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ABSTRACT 

PURPOSE: Imaging of intranuclear epitopes using antibodies tagged to cell penetrating peptides 

(CPPs) has great potential given its versatility, specificity and sensitivity. However, this process 

is technically challenging because of the location of the target. Previous research has demonstrated 

a variety of intranuclear epitopes that can be targeted with antibody-based radioimmunoconjugates 

(RICs). Here, we developed a controlled expression model of nuclear localised GFP to interrogate 

the technical limitations of intranuclear SPECT using RICs, notably the lower target abundance 

detection threshold. 

METHODS: We stably transfected the lung adenocarcinoma cell line H1299 with an EGFP-

tagged histone (H2B-EGFP) and generated four cell lines expressing increasing levels of GFP 

(EGFP). EGFP levels were quantified using western blot, flow cytometry, and ELISA. An anti-

GFP antibody (GFP-G1) was modified using DBCO-N3 based strain-promoted azide-alkyne 

cycloaddition (SPAAC) with the CPP TAT (GRKKRRQRRRPPQGYG-hA(N3)), which also 

includes a nuclear localisation sequence, and the metal ion chelator N3-Bn-DTPA to allow 

radiolabelling with 111In. Cell uptake of [111In]In-GFP-G1-TAT was evaluated across five cell 

clones expressing different levels of H2B-EGFP in vitro. Tumor uptake in xenograft-bearing mice 

was quantified to determine the smallest amount of target epitope that could be detected using 

[111In]In-GFP-G1-TAT. 

RESULTS: We generated four H1299 cell clones expressing different levels of H2B-EGFP (0 - 

1 Mcopies/cell, including WT H1299 cells). GFP-G1 monoclonal antibody was produced and 

purified in house and selective binding to H2B-EGFP was confirmed. The affinity (KD) of GFP-

G1 was determined as 9.1 ± 3.0 nM. GFP-G1 was conjugated to TAT and DTPA. [111In]In-GFP-

G1-TAT uptake in H2B-EGFP expressing cell clones correlated linearly with H2B-EGFP 



expression (P < 0.001). In vivo xenograft studies demonstrated that [111In]In-GFP-G1-TAT uptake 

in tumor tissue correlated linearly with expression of H2B-EGFP (P = 0.004) and suggested a 

lower target abundance detection threshold of approximately 240,000 copies per cell. 

CONCLUSIONS: Here, we present a proof of concept demonstration that antibody-based 

imaging of intranuclear targets is capable of both detecting the presence of an epitope of interest 

with a copy number above 240,000 copies per cell and is capable of determining differences in 

expression level above this threshold.  



INTRODUCTION 

Molecular imaging enables non-invasive characterisation of biochemical features at a molecular 

level, performed on anything from a living cell to an entire organism (1). In parallel with other 

branches of personalised precision medicine, molecular imaging has become a rapidly expanding 

field of research, providing applications including early diagnostic tools, patient stratification, 

therapy guidance and post therapy evaluation. Nuclear imaging by positron emission tomography 

(PET) or single photon emission computerised tomography (SPECT) using radiolabelled modified 

antibodies, or radioimmunoconjugates (RICs), has already shown great promise in cancer imaging, 

owing to the specificity, versatility and dependable pharmacokinetics unique to monoclonal 

antibodies (2). Whilst the vast majority of research has focused on the development of monoclonal 

antibodies targeting extracellular epitopes on either cancer cell membranes, the extracellular 

matrix, or epitopes shed into the interstitial space, approximately 30% of cellular proteins are 

localised within the nucleus, orchestrating a myriad of physiologically and pathologically relevant 

processes (3). The opportunity to successfully target intranuclear epitopes would significantly 

expand the potential applications of molecular imaging. 

Without modification, antibodies are unable to cross cellular membranes due to their size 

(~150,000 Da) and hydrophilicity. However, these barriers can be overcome using cell penetrating 

peptides (CPPs) (4). Cell penetrating peptides are short length peptides (less than 30 residues), that 

have the capacity to translocate across cellular membranes (5). Since the initial discovery of the 

membrane transduction capacities of the HIV-derived TAT peptide and drosophila antennapedia 

homeodomain protein-derived peptide (6-8), over 1,800 CPPs have been described (9). In addition, 

many CPPs have been experimentally validated in vitro and in vivo to facilitate the translocation 



of bioactive molecular cargoes of various sizes, up to 540,000 kDa, across cellular membranes 

with limited toxicity (10). 

Apart from serving as a CPP, the TAT-peptide also contains a non-canonical nuclear localisation 

sequence (NLS), enabling nuclear translocation of its cargo. Previous research from our group and 

others has demonstrated that TAT-peptide-conjugated antibodies (IgG-TAT), can be used to image 

several intranuclear targets, including p21 (11), p27 (12), and the phosphorylated histone protein 

H2AX using both PET and SPECT (13-17). This proof of concept work has provided a tantalising 

glimpse into the potential of IgG-TAT -based PET/SPECT imaging of intranuclear targets. 

Given the unparalleled adaptability of antibodies, the range of possible imaging applications using 

intranuclear IgG-TAT imaging probes is substantial. However, as with all imaging modalities, 

fundamental limitations in sensitivity are to be expected. Therefore, determining the minimum 

target epitope copy number required for antibody-based PET/SPECT imaging would be highly 

beneficial when novel protein markers are considered as potential targets. In vivo imaging using 

antibody fragments has been demonstrated with extracellular epitopes with copy numbers as low 

as 25,000 and 8,000 copies/cell (18,19). Intracellular epitope detection limits would be expected 

to be significantly higher, but a quantitative description of this limit has not yet been explored. 

To determine the lower threshold of target abundance required for successful intranuclear imaging 

using RICs, we developed a model system expressing different levels of a well-characterised, 

stably expressed, nuclear localised target protein construct, histone 2B tagged enhanced green 

fluorescent protein (H2B-EGFP). This strategy removes several experimental factors that could 

undesirably alter target abundance, such as the potential for the probe to influence target 

functionality and the innate variability and temporal changeability in dosages and responses where 



imaging target epitopes are induced by exogenous treatment. Removing these factors allowed for 

a more rigorous evaluation of the technical capabilities of antibody-based intranuclear imaging.  



MATERIALS AND METHODS 

Cell culture 

Human lung adenocarcinoma H1299 cells (ATCC) were cultured in Dulbecco’s Modified Eagles 

Medium DMEM (Sigma), supplemented with 10% foetal bovine serum (Life Technologies), 2 

mM L-glutamine, 100 units/mL penicillin, and 0.1 mg/mL streptomycin and maintained in a 5% 

CO2 humidified atmosphere at 37°C. Cells were tested and authenticated by the providers. The 

cumulative length of culture was less than 6 months following retrieval from liquid nitrogen 

storage. Cells were tested for the absence of mycoplasma at regular intervals. Cells stably 

transfected with H2B-EGFP plasmid were cultured with 50 μg/mL G418/geneticin to promote 

stability of transfection. Cells were harvested and passaged as required using trypsin-EDTA 

solution.  

Stable cell transfection and selection 

H1299 cells were seeded onto 6 well plate cell culture dishes and allowed to attach overnight to 

reach 75-90% confluency. Cells were then transfected with H2B-GFP plasmid (Addgene #11680) 

(20) using lipofectamine 3000 (Invitrogen) according to manufacturer protocols. After transfection 

(48 h), stably transfected cells were selected by culture with 800 μg/mL G418 antibiotic for several 

passages. Cells that survived initial selection were sorted for EGFP green fluorescence and plated 

as individual cells using flow assisted cell sorting (FACSAria III, BD Biosciences) 

(Supplementary Fig 1A). Individual cell colonies were expanded under G418 selection (200 

μg/mL) and H2B-EGFP expression in candidate cell lines was initially assessed qualitatively using 

immunofluorescence microscopy. After establishing four stably transfected cell lines, in addition 

to untransfected H1299 cells, which were used as a negative control, H2B-EGFP expression was 



evaluated by western blot, immunofluorescence microscopy, flow cytometry and ELISA. Stability 

of H2B-EGFP expression in the absence of G418 was determined using flow cytometry 

(Supplementary Figure 1B). 

 

Production and purification of GFP-G1 monoclonal antibody 

The GFP-G1 mouse monoclonal antibody and associated hybridoma cell line was obtained from 

the Developmental Studies Hybridoma Bank (DSHB, University of Iowa; as deposited by Sanes, 

J.R. and Yamagata, M.) (21). Hybridoma cells were initially cultured from frozen stocks in RPMI 

medium supplemented with 10% foetal bovine serum (Life Technologies), 2 mM L-glutamine, 

100 units/mL penicillin, and 0.1 mg/mL streptomycin in a 5% CO2 humidified atmosphere at 37°C. 

Once they displayed exponential growth rates, hybridoma cells were maintained in CD Hybridoma 

medium (Thermo Fisher Scientific, MA, USA) before harvesting 14 days after the final passage. 

Supernatant enriched with GFP-G1 antibody was clarified by centrifugation (1400 x g, 10 min) 

and filtered through a 0.2 μm filter using a peristaltic pump before FPLC purification using a 

HiTrap Protein G HP antibody purification column (Cytiva, MA, USA). Purified antibody was 

buffer exchanged to PBS solution and stored at -20C. Characterisation of antibody specificity and 

affinity (KD) was conducted using immunofluorescence microscopy and flow cytometry. 

 

Bioconjugation and radiolabelling 

Bioconjugation of GFP-G1 with cell penetrating peptide TAT and metal ion chelating agent DTPA 

was achieved using strain-promoted azide-alkyne cycloaddition (SPAAC) in a non-site-specific 

manner. GFP-G1 was buffer exchanged in 0.1 M NaHCO3 pH 8.5, concentrated to 25 μM and 



reacted with a seven-fold molar excess of dibenzocyclooctyne-4-Sulfo-2,3,5,6-tetrafluorophenyl 

(DBCO-STP) (Click Chemistry Tools, USA) dissolved in dimethyl sulfoxide (DMSO) at room 

temperature for 4 h. The antibody-DBCO conjugate was purified and buffer exchanged to PBS by 

centrifugal filtration using a Zeba Spin desalting column (7 K MWCO, 0.5 mL, Thermo Scientific 

USA). The amount of DBCO tags conjugated to the antibody was determined by absorbance 

spectroscopy at 280 and 309 nm, with a DBCO:antibody ratio of 5:1. The antibody-DBCO 

conjugate, at approximately 10 μM, was then reacted with a 2-fold molar equivalent relative to 

DBCO of 3.4 mM N3-Bn-DTPA dissolved in PBS + 20% DMSO (Supplementary Fig 2; see 

supplemental info for full synthesis details), and, concurrently, a 0.5-fold molar equivalent 

(relative to DBCO) of 1 mM azide-tagged cell penetrating peptide TAT-AHA 

(GRKKRRQRRRPPQGYG-hA(N3) dissolved in PBS, Cambridge Peptides, Birmingham, UK) at 

4C for 12 h. The antibody conjugate was purified and buffer exchanged to 0.5 M sodium citrate 

pH 5.4 to remove unreacted products as previously described. The completion of the conjugation 

reaction was confirmed by the reduction of UV absorption spectrometry at 309 nm to background 

level. 

Radiolabelling of immunoconjugates was carried out by addition of 111InCl3 (Perkin Elmer, MA, 

USA). Aliquots of 150 μg of IgG conjugate (1 mg/mL in 0.5 M sodium citrate pH 5.4) were reacted 

with 111InCl3 (1 MBq/μg of antibody) in 0.5 M sodium citrate buffer pH 5.4 for 1 h at room 

temperature. Radiolabelling yield was determined by instant thin layer chromatography (iTLC) to 

be greater than 95%. The resulting radiolabelled compound [111In]In-GFP-G1-TAT was buffer 

exchanged to PBS to remove free 111In3+ prior to subsequent studies. 

  



In vitro studies 

Aliquots of 8 x 104 cells/well were plated in a 24 well plate cell culture dishes and allowed to 

adhere for 16 h. Culture medium was removed, and cells washed with PBS before addition of fresh 

culture medium containing [111In]In-GFP-G1-TAT (1.5 nM, 1 MBq/μg) and incubation at 37°C 

for a further 60 min. Supernatant containing unbound radiolabelled compound was collected, cells 

were washed twice with PBS before cells were washed for 5 min on ice in 0.1 M glycine pH 2.5 

solution to remove membrane-bound radiolabelled antibody conjugate. Finally, cells were lysed 

by addition of 0.1 M NaOH, and cell-associated compound was collected. The amount of 111In 

within each fraction was determined by automated gamma counting (Wizard2 2480, Perkin Elmer), 

to calculate the percentage of cell-associated 111In. 

 

In vivo studies 

All animal procedures were carried out in accordance with the UK Animals (Scientific Procedures) 

Act 1986 and with local ethical committee approval. Animals were housed in IVC cages in sex 

matched groups of up to 6 per cage in an artificial day-night cycle facility with ad libitum access 

to food and water. No animals were culled for welfare reasons. Xenografts of H1299 cells, wild 

type or stably transfected with varying levels of H2B-EGFP, were established by subcutaneous 

inoculation of 106 cells in a 1:1 (v/v) PBS:matrigel mix, on the right flank of female BALB/c nu/nu 

mice (Envigo, IN, USA). After 3-4 weeks, tumors reached an average size of 180 mm3 and were 

used for subsequent studies. 

[111In]In-GFP-G1-TAT (5 MBq / 5 μg) in PBS was administered to each mouse via the lateral tail 

vein. SPECT/CT images were acquired using a SPECT/CT scanner (VECTor4CT, MILabs, 



Utrecht, the Netherlands) at 24 and 72 h after injection. Volume of interest (VOI) analysis on 

SPECT images was performed using PMOD (PMOD Technologies, Zürich, Switzerland). For full 

experimental details, reconstruction and acquisition parameters, see Supplemental Information 

(22). After imaging, mice were culled, and samples of blood and other selected organs were 

collected to determine the percentage of the injected dose per gram of tissue (%ID/g) using a Hidex 

Automatic Gamma Counter (Hidex Oy, Turku, Finland). Tumor samples were immediately 

counted prior to flash freezing with dry ice before storage at -80C for future analysis. 

 

Statistical analysis 

All statistical analysis was carried out using GraphPad Prism v8 (GraphPad Software, San Diego, 

CA, USA). Linear regression with an extra sum of squares F test was used to determine the 

statistical significance of correlations between estimated regression parameters. One-way 

ANOVA with Tukey’s post hoc test, or 2-way ANOVA was used to compare grouped data to 

compare individual group means, as appropriate. All data was collected at least in triplicate, and 

presented as mean ± one standard deviation unless otherwise stated.  



RESULTS 

Generation of stably transfected H1299/H2B-EGFP cells  

To test the effects of target abundance on imaging ability, we generated a panel of H1299 cell lines 

that constitutively expressed Enhanced Green Fluorescent Protein (EGFP) tagged at its amino 

terminus with the histone protein H2B through stable transfection with the mammalian expression 

plasmid H2B-EGFP. Several colonies of H1299 cells stably expressing H2B-EGFP at various 

levels were generated and four were selected for future studies, named H2B-EGFP 45, 56, 61 and 

62, as well as wild type (WT) H1299 cells. Expression levels of H2B-EGFP were measured by 

flow cytometry, and western blot (Figs 1A, B). Expression levels of H2B-EGFP were quantified 

by ELISA (Fig 1C), with expression levels ranging between 183,000 ± 4,900 and 1,050,000 ± 

91,100 copies per cell. These results were corroborated by fluorescence confocal microscopy, 

which further confirmed exclusively nuclear EGFP expression (Fig 2A). 

 

The murine monoclonal antibody GFP-G1 selectively binds H2B-EGFP 

The murine monoclonal anti-GFP antibody GFP-G1 was characterised by flow cytometry with 

each selected H2B-EGFP transfected cell line along with a H1299 WT control, in fixed and 

permeabilised cells, confirming earlier results on its selectivity (Figs 2A, B) (23). Fluorescence 

intensity correlated linearly with H2B-EGFP expression, as measured by ELISA (Fig 2B, r = 0.87, 

P < 0.001). The specificity of GFP-G1 was further supported by immunofluorescence microscopy 

showing co-localisation of H2B-EGFP, GFP-G1 and the DNA stain DAPI (Fig 2A). 

Immunofluorescence microscopy also demonstrated a correlation between H2B-EGFP expression 



and GFP-G1 signal intensity. A flow cytometry-based saturation binding assay was used to 

determine the affinity (KD) of GFP-G1 for GFP as 9.1 ± 3.0 nM (Fig 2C). 

 

In vitro uptake of [111In]In-GFP-G1-TAT is correlated to nuclear GFP expression 

GFP-G1 was conjugated to the cell penetrating peptide TAT and metal ion chelating agent DTPA 

prior to radiolabelling with 111InCl3 (Fig 3A). In vitro uptake assays showed that [111In]In-GFP-

G1-TAT uptake in the panel of five cell lines correlated linearly with increasing H2B-EGFP 

expression (Fig 3B, r = 0.64, P < 0.001), suggesting that uptake was the result of specific binding 

between [111In]In-GFP-G1-TAT and intranuclear H2B-EGFP. In a comparison with a non-TAT 

modified [111In]In-GFP-G1, using the highest H2B-EGFP expressing H2B-EGFP 45 cell line, 

[111In]In-GFP-G1-TAT showed a 6.8 fold increase in cell uptake (Supplementary Fig 3, P = 

0.026), demonstrating the requirement of the CPP TAT in the internalisation of the imaging probe. 

Finally, a colony formation assay was used to determine whether the uptake of [111In]In-GFP-G1-

TAT and the subsequent radiation dose affected cell viability. In both the H1299 WT and H2B-

GFP 45 cells, there was no significant difference in colony formation between cells exposed to 

[111In]In-GFP-G1-TAT, [111In]In-GFP-G1 without TAT, and an untreated control group 

(Supplementary Fig 4). 

 

Tumor uptake of [111In]In-GFP-G1-TAT is correlated to nuclear GFP expression, and 

reveals the detection limit of IgG-TAT architecture 

[111In]In-GFP-G1-TAT could detect H2B-EGFP in a xenograft animal model, bearing tumors 

consisting of H2B-EGFP 45, 56, 62 and H1299 WT cells. Ex vivo biodistribution studies revealed 



a statistically significant linear correlation between tumor uptake of [111In]In-GFP-G1-TAT and 

expression of H2B-EGFP (Fig 4A, 4B r = 0.63, P = 0.004), demonstrating that [111In]In-GFP-G1-

TAT can quantitatively determine the level of H2B-EGFP expression within tumor xenografts in 

vivo. Interpolation of the linear regression model suggested a lower H2B-EGFP copy number 

threshold for detectable uptake of [111In]In-GFP-G1-TAT of approximately 240,000 copies/cell, 

which was higher than the predicted threshold in vitro (182,000 copies/cell). This was supported 

by the statistically significant difference in uptake between H1299 WT (16.1 ± 3.4 %ID/g) and 

H2B-EGFP 45 (24.8 ± 1.6 %ID/g; P = 0.010) and H2B-EGFP 56 (21.9 ± 2.7 %ID/g; P = 0.033). 

Interestingly, the uptake of H2B-EGFP 62 (22.4 ± 5.0 %ID/g) was also significantly higher than 

H1299 WT (P = 0.018), which implies that the detection threshold may even be lower. 

Uptake of [111In]In-GFP-G1-TAT with increasing expression of H2B-EGFP was also 

demonstrated visually by SPECT/CT imaging (Fig 5). Image quantification of uptake again 

showed a correlation between uptake and expression of H2B-EGFP at both 24 h (r = 0.66, P = 

0.010) and 72 h (r = 0.68, P = 0.002) after intravenous administration (Fig 6A, 6B). At 24 h after 

administration, interpolation of the linear regression model suggested lower detection threshold of 

316,000. However, SPECT images at 72 h post administration suggested a lower detection 

threshold of 237,000 copies/cell, which reflected the results obtained with the biodistribution 

study.  



DISCUSSION 

Antibody- or antibody fragment-based immuno-PET/SPECT imaging is a rapidly growing field, 

with an increasingly broad selection of radioisotopes to use along with a repertoire of highly 

sensitive and selective antibody- and antibody fragment-based vector systems that can be 

optimised for specific applications. The effectiveness of any antibody-based imaging probe can be 

reduced to three central factors (24). The first factor is target abundance, which must be suitably 

high to allow its detection within the tissue of interest. Secondly, the targeting component of the 

RIC, whether an antibody or antibody fragment must exclusively bind only to the epitope, with 

high affinity. Finally, the RIC must exhibit the pharmacokinetic and clearance characteristics in 

vivo that will allow it to develop a contrast with non-target tissues. In this study, we used a stable 

transfection reporter system to investigate the consequence of decreasing target abundance on RIC 

detection and imaging capacity. 

We chose H2B-EGFP as a model target protein as it is a well characterised recombinant nuclear-

localised protein expression system that is capable of stable transfection (20,25). In vitro assays 

demonstrated that [111In]In-GFP-G1-TAT uptake correlated with expression level of H2B-EGFP 

with a predicted minimum detection threshold limit of approximately 182,000 copies/cell. Other 

reports, relying on quantitative mass spectrometry in U2OS and He-La cells, showed that up to a 

fifth of all nuclear proteins are expressed to this level, and thus may be visualised using a TAT-

conjugated suitable antibody, although this analysis does not include pharmacologically or 

pathologically induced (over)expression of proteins (26,27). The relatively small increase in 

[111In]In-GFP-G1-TAT uptake between H1299 WT and H2B-EGFP expressing cells in vitro was 

indicative of high levels of non-specific uptake, possibly as a result of modification with the TAT 

peptide. However, this system can be used to optimise a multitude of factors to increase specific 



RIC uptake, potentially lowering the effective detection threshold and improving the target 

abundance resolution of IgG-TAT-based imaging compounds. 

The basis of an effective RIC imaging probe is a highly selective and sensitive antibody/fragment. 

We selected the GFP-G1 monoclonal antibody as there was a readily available and validated 

hybridoma cell line (21,23), allowing for production and purification on a scale suitable for 

bioconjugation and subsequent radio-assays. Flow cytometry and immunofluorescence 

microscopy confirmed that GFP-G1 was highly specific and showed good affinity at KD = 9.1 ± 

3.0 nM, comparable to clinically approved antibodies such as Trastuzumab (5.0 nM) (28). 

However, it should be noted that highly optimised antibodies or antibody-based constructs are 

capable of affinities in the sub picomolar range (29). An important consideration for future 

research is whether an antibody with greater affinity could improve the detection threshold and 

resolution by reducing the signal to noise ratio. 

The conjugation of functional groups, such as TAT and DTPA can considerably alter the 

characteristics of a RIC. At the cellular level, the addition of TAT facilitates the transport of the 

RIC across the cellular membrane. However, due to the highly cationic nature of TAT, TAT-

modified RICs can result in significant increases in non-specific binding. One of the primary 

factors that could control the detection threshold and degree of non-specific uptake is the 

mechanism of IgG-TAT internalisation into cells. CPPs have been shown to facilitate the 

internalisation of wide array of cargo proteins, which is believed to be largely driven by 

endocytosis under physiological conditions (30). However, due to the complex array of CPPs and 

CPP-cargo combinations (31), attempts to establish the principle endocytic mechanisms involved 

have proved ambiguous, suggesting that CPPs can utilise distinct endocytic pathways. One major 

factor governing the efficiency of internalisation under physiological conditions is molecular mass 



of the cargo protein cargo size (32). Larger cargo proteins, such as whole antibodies, are 

internalised at significantly lower efficiencies in comparison to small cargo proteins, potentially 

caused by induction of alternative cell internalisation mechanisms (31,33,34).  

Another major challenge facing CPP-mediated intranuclear imaging is non-specific uptake due to 

endosomal entrapment, resulting in high cellular uptake but poor cytosolic availability and 

subsequent target engagement. The recent development of cyclic derivatives of TAT and poly-

arginine CPPs have demonstrated not only dramatic increases in cell uptake of cargo proteins (35), 

but also significantly improved cytosolic availability in comparison to the linear CPPs (36). This 

model system provides an excellent opportunity to investigate the effects of such optimisations for 

specific cellular uptake of targeted RICs.  

Finally, the choice of chelating agent and radioisotope can also affect the sensitivity and degree of 

non-specific tumor uptake. As the principle objective of this study was to investigate the 

biodistribution and pharmacokinetic properties of an IgG-TAT RIC, DTPA was used to chelate 

111In for simplicity of radiolabelling and to maintain consistency with previous research using 

TAT-antibody imaging agents. Radiometal-chelate stability is important when using a nucleus 

targeted RIC, so as to prevent non-specific sequestration of the radiometal and limit subsequent 

off-target radiation dose, especially when working with an Auger electron emitting isotope, such 

as 111In (37). Alternative chelating agents, for instance CHX-A”-DTPA, have greater stability in 

vivo and therefore could be used to chelate 111In (38). For clinical use, PET has several advantages 

over SPECT, including greater sensitivity, easier scatter correction and capacity to provide 

quantitative results (39). Therefore, to increase the potential for clinical translation, future research 

will be focused on combining this technology with long half-life PET isotopes, such as 89Zr in 

conjunction with a suitable chelating agent, such as desferrioxamine B. 



In vivo, both biodistribution and quantitative image analysis indicated that the minimum detection 

threshold was 240,000 copies/cells, which was predictably higher than the threshold obtained from 

in vitro studies. The reason for the higher observed threshold in vivo may be attributed to increased 

non-specific tumor uptake as a result of the enhanced permeability and retention (EPR) effect and 

blood background signal, presenting an additional source of non-specific signal (40). This effect 

is exacerbated not only by the molecular mass of TAT-IgG based imaging probes but also the 

presence of a functional Fc domain, which promotes extended blood uptake through FcRn 

mediated recycling (41). In comparison, smaller antibody fragment-based RICs without a 

functional Fc domain show a rapid reduction in blood uptake through the renal clearance pathway 

and lack of FcRn mediated recycling, potentially reducing non-specific uptake. Using [111In]In-

GFP-G1-TAT derived smaller antibody fragments may improve sensitivity both in vitro and in 

vivo. EGFP-targeted imaging is an ideal platform for the evaluation of such optimisations to RICs. 

This work was aimed at guiding research into evaluation of novel intracellular or intranuclear 

imaging targets. In the context of previous antibody-based PET/SPECT imaging, γH2AX is 

probably the most documented and has an approximate cell abundance of approximately 800,000 

copies per cell at maximum, in an irradiated cell (17), depending on several factors such as cell 

line and extent of DNA damage prior to administration of the tracer. Expression levels of proteins 

we targeted before, such as p21 and p27 levels may be below the threshold we determined here for 

GFP. Approximations for these proteins may range from 104-105 copies/cell at baseline in normal 

tissue (27), although little quantitative data is available, and levels will oscillate throughout the 

cell cycle. Whilst in this piece of research, we calculated a lower detection limit of approximately 

2.4 x 105 copies per cell, we acknowledge that this value is specific to this simplified model system 

and cannot be treated as an absolute. Therefore, it is important to take into account the myriad of 



factors that can influence the lower detection threshold, such as RIC affinity, CPP selection, and 

variation in target expression levels and subcellular location when considering potential candidates 

for imaging. This model system, however, is an endeavour to establish an approximate base line 

and subsequent research will exploit variations of this model to investigate the impact of these 

factors on the detection capacity of antibody- or antibody fragment- based intracellular imaging. 

In summary, this study presents a proof of concept methodology set out to evaluate, quantitatively, 

the practical limitations of antibody-based intranuclear immuno-PET/SPECT imaging. We 

confirmed the current capacity of imaging an intranuclear epitope with a TAT-conjugated intact 

antibody. This framework could in the future be used to methodically isolate, interrogate and 

optimise a variety of factors that define the efficacy of antibody based imaging devises, potentially 

leading to the development of more powerful whole-body immuno-imaging devices. 
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Key Points 

QUESTION: 

What is the lowest detection threshold for successful imaging of an intranuclear epitopes using 

IgG-TAT based radioimmunoconjugates? 

PERTINENT FINDINGS: 

We developed a model system to test, and improve, the lower target abundance threshold using 

IgG-TAT based PET/SPECT imaging, revealing a current lower detection limit of 180,000 

copies/cell in vitro, and 240,000 copies/cell in vivo.  

IMPLICATIONS FOR PATIENT CARE: 

This model system can be used to evaluate and improve intranuclear PET/SPECT imaging, with 

great potential for the development of a range of clinical applications not currently possible. 
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Figure 1: Establishment of H1299 cell lines stably transfected with H2B-EGFP. A) Relative 

difference in H2B-EGFP expression across all transfected cell lines, determined by flow cytometry 

and presented as a batch normalised bar chart. B) Confirmation of difference in H2B-EGFP 

expression across transfected cell lines using Western blot. C) Copy number per cell of H2B-EGFP 

in each transfected cell line, quantified by ELISA. 

  



 

Figure 2: Validation and characterisation of GFP-G1 monoclonal antibody. A) 

Immunofluorescence microscopy showing colocalisation between H2B-EGFP expression and 

GFP-G1 monoclonal antibody. B) Confirmation of correlation between increasing H2B-EGFP 

expression and binding of monoclonal antibody GFP-G1, using flow cytometry. C) Determination 

of the dissociation constant (KD) of GFP-G1 with a flow cytometry-based saturation binding assay. 

  



 

Figure 3: Conjugation and in vitro evaluation of [111In]In-GFP-G1-TAT uptake. A) 

Schematic diagram outlaying the approach to conjugate monoclonal antibody GFP-G1 with the 

CPP TAT and chelating agent Bn-DTPA using SPAAC based click chemistry. B) In vitro radio-

internalisation assay revealing the correlation between [111In]In-GFP-G1-TAT uptake and H2B-

EGFP expression. 

  



 

Figure 4: Ex vivo biodistribution and tumor uptake of [111In]In-GFP-G1-TAT. A) Ex vivo 

biodistribution showing the uptake of [111In]In-GFP-G1-TAT in selected tissues and blood, 72 h 

after intravenous administration. B) Tumor uptake of [111In]In-GFP-G1-TAT in vivo correlated 

linearly with expression of H2B-EGFP. Asterisks denote statistically significant differences in 

uptake from the H1299 WT group (* P < 0.05; ** P < 0.01). 

  



 

Figure 5: Imaging of [111In]In-GFP-G1-TAT in vivo. Representative CT and SPECT images 

showing distribution of [111In]In-GFP-G1-TAT in mice bearing H2B-EGFP transfected H1299 

cells, 72 h after intravenous administration.  

  



 

Figure 6: Image quantification analysis of [111In]In-GFP-G1-TAT biodistribution in vivo. A) 

Image quantification analysis showing uptake of [111In]In-GFP-G1-TAT in selected tissues, 24 h 

and 72 h after intravenous administration. B) Correlation of quantified tumor uptake with 

expression of H2B-EGFP, 24 h and 72 h after intravenous administration. Asterisks denote 

statistically significant differences in uptake from the H1299 WT group (* P < 0.05; ** P < 0.01, 

*** P < 0.001). 
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Supplemental Materials & Methods  

 

Western blot 

Aliquots of 1.2 x 105 cells were plated in 6 well plates with complete culture medium and incubated 

overnight at 37°C with 5% CO2. Cells were placed on ice and washed twice in ice cold PBS before 

lysis by addition of 100 μl RIPA buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% Triton X-

100, 0.5% sodium deoxycholate) plus cOmplete™ EDTA-free Protease Inhibitor Cocktail (Sigma, 

Dorset, UK). Lysates were collected and set on ice for 20 min with vortexing every 5 min. Lysates 

were clarified by centrifugation (30 min, 16,000 x g, 4℃) and protein concentration of 

supernatants was determined using a colourimetric bicinchoninic acid assay (BCA) (Sigma, 

Dorset, UK) prior to storage a -20℃ until required. Lysates were reduced and linearised by the 

addition of 2X Laemmli sample loading buffer (4% SDS, 20% glycerol, 120 mM Tris-HCl pH 8.6, 

0.02 % w/v bromophenol blue) and heated to 96℃ for 5 minutes prior to loading for separation on 

pre-cast SDS-PAGE gels (Thermo Scientific, MA, USA). Separated proteins were transferred onto 

a polyvinylidene fluoride (PVDF) membrane using an XCell II™ Blot Module according to 
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manufacturer protocol (Invitrogen, CA, USA). Transferred membranes were rinsed in Tris 

buffered saline (TBS) pH 7.4 and blocked in blocking buffer (5% milk powder dissolved in TBS 

+ 0.1% Tween-20 (TBST)) for 1 h at room temperature. Membranes were incubated with primary 

antibody in blocking buffer overnight at 4℃. Membranes were then washed 3 x 15 min in TBST, 

incubated with HRP conjugated secondary antibody for 1 h at room temperature and washed 3 x 

15 min again in TBST. Membranes were developed by addition of Pierce™ ECL Western Blotting 

Substrate (Thermo Scientific, MA, USA) and chemiluminescence was detected using C-DiGit® 

Blot Scanner (LI-COR, NE, USA). 

 

Flow cytometry 

Aliquots of 2 x 106 cells were plated in a T175 cell culture flask with complete culture medium 

and incubated overnight at 37℃ with 5% CO2. Cells were washed twice in ice cold PBS and 

collected by scraping followed by another wash by centrifugation (400 x g, 5 min). Cells were 

fixed by incubation in PBS containing 4% paraformaldehyde (PFA) at 37℃ for 10 min followed 

by washing by centrifugation in PBS. Fixed cells were permeabilised by addition of 0.25% Triton 

X-100 in PBS at 4℃ for 20 min and washed again in PBS prior to blocking in flow cytometry 

blocking buffer (PBS containing 2% foetal bovine serum (FBS)) for one hour at room temperature, 

then washed in PBS and incubated for 2 h at room temperature with primary antibody in flow 

cytometry blocking buffer at the desired concertation. Stained cells were washed with PBS before 

incubation for 1 h at room temperature with an appropriate fluorophore conjugated secondary 

antibody. Data was acquired using Invitrogen Attune NxT flow cytometer (Invitrogen, CA, USA). 

Data analysis was carried out using FlowJo™ v10.6.2 (FlowJo LLC, OR, USA). 20,000 events 

were counted per sample and plotted side scatter height (SSC-H) vs forward scatter height (FSC-
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H) to gate the cell population and exclude cell debris. From this population, doublet cells were 

excluded by correlation of forward scatter width (FSC-W) and side scatter area (FSC-A). The 

intensity of the appropriate fluorophore (H2B-EGFP or Alexa Fluor 594) was plotted on a 

logarithmic scale against normalised cell count. Geometric mean fluorescence intensities were 

calculated for each sample for further quantification analysis. 

 

Immunofluorescence microscopy 

2 x 104 cells were plated in 8 well chambered tissue culture slides (Fisher Scientific, NH, USA) 

with complete culture medium and incubated overnight at 37℃ and 5% CO2. Cells were rinsed 

three times in ice cold PBS twice before fixation by addition of PBS containing 4% 

paraformaldehyde (PFA) at 37℃ for 10 min followed by washing with PBS. Cells were then 

permeabilised by addition of 0.2% Triton X-100 at 4℃ for 20 min and washed again with PBS. 

Blocking solution of PBS + 2% FBS was added for 1 h at room temperature before washing in 

PBS and addition of blocking solution with the primary antibody at the desired concentration, 

which was incubated at 4℃ overnight. The primary antibody solution was removed and cells 

washed three times in PBS for 15 min before addition of blocking solution containing the 

appropriate secondary antibody for 1 hour at room temperature. Stained cells were then washed 

three times in PBS for 15 min before mounting Vectashield® mounting media containing 4’,6-

diamidino-2-phenylindole (DAPI) (Vector Laboratories, CA, USA). Confocal microscopy of 

stained cells was carried out on the Leica TCS SP8 platform (Leica Microsystems, Wetzlar, 

Germany), equipped with 63 × oil-immersion objective lenses. Within each experiment, image 

acquisition and processing parameters were kept consistent for each sample. 

 



 4 

Synthesis of N3-Bn-DTPA 

S-2-(4-Isothiocyanatobenzyl)-diethylenetriamine pentaacetic acid) hydrochloric acid salt (p-SCN-

Bn-DTPA) (50 mg, 0.077 mmol, 1 eq) in DMSO (1 mL) was combined with 3-azido-1-

propanamine (8.4 mg, 0.085 mmol, 1.1 eq) in MilliQ® H2O (1 mL) and the solution was diluted 

with MilliQ® H2O (2 mL). To this, aqueous KOH was added until pH 8-9. A precipitate was 

immediately observed which re-dissolved as more KOH was added. The reaction was left to stir 

at room temperature and monitored by LRMS. Once the reaction was determined to be complete 

by LRMS, the DMSO/H2O was removed by a stream of N2 overnight. The crude mixture was 

dissolved in CH2Cl2 (3 mL), resulting in a dense aggregation to form. The CH2Cl2 was decanted 

and the aggregate was washed a further two times with CH2Cl2 (~5 mL). The residue was dissolved 

in a minimal amount of MilliQ® H2O (200-500 µL) and loaded by gravity onto a RP-18 SPE 

cartridge (Sep-Pak C18 plus short cartridge, 360 mg sorbent, Waters ™), preconditioned with 

MeCN (10 mL) and H2O (40 mL). The product was eluted in small fractions in H2O. Fractions 

that contained N3-Bn-DTPA as determined by LCMS were recombined and dried to afford the 

product as a colourless solid (11.6 mg, 23%). 1H NMR (400 MHz, D2O) δ 7.34 (d, J = 8.37 Hz, 

2H, 2×ArCH), 7.24 (d, J = 8.27 Hz, 2H, 2×ArCH), 3.84 – 2.47 (m, 25H), 1.95 – 1.79 (m, 2H). 

HRMS m/z (ESI)- Found: 639.22028, C25H36N8O10S requires [M-H]- 639.22023 ; LRMS m/z 

(ESI+): 755, 717, 679 ([M+K]+, 100%) 641 ([M+H]+, 90%). HPLC analysis confirmed the product 

purity was >95%. 

 

Clonogenic colony formation assay 

Aliquots of 2.5 x 102 cells were plated in 6 well plates with complete culture medium and incubated 

overnight at 37°C with 5% CO2. Culture medium was removed, and cells washed with PBS before 
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addition of fresh culture medium containing either [111In]In-GFP-G1-TAT (1.5 nM, 1 MBq/μg), 

[111In]In-GFP-G1 (1.5 nM, 1 MBq/μg), or no RIC, followed by incubation at 37°C for a further 60 

min. Supernatant containing unbound radiolabelled compound was removed and cells were 

washed twice with PBS before addition of fresh culture medium. To allow for colony formation, 

cells were incubated for a further 14 days without disruption. Cells were then washed with PBS 

and stained with crystal violet biological stain (Sigma, Dorset, UK) at room temperature for 24 h. 

Stained cells were washed with dH2O and dried before colonies were imaged and counted using 

the GelCount™ colony counter (Oxford Optronics, Abingdon, UK). 

 

SPECT/CT imaging 

Tumour xenografts of H1299 WT and H2B-EGFP transfected cells were established on the flanks 

of 8-week-old Balb/c nu/nu mice by subcutaneous injection of 2 x 106 cells, suspended in 150 μl 

of equal volume ratio of PBS and Phenol Red Free High Concentration Matrigel (Corning). 

Tumours were allowed to grow for 4 weeks to achieve a volume of approximately 180 mm3 prior 

to imaging studies. For each imaging session, anaesthesia was induced and maintained by 

inhalation of 4% and 2% isoflurane respectively in room air supplemented with oxygen (80%/20% 

v/v; flow rate 1 L/min). Anaesthesia depth was based on respiration rate monitored using a 

pneumatic cushion, and isoflurane levels were adjusted to maintain a respiration rate of 40–60 

breaths per minute. Induction and recovery were performed in a heated unit with a base 

temperature of around 37℃ to maintain a core temperature of 36℃ (see ref 22). All SPECT/CT 

imaging was carried out using the VECTor4 imaging system (MILabs, Utrecht, Netherlands) with 

a rat collimator (HE-UHR-RM, 1.8 mm pinhole). Animals were initially CT imaged (55 kV, 19 

mA), immediately followed by list mode SPECT (0–1200 keV) using MILabs acquisition software 
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v11.0. Triple energy window–based scatter correction was applied for each photon peak window 

(111In: 155.7–190.3 keV and 218.7–267.3 keV with background windows set to 148.8-155.7 keV, 

190.3–197.2 keV, 209.0–218.7 keV, and 267.3–277.0 keV) with a background weight and 

calibration factor of 2.5 and 1 respectively. All images were reconstructed with MILabs 

reconstruction software v11.0 on 0.6-mm isotropic 3D voxel grids using similarity regulated 

ordered-subset expectation maximization (SROSEM). After reconstruction, the SPECT, and their 

corresponding CT data were coregistered and resampled to equivalent 200-μm voxel sizes. CT-

based attenuation correction was applied. Reconstructed images were viewed and analysed using 

PMOD v.3.37 (PMOD Technologies, Zurich, Switzerland). For accurate scaling and quantification 

of SPECT image data, phantoms were used to determine a calibration factor applied to all images. 

Image processing and volume of interest (VOI) analysis was carried out using the PMOD software 

package (version 3.708, PMOD Technologies, Zürich, Switzerland). 
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Supplemental Figures 

 

 

 

Supplemental Figure 1. Flow assisted cell sorting and stability testing of H2B-EGFP 

transfected cell lines. A) Scatter plot showing initial sorting of heterogenous mixture of H2B-

EGFP transfected cells by expression level, prior to clonal plating and antibiotic selection. B) Flow 

cytometry shows changes of H2B-EGFP expression across transfected cell lines after 42 days with 

and without antibiotic selection (50 μg/ml G418). 
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Supplemental Figure 2. Synthesis of N3-Bn-DTPA. Schematic diagram showing the synthesis 

of N3-Bn-DTPA. 
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Supplemental Figure 3. Comparison of uptake of [111In]In-GFP-G1 with and without TAT. 

In vitro radio-internalisation assays with high H2B-EGFP expressing cell line H2B-EGFP 45 show 

a significant increase in [111In]In-GFP-G1-TAT internalisation in comparison to [111In]In-GFP-G1 

without TAT. 
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Supplemental Figure 4. Effect of [111In]In-GFP-G1-TAT uptake on cell viability . In vitro 

colony formation assay demonstrated no significant difference in relative colony formation 

between cells exposed to [111In]In-GFP-G1-TAT, [111In]In-GFP-G1 without TAT, and a non-

treated control group. 


