datasets have already existed for decades in 

the image processing community, and more recently in the deep learning, computer vision 

and MRI communities (e.g. CIFAR, MNIST, ImageNet, fastMRI [14]). Ideally, benchmark 

datasets for PET image reconstruction should be provided and linked with particular 

clinical tasks (e.g. diagnoses of neurological disorders, or tumour detection). 
 

Furthermore, to have confidence in the high image quality that can be delivered by AI 

approaches to image reconstruction, the arrival of evidential deep learning is timely. Also 

known as Bayesian deep learning, these approaches would not only provide high quality 

reconstructed PET images, but also deliver unequivocal indications of the AI’s uncertainty 

(known as epistemic uncertainty) in various regions and details of the image, which would 

be crucial prior to clinical reading. 
 

While supervised learning remains central to current developments in PET 

reconstruction, the field will need to exploit larger datasets for which the costly ground 



truth labels/targets are not known. Unsupervised pretraining of networks has shown 

great potential in computer vision, and image reconstruction models could very likely 

benefit from pretraining with unlabelled data, followed by fine tuning with the labour-

intensive supervised labels. Better still, self-supervised learning paradigms should prove 

useful. In essence, instead of providing explicit, labour-intensive example inputs and 

outputs, only example data are provided, along with instructions on how to create the set 

of inputs and targets from the data for supervised learning. Self-supervised approaches 

have enabled training of huge scale language models, including powerful transformer-

based architectures such as GPT-3. 
 

6. Conclusion 
 

AI is here to stay, and validated PET reconstruction which makes use of its power will 

deliver images of enhanced clinical benefit, compared to methods that ignore its 

capabilities. Yet to arrive at this point it will be necessary to build confidence, and two 

approaches may help. First, if adoption is to take place, it may need to be in a gentle, 

progressive fashion. At the very simplest level, deep learning can provide optimisation of 

merely the degree of standard image smoothing, with low risk, but at reduced capability 

of course. This could be a small step up from our existing regularised reconstruction 

methods, using AI to decide how much anatomical (CT or MRI) guidance information 

can be reliably used for PET reconstruction. 
 

Secondly, to ensure safe adoption of more sophisticated AI methods, it may prove 

necessary to use routes such as evidential deep learning, where, for example, epistemic 

uncertainty is clearly expressed alongside the images. The AI output would thus be 

twofold: “this is the best estimate of the image for the patient”, and “this is my confidence 

level for each detail and region in the image”. 
 

The methods which are set to flourish will harness all our knowledge of physics, maths 

and statistics for PET reconstruction, and synergistically combine these with the learning 

power of AI with feasible demands on training data. Simply put: there is no point learning 

from scratch that which we know well already, and conversely there is no point insisting on 

simple mathematical expressions for complex images. For example, we cannot analytically 

derive or program what a feasible PET image should look like, but deep learning can do 

this with ease. 
 

Finally, the end-point assessment of impact of AI reconstruction on clinical tasks, 

preferably with well understood benchmark datasets, will of course be essential. Without 

question, in the development and validation of AI for reconstruction, critical feedback 

from clinicians will be needed more than ever. 
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Figure 1: “AI in PET reconstruction as seen by”. https://doi.org/10.6084/m9.figshare.14685915. License CC 

BY 4.0. Georg Schramm and Andrew J. Reader 2021. 
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