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Abstract 

Coronary 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) and computed 

tomography (CT) angiography-based quantitative plaque analysis have shown promise in 

refining risk stratification in patients with coronary artery disease. We combined both of these 

novel imaging approaches to develop an optimal machine-learning model for the future risk of 

myocardial infarction in patients with stable coronary disease.  

Methods  

Patients with known coronary artery disease underwent coronary 18F-NaF PET and CT 

angiography on a hybrid PET/CT scanner. Machine-learning by extreme gradient boosting was 

trained using clinical data, CT quantitative plaque analysis measures and 18F-NaF PET, and it 

was tested using repeated 10-fold hold-out testing.  

Results 

Among 293 study participants (65±9 years; 84% male), 22 subjects experienced a myocardial 

infarction over the 53 [40-59] months of follow-up. On univariable receiver-operator-curve 

analysis, only 18F-NaF coronary uptake emerged as a predictor of myocardial infarction (c-

statistic 0.76, 95% confidence interval [CI] 0.68-0.83). When incorporated into machine-learning 

models, clinical characteristics showed limited predictive performance (c-statistic 0.64, 95% CI 

0.53-0.76;) and were outperformed by a quantitative plaque analysis-based machine-learning 

model (c-statistic 0.72, 95% CI 0.60-0.84). After inclusion of all available data (clinical, 

quantitative plaque and 18F-NaF PET), we achieved a substantial improvement (p=0.008 versus 

18F-NaF PET alone) in the model performance (c-statistic 0.85, 95% CI 0.79-0.91).  



Conclusions 

Both 18F-NaF uptake and quantitative plaque analysis measures are additive and strong 

predictors of outcome in patients with established coronary artery disease. Optimal risk 

stratification can be achieved by combining clinical data with these approaches in a machine-

learning model. 

Keywords: myocardial infarction, computed tomography, 18F-NaF positron emission 

tomography, quantitative plaque analysis, machine-learning 

 

 

 

 

  



Introduction 

In every day clinical practice, prediction of myocardial infarction is challenging and is typically 

based on cardiovascular risk factors and scores, especially in subjects with suspected coronary 

artery disease (1). However, in patients with established coronary artery disease, the performance 

of risk scores is limited with c-statics ranging from 0.60 to 0.68 (1). Recently, advanced imaging 

techniques have demonstrated considerable promise in refining risk stratification in patients with 

established coronary artery disease. We have demonstrated that assessment of disease activity in 

the coronary arteries with 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) 

outperforms clinical variables and risk scores for the prediction of myocardial infarction in 

patients with a high burden of coronary artery disease (2,3). Similarly, in observational studies 

and a sub-analysis of the SCOT-HEART trial, quantitative plaque analysis investigating both 

plaque type and burden on contrast enhanced CT angiography has emerged as a major predictor 

of adverse outcomes (4,5). To date, no study has investigated whether these two promising 

methods (which can be obtained during a single imaging session on a hybrid PET/CT scanner) 

are interchangeable or can provide superior predictive performance when used in combination.  

In this study, we employed machine-learning to investigate whether the prognostic information 

provided by quantitative CT plaque analysis and assessments of disease activity by 18F-NaF PET 

are complementary, and to develop an optimized model to determine the future risk of 

myocardial infarction in patients with established coronary artery disease (6). 

  



Methods 

Study population 

The current study is based on a cohort of patients with established coronary artery disease on 

guideline recommended medical treatments which we assembled for our previous publication 

regarding the prognostic utility of 18F-NaF PET (2). However, in the current study, we have 

included longer follow-up and utilized novel quantitative plaque analysis of coronary CT 

angiography. Our work is focused specifically upon whether machine learning methods can 

combine the prognostic information provided by clinical factors, quantitative CT plaque analysis 

and 18F-NaF PET to improve the prediction of myocardial infarction. All participants underwent 

hybrid coronary 18F-NaF PET and contrast CT coronary angiography within prospective 

observational research studies (NCT01749254, NCT02110303, NCT02607748) (3,7,8). All 

patients had established coronary artery disease and underwent a comprehensive baseline clinical 

assessment with evaluation of their cardiovascular risk factor profile including calculation of the 

Secondary Manifestations of ARTerial disease (SMART) risk score (Supplementary Material) 

(1). Studies were conducted with the approval of the local research ethics committee, in 

accordance with the Declaration of Helsinki, and with written informed consent from each 

participant. 

CT Angiography and 18F-Sodium Fluoride PET 

Acquisition and Reconstruction 

Patients underwent 18F-NaF PET on hybrid PET/CT scanners (128-slice Biograph mCT, Siemens 

Medical Systems, Knoxville, USA or Discovery 710 GE Healthcare, Milwaukee, WI, USA) 60 

min following intravenous administration of 18F-NaF (250 MBq). We acquired a non-contrast CT 



attenuation correction scan followed by a 30-min PET emission scan in list mode, a low-dose 

non-contrast ECG-gated CT for calculation of the coronary calcium and a contrast-enhanced 

ECG-gated coronary CT angiogram (CTA) which was obtained in mid-diastole and end-

expiration on the same PET/CT system without repositioning the patient. The ECG-gated PET 

list mode dataset was reconstructed using harmonized protocols as described previously 

(supplementary material) (8-10).  

Coronary microcalcification activity (CMA) quantification 

Image analysis was performed in FusionQuant (Cedars-Sinai Medical Center, Los Angeles) (11). 

We used a recently described measure of coronary 18F-NaF uptake, coronary microcalcification 

activity (CMA) that quantifies PET activity across the entire coronary vasculature (12). CMA is 

a highly reproducible and robust measure of disease activity predicting both disease progression 

and myocardial infarction (2, 13). We calculated the per vessel and per patient CMA (Figure 1), 

maximum coronary SUV and target to background ratio (TBR) as described previously 

(supplementary material) (3, 12). 

Computed Tomography 

The coronary artery calcium score was measured in Agatston units (AU) using clinical software 

(NetraMD, ScImage, Los Altos, CA, USA) on non-contrast CT scans. The presence, extent and 

severity of coronary artery disease were evaluated on contrast-enhanced CT angiography by 

defining the segment involvement score, DUKE coronary artery disease index and the number of 

vessels with >50% luminal stenosis (14). Multivessel coronary artery disease was defined as at 

least 2 major epicardial vessels with any combination of either >50% stenosis, or previous 

revascularization.  



Quantitative Plaque Analysis of CT angiography  

We performed quantitative plaque analysis of all coronary segments with a lumen diameter 

greater than 2 mm using semi-automated software (AutoPlaque version 2.0, Cedars-Sinai 

Medical Center, Los Angeles, USA) (4,5). Proximal and distal limits of lesions were manually 

marked by an experienced reader after examination of coronary CT angiography images in 

multiplanar format. Subsequent plaque quantification was fully automated using adaptive scan-

specific thresholds. Total, calcified, non-calcified as well as low attenuation plaque volumes 

were calculated. The plaque burden was calculated according to the following equation (plaque 

volume x 100%/vessel volume). The contrast density difference was the maximal difference in 

contrast density (mean Hounsfield unit / cross-sectional area) in the plaque and the reference 

proximal vessel cross section. 

Machine-learning 

Machine learning was used to derive a joint score for myocardial infarction by incorporating the 

key clinical variables, quantitative CT variables, and 18F-NaF PET findings.    

Model Building 

XGBoost is a recent implementation of a gradient boosting algorithm, which iteratively trains a 

set of weak learners (simple decision trees) using a given set of patient data, to build a combined 

strong classifier to identify an outcome (15). For every patient, the XGBoost algorithm computes 

an individualized probability of outcome, considering all input variables.  

We applied XGBoost for prediction of myocardial infarction by building 3 models. First, a 

clinical model with baseline clinical characteristics: age, gender, co-morbidities, medication, 

biomarkers, past medical history and coronary calcium score (model 1). The second model was 



derived from quantitative plaque analysis variables (including low attenuation plaque burden and 

the contrast density difference). A final model incorporated clinical, CT and 18F-NaF PET data in 

combination. All variables utilized in the machine-learning modelling are presented in 

Supplementary Table 1.  

Model Testing  

Given the limited number of cases, we refrained from performing data-specific hypertuning and 

applied fixed XGBoost parameters established in our previous studies (15). Furthermore, to 

avoid biased results and limit overfitting, we tested all of our models using repeated 10-fold 

cross-testing, which separates training and testing data (16). The dataset was randomly split into 

10 folds with similar myocardial infarction rates in each fold (stratified 10 folds). Ten models 

were created each from 90% of the data, and each tested in held-out test sample (10% of the 

data). These 10 held-out samples containing non-overlapping test results were subsequently 

concatenated to evaluate the average performance of XGBoost in unseen data.  

Feature importance  

To elucidate the influence of each of the variables included in the machine-learning model, we 

provided machine-learning feature importance scores. Importance is the relative amount that 

each attribute improves the XGBoost performance measure. The variable importance was 

determined directly from the xgboost model separately in each fold and returned from the 

XGBoost model for each variable. The variable importance represents the relative improvement 

in the log loss objective function of the xgboost (17). 

Clinical follow-up 



The primary endpoint of the study was fatal or non-fatal myocardial infarction. Outcome 

information was obtained in June 2020 from the local and national healthcare record systems that 

integrates primary and secondary health care records. Categorization of these outcomes was 

performed blinded to the coronary CT angiography and PET data.  

Statistical analysis 

We assessed the distribution of data with the Shapiro-Wilk test. Continuous parametric variables 

were expressed as mean ± standard deviation, and non-parametric data were presented as median 

[interquartile interval]. Fisher's exact test or chi-squared test was used for analysis of categorical 

variables. The performance of machine-learning models and single clinical characteristics in 

predicting myocardial infarction was assessed using receiver operator characteristic (ROC) 

analysis, and the area under the curve (c-statistic) values were compared with the DeLong test 

(18). Statistical analysis was performed with SPSS version 24 (IBM SPSS Statistics for 

Windows, Version 24.0. Armonk, NY: IBM Corp) and R studio and R software version 4.01 (R 

Foundation for Statistical Computing, Vienna, Austria). A two-sided p<0.05 was considered 

statistically significant.   



Results 

All 293 study participants (65±9 years; 84% male) had established coronary artery disease and 

were on guideline recommended medical treatments (Table 1). Two-hundred and thirty-seven 

(81%) patients had a history of revascularization, 191 (65%) had multi-vessel obstructive 

coronary artery disease and the median coronary calcium score was 334 [76 to 804] AU. Over 

the 53 [40-59] months of follow-up, 22 subjects experienced a fatal (n=3) or non-fatal (n=19) 

myocardial infarction. 

The high burden of atherosclerosis was reflected in the quantitative plaque analysis derived from 

coronary CT angiography. The median total plaque volume was 1174 [716 to 1772] mm3 and 

consisted largely of non-calcified plaque (1099 [647 to 1574] mm3) with a substantial volume of 

low-attenuation plaque (88 [44 to 167] mm3). Over half of the study population (166 [56%]) had 

a low-attenuation plaque burden exceeding 4%. On PET, 109 (37.2%) patients presented with a 

high 18F-NaF coronary microcalcification activity (CMA>1.56; Figure 2).  

On receiver operator curve analysis, 18F-NaF CMA (c-statistic 0.76, 95% confidence interval 

(CI) 0.68 to 0.83; p<0.001), maximum 18F-NaF TBR (c-statistic 0.72, 95% CI 0.63 to 0.82; 

p<0.001) and maximum 18F-NaF SUV (c-statistic 0.70, 95% CI 0.59 to 0.81; p=0.002) were the 

only statistically significant predictors of myocardial infarction. In contrast, baseline clinical 

characteristics, luminal stenosis severity, qualitative or quantitative CT-derived variables were 

not significant predictors of myocardial infarction on their own (Table 2). However, when 

incorporated into machine-learning models, the aforementioned variables emerged as predictors 

of adverse events. While a model based on clinical characteristics only showed limited predictive 

performance with a c-statistic of 0.64 (95% CI 0.53-0.76), the quantitative plaque analysis-based 



machine-learning model outperformed the former with a c-statistic of 0.72 (95% CI 0.60-0.84, 

p=0.02) which was comparable to 18F-NaF CMA alone (p=0.47). Inclusion of clinical data 

improved the 18F-NaF CMA and quantitative plaque analysis-based models only slightly (0.77 

[95% CI 0.69-0.84] and 0.74 [95% CI 0.64-0.83] respectively). Importantly, after inclusion of all 

available data (clinical, quantitative plaque and 18F-NaF PET), we achieved an increase in model 

performance with a c-statistic of 0.85 (95% CI 0.79-0.91, p<0.001) which was higher than the 

quantitative CT plaque model (p=0.008) and the 18F-NaF CMA (p=0.01; Figures 3 and 4) as well 

as the clinical characteristics model (p<0.001).  

 

  



Discussion 

We have built a machine-learning model for risk stratification in patients with established 

coronary artery disease. In our cohort of patients with advanced coronary atherosclerosis, we 

showed that risk prediction does not depend on cardiovascular risk scores, stenosis severity or 

CT calcium scoring. Rather the risk of myocardial infarction is primarily governed by the 

analysis of plaque type and plaque burden provided by coronary CT angiography and 

assessments of disease activity by 18F-NaF PET. Importantly, our machine learning approach has 

overcome the challenges posed by co-linearity of these variables and, for the first time, has 

demonstrated that this information is complementary and additive with the combination of both 

providing the most robust outcome prediction. If confirmed in further studies this comprehensive 

approach holds major promise in refining risk stratification of patients with established coronary 

artery disease, a population where such prediction is currently challenging. Importantly, such 

stratification in these patients can be achieved objectively with quantitative variables obtained on 

a single hybrid PET/CT acquisition.   

18F-NaF PET provides an assessment of vascular injury and disease activity across a wide 

spectrum of cardiovascular conditions including aortic stenosis, mitral annular calcification, 

abdominal aortic aneurysm, erectile dysfunction, bioprosthetic valve degeneration and coronary 

artery disease (2, 19-21). Indeed, baseline 18F-NaF PET is consistently associated with future 

disease progression and adverse events in each of these conditions. On the other hand, 

quantitative assessment of atherosclerotic plaque on contrast-enhanced CT angiography allows 

us to measure the burden of different types of plaque across the coronary arteries (4). We 

recently demonstrated that the low-attenuation plaque burden provides powerful prediction of 



myocardial infarction, outperforming cardiovascular risk scores, Agatston coronary artery 

calcium scoring, or the presence and severity of obstructive coronary artery disease. Whether 

these two exciting developments can be used in combination to further advance risk prediction 

was previously unknown.  

Using the information from these approaches and by leveraging machine-learning, we were able 

to build an integrated model for prediction of events in patients with established coronary artery 

disease, a group of patients where risk prediction is currently challenging. The XGBoost 

algorithm has been successfully implemented for risk prediction in a wide range of clinical 

scenarios (15, 22). It enables the incorporation of numerous predictors into the model even when 

these variables are correlated - a major limitation with conventional regression analyses. While 

we have previously shown that 18F-NaF uptake is associated with quantitative plaque analysis 

indices, our current analysis highlights the complementary prognostic information that PET and 

quantitative CT plaque assessments provide together (23, 24). Indeed, our machine learning 

model incorporating the information from these two modalities alongside clinical factors 

outperformed the individual components analyzed separately with a high c-statistic of 0.85. 

Importantly, our study also underscores that in patients with advanced coronary artery disease, 

markers of disease activity, plaque type and plaque burden provide superior risk prediction to 

clinical risk scores and conventional coronary calcium CT analyses. 

According to societal guidelines, patients with clinically manifest atherosclerotic arterial disease 

are considered to be at very high risk of a recurrent cardiovascular events and cardiovascular 

mortality. However, in everyday clinical practice, it is apparent that there is a wide distribution 

of actual risk for recurrent vascular events in patients with clinically established arterial disease. 

While the population of subjects with manifested coronary artery disease is rapidly growing, 



accurate risk prediction in this important population remains challenging.  The guideline 

recommended SMART risk score was shown to have only a moderate c-statistic (0.64-0.68), and 

there is a paucity of data regarding the role imaging could play in this cohort (1). In our study we 

have targeted this important high-risk population. We have demonstrated that quantitative plaque 

analysis measures and the coronary microcalcification activity considerably improve 

stratification of patients’ risk (c-statistic 0.85). In a conservative 10-fold cross testing machine 

learning model, we showed that CT and PET data need to be employed together for optimal 

stratification. 

 

Limitations 

With the limited number of patients and events, our findings require confirmation in future 

studies. Machine-learning models can perform better when trained within bigger datasets and 

therefore further studies are needed to confirm our findings and allow further testing to refine 

and to calibrate the machine-learning models. External validation of our findings in other cohorts 

is needed. While this is currently challenging given that 18F-NaF PET is an emerging technique, 

this will be possible in the future using outcome data from the Prediction of Recurrent Events 

With 18F-Fluoride (PREFFIR) study which is prospectively investigating the ability of 18F-NaF 

coronary PET and CT angiography to predict recurrent events in patients with multi-vessel 

disease and recent myocardial infarction. Since the majority of study participants had multivessel 

disease future studies should characterize the utility of 18F-NaF PET in single vessel disease 

patients. 

 



In conclusion, both 18F-NaF uptake and quantitative plaque analysis measures from contrast CT 

are strong predictors of outcome in patients with established coronary artery disease. Optimal 

risk stratification can be achieved by combining these imaging assessments of plaque type, 

burden and activity with clinical variables in a machine-learning model.  

 

 

Key Points: 

Question: Does combining information provided by CT plaque analysis and assessments of 

disease activity by 18F-NaF PET with machine-learning enhance risk stratification in established 

coronary artery disease? 

Pertinent Findings: In a post hoc analysis of data collected for prospective observational 

studies, on a cohort of 293 patients with established coronary artery disease, we have 

demonstrated that optimal risk stratification can be achieved by combining clinical data with 

18F-sodium fluoride PET and quantitative coronary CT angiography plaque analysis in a 

machine-learning model.  

Implications for Patient Care: This approach has major potential for the risk stratification of 

patients with established coronary artery disease.   
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Tables 
Table 1. Baseline clinical characteristics. 

Category Variable Mean±sd/median[Q1-

Q3]/n (%) 

Baseline Clinical 

Characteristics 

Age  65±9 

Men 245 (84%) 

Body-mass index (kg/m2), 29±5 

Systolic blood pressure (mm Hg) 141±20 

Diastolic blood pressure (mm Hg) 79±11 

Cardiovascular history History of acute coronary syndrome 161 (55.1%) 

History of percutaneous coronary 

intervention 

182 (62.3%) 

History of coronary artery bypass graft 

surgery 

48 (16.4%) 

History of angina 136 (46.6%) 

Recent acute coronary syndrome 

 

61 (21%) 

Cerebrovascular accident or transient 

ischemic attack 

9 (3.1%) 

Comorbidities/risk factors Hypertension 174 (59.6%) 



Hyperlipidemia 257 (88%) 

Diabetes mellitus 61 (20.8%) 

Current smoking 

Ex-smoker 

58 (19.9%) 

137 (46.9%) 

Atrial fibrillation 10 (3.4%) 

Peripheral vascular disease 16 (5.5%) 

Medications * Aspirin 268 (91.8%) 

Dual antiplatelet therapy 62 (21.2%) 

Statin 262 (89.7%) 

Beta Blocker 196 (67.1%) 

Angiotensin-converting enzyme 

inhibitor or angiotensin receptor 

blocker 

197 (67.4%) 

Insulin  4 (1.4 %) 

Oral diabetic medications 48 (16.4%) 

Calcium blockers 63 (21.6%) 

Diuretics 38 (16.0%) 

Biomarkers Total cholesterol (mg/dL) 159 [139-182] 



LDL cholesterol (mg/dL) 73 [46-93] 

HDL cholesterol (mg/dL) 46 [39-66] 

Triglycerides (mg/dL) 133 [97-204] 

Creatinine (mg/dL) 0.9 [0.8-1.0] 

Risk Scores SMART 18 [13-26] 

Computed Tomography – 

qualitative & non-contrast 

‐ Single vessel disease 

‐ Two vessel disease 

‐ Three vessel disease 

‐ Left main stem involvement 

87 (29.8%) 

110 (37.7%) 

81 (27.6%) 

18 (6.1%) 

Coronary stent  218 (73.4%) 

Segment involvement score  5 [3-7] 

Segment involvement score >5 145 (73.5%) 

Coronary calcium score 334 [76-804] 

Coronary calcium score category 

0-99 

100-399 

400-999 

>1000 

 

84 (28.7%) 

76 (25.9%) 

74 (25.3%) 

59 (20.1%) 



Computed tomography - 

quantitative 

Total plaque volume, mm3 1174 [716, 1772] 

Non-calcified plaque volume, mm3 1099 [647, 1574] 

Calcified plaque volume, mm3 77 [23, 180] 

Low-attenuation plaque volume, mm3 88 [44, 167] 

Total plaque burden, % 55 [49, 63] 

Non-calcified plaque burden, % 51 [45, 57] 

Calcified plaque burden, % 3.5 [1.4, 7.9] 

Low-attenuation plaque burden, % 4.4 [2.6, 7.0] 

Area stenosis, % 58 [47, 75] 

Contrast density difference, % 29 [24, 37] 

Ischemia score 31 [21, 47] 

18F-NaF PET CMA 0.66 [0-2.84] 

TBRmax 1.22 [1.1-1.42] 

SUVmax 1.44 [1.19, 1.71] 

Outcome Myocardial infarction 22 (7.5%) 

CMA – coronary microcalcification activity, PET – positron emission tomography, 18F-NaF – 

18F-sodium fluoride, SMART - Secondary Manifestations of ARTerial disease risk score, 

SUVmax – maximum standard uptake value, TBRmax – maximum target to background ratio 

Recent acute coronary syndrome was defined as an event within less than 14 days prior to PET 

imaging. 

 



Table 2. Prediction of myocardial infarction in patients with advanced coronary artery disease. 

Receiver operator curve modelling for prediction of myocardial infarction. 

Category Variable  Area under the curve 

(95% confidence 

intervals) 

p value 

Baseline 

Clinical 

Characteristics 

Age 0.51 (0.35-0.67) 0.81 

Sex 0.51 (0.38-0.64) 0.84 

Body-mass index 0.58 (0.46-0.70) 0.23 

Systolic blood pressure 0.52 (0.37-0.67) 0.74 

Past Medical 

History 

Myocardial infarction 0.45 (0.33-0.58) 0.48 

Recent acute coronary syndrome 0.57 (0.43-0.71) 0.33 

Percutaneous coronary 

intervention 

0.53 (0.40-0.67) 0.66 

Coronary artery bypass graft 0.52 (0.39-0.65) 0.80 

Cerebrovascular accident 0.53 (0.40-0.67) 0.60 

Comorbidities Hypertension 0.47 (0.35-0.59) 0.57 

Hyperlipidaemia 0.48 (0.35-0.60) 0.61 

Diabetes 0.51 (0.37-0.65) 0.29 

Smoking 0.46 (0.32-0.60) 0.59 

Peripheral vascular disease 0.52 (0.39-0.66) 0.80 

Biomarkers Total cholesterol (mmol/L) 0.53 (0.38-0.68) 0.68 

LDL cholesterol (mmol/L) 0.59 (0.43-0.75) 0.18 



HDL cholesterol (mmol/L) 0.53 (0.38-0.67) 0.71 

Triglycerides (mmol/L) 0.57 (0.44-0.69) 0.33 

Creatinine (µmol/L) 0.54 (0.40-0.68) 0.54 

Risk scores SMART 0.57 (0.43-0.70) 0.35 

Computed 

Tomography – 

qualitative & 

non-contrast  

Multivessel disease 0.55 (0.42-0.68) 0.48 

Segment involvement score 0.56 (0.41-0.71) 0.40 

Coronary calcium score 0.51 (0.37-0.66) 0.87 

Modified Duke index 0.61 (0.48-0.74) 0.11 

Computed 

tomography - 

quantitative 

Total plaque volume 0.53 (0.39-0.67) 0.65 

Non-calcified plaque volume 0.54 (0.40-0.68) 0.53 

Calcified plaque volume 0.46 (0.33-0.58) 0.48 

Low-attenuation plaque volume 0.57 (0.41-0.72) 0.30 

Total plaque burden 0.45 (0.33-0.57) 0.42 

Non-calcified plaque burden 0.47 (0.35-0.59) 0.67 

Calcified plaque burden 0.41 (0.29-0.54) 0.16 

Low-attenuation plaque burden 0.61 (0.48-0.75) 0.071 

Area stenosis 0.48 (0.35-0.62) 0.79 

Contrast density difference 0.56 (0.40-0.71) 0.33 

Ischemia score 0.52 (0.38-0.65) 0.77 

18F-NaF PET CMA total 0.76 (0.68-0.83) <0.001 

TBRmax 0.72 (0.63-0.82) <0.001 

SUVmax 0.70 (0.59-0.81) 0.002 



CMA – coronary microcalcification activity, HDL – High density lipoprotein, LDL – low 

density lipoprotein, SD – standard deviation, PET – positron emission tomography, 18F-NaF – 

18F-sodium fluoride, SMART - Secondary Manifestations of ARTerial disease risk score, 

SUVmax – maximum standard uptake value, TBRmax – maximum target to background ratio. 

  



Figures 

Figure 1. Measuring Disease Activity Across the Coronary Vasculature with 18F-NaF 

Coronary Microcalcification Activity (CMA) and the Low Attenuation Plaque Burden with 

Quantitative Plaque Analysis. 3-Dimensional rendering of coronary CT angiography co-

registered with PET for evaluation of 18F-sodium fluoride uptake (blue and red; left panel). The 

coronary microcalcification activity (CMA) is a summary measure of 18F-NaF activity across the 

entire coronary vasculature as it includes all counts originating from the coronary arteries  3-

Dimensional rendering of CT angiography based quantitative plaque analysis with orange low 

attenuation plaque (LAP) and yellow calcified plaque. The low attenuation plaque burden was 

defined as the LAP volume x 100%/vessel volume.  

 

LAD – left anterior descending, LCX – left circumflex, RCA – Right coronary artery 



Figure 2. Case examples of quantitative plaque analysis on coronary CT angiography and 

18F-sodium fluoride positron emission tomography in patients with established coronary 

artery disease. Hybrid CT angiography and 18F-NaF positron emission tomography of coronary 

arteries in: (A) a 70-year-old male who presented with diffused largely non-calcified disease 

(middle panel in red) in the LAD and demonstrated increased 18F-NaF uptake in the LAD on 

positron emission tomography. (B) a 59-year-old male with mild LCX atherosclerosis, who 

presented with a high non-calcified plaque burden (middle panel in red) on CT angiography, 

significant 18F-NaF uptake and experienced a lateral non-ST-segment elevation myocardial 

infarction during follow-up.  



 

CMA – coronary microcalcification activity, LAD – left anterior descending, LCX – left 

circumflex, LAP – low attenuation plaque 



Figure 3. Prediction of myocardial infarction by machine-learning. A) Receiver operator 

curves for the risk of myocardial infarction:  18F-sodium fluoride (18F-NaF) coronary 

microcalcification activity (CMA) alone (dark blue), machine learning models based on clinical 

data (light blue), quantitative plaque analysis (gray), clinical + quantitative plaque analysis + 18F-

NaF PET (red). The model based on both PET and quantitative CT-based plaque analysis data 

outperformed the clinical data and both unimodality models (p<0.01 for all). (B) Feature 

importance for the machine-learning model based on all variables. The solid bars and error bars 

represent the mean gain and standard deviation derived from the distribution of the importance 

within 10 folds of the cross testing, for each variable.  

 

*indicates a p<0.01 for a difference compared to 18F-NAF CMA, quantitative plaque, Clinical 

and CT (DeLong test) 

#error bars indicate 95% confidence intervals 



CMA – coronary microcalcification activity, SUV – standard uptake value, TBR – target to 

background ratio  



Figure 4. Calibration plot for the clinical + quantitative plaque analysis + 18F-NaF PET 

machine-learning XGBoost model. The calibration plot shows the relationship between the 

observed and predicted proportion of events, grouped by decile of risk. Our model showed very 

good calibration with the observed risk of myocardial infarction during follow-up. 

 

 

 



Supplementary Data 

Machine-learning with 18F-sodium fluoride PET and  
quantitative plaque analysis on CT angiography  

for the future risk of myocardial infarction 
 

 

Jacek Kwiecinskia,b, Evangelos Tzolos a,c, Mohammed N Meahc, Sebastien Cadeta, Philip D 
Adamsond, Kajetan Grodeckia, Nikhil V Joshi e, Michelle C Williamsc, Edwin JR van Beek MD, 
PhD c,f, Daniel S Bermana, David E Newbyc, Damini Deya, Marc R Dweckc, Piotr J Slomkaa  
 

a Department of Imaging (Division of Nuclear Medicine), Medicine (Division of Artificial 
Intelligence in Medicine), and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 
CA, USA 
b Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, 
Poland 
c BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom 
d Christchurch Heart Institute, University of Otago, Christchurch, New Zealand 
e Bristol Heart Institute, University of Bristol, United Kingdom 
f Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, 
United Kingdom 
 

 

 

 

 

 

 



Methods 
SMART score.  The SMART (Second manifestations of arterial disease) risk score estimates the 

10-year risk for myocardial infarction, stroke or vascular death in individual patients with 

previous cardiovascular disease, including coronary artery disease, cerebrovascular disease, 

peripheral artery disease, abdominal aortic aneurysm and polyvascular disease. The SMART risk 

score was developed in a population of vascular patients in the Netherlands that were included in 

the Secondary Manifestations of Arterial Disease (SMART)-study (1). External validation and 

updating were performed in pooled trial cohorts of 18,436 vascular patients from W-Europe, S-

Europe, Israel, USA, Canada, Mexico, S-Africa, Australia, and N-Zealand (2). The SMART 

score calculators can be found at: https://www.escardio.org/Education/ESC-Prevention-of-CVD-

Programme/Risk-assessment/SMART-Risk-Score 

18F-Sodium Fluoride PET  

Image reconstruction 

The ECG-gated PET list mode dataset was reconstructed using a standard ordered expectation 

maximization algorithm with time-of-flight, and point-spread-function correction. Using 4 

cardiac gates, we reconstructed the data on a 256x256 matrix (with 75 or 47 slices using 2 

iterations, 21 subsets and 5-mm Gaussian smoothing for Siemens mCT data and 4 iterations, 24 

subsets and 5-mm gaussian smoothing for GE Discovery data) (3). To compensate for coronary 

motion associated with heart contraction, we performed cardiac motion correction of the PET/CT 

images as described previously (4). After motion-correction, the 4 images aligned to the end 

diastolic gated position were summed back together to build a motion-free image containing 

counts from the entire duration of PET acquisition. To offset for variation in the delay between 

https://www.escardio.org/Education/ESC-Prevention-of-CVD-Programme/Risk-assessment/SMART-Risk-Score
https://www.escardio.org/Education/ESC-Prevention-of-CVD-Programme/Risk-assessment/SMART-Risk-Score


tracer injection and the PET acquisition, we employed a recently validated correction factor to 

harmonize the background activity to a reference 60-min injection-to-acquisition interval (5). 

Coronary Microcalcification Activity 

We used a recently described measure of coronary 18F-NaF uptake, coronary microcalcification 

activity (CMA) that quantifies PET activity across the entire coronary vasculature (6). We 

automatically extracted whole-vessel tubular and tortuous 3D volumes of interest which 

encompass all the main epicardial coronary vessels and their immediate surroundings (4-mm 

radius) from CT angiography datasets (Figure 1). Within such volumes of interest, we measured 

CMA, representing the overall disease activity in the vessel and based upon both the volume and 

intensity of 18F-NaF PET activity within it. CMA was defined as the integrated activity in 

standardized uptake value (SUV) exceeding the corrected background blood-pool mean SUV + 2 

standard deviations. Since CMA is based on SUV (SUV=Pixel Value (Bq/ml)) * Weight(kg) / 

Dose (Bq) * 1000 (g/kg), and can be considered as: SUV units x volume, the CMA unit would be 

g/mL x mL = g. However, given the fact that in the equation the unitless measure of activity 

(derived from: Pixel Bq/ml/ Dose (Bq) plays a key role to avoid confusion we refrained from 

reporting CMA in grams.  

We measured the background activity in the right atrium, drawing cylindrical volumes of interest 

(10-mm radius and 5-mm thickness) at the level of the right coronary artery ostium. The per-

patient CMA was defined as the sum of the per-vessel CMA values. We calculated the per vessel 

and per patient maximum coronary SUV and target to background ratio (TBR) as described 

previously (7). In brief within 3 dimensional volumes of interest which encompassed coronary 

arteries the maximum standard uptake value (SUVmax) was recorded. TBR was calculated by 

dividing SUVmax by averaged background blood pool activity. 



Machine-learning 

The hyperparameters used for the XGBoost model were as follows: 

Booster = gbtree  

Learning rate =  0.005 

Maximum depth of a tree  = 1 

Subsample ratio of the training instances  = 0.6 

Minimum sum of instance weight (hessian) needed in a child = 1 

balance of positive and negative weights = 1 

number of iterations =  5.000 

10-fold repeated hold-out testing 

The advantages of the 10-fold repeated hold-out testing over single split-sample approach are 

well documented and include: (1) reduction of variance in prediction error leading to a more 

accurate estimate of model performance; (2) maximizing the data for both training and 

validation, without overfitting or overlap between test and validation data; and (3) avoiding 

testing hypotheses suggested by arbitrarily split data (type III errors) (8,9). 

 

 

 

 



Supplementary Table 1. Variables used in machine-learning. 

Category No. Variable name 

Clinical 1 abnormal rest ECG (0, 1) 

2 age (years) 

3 body mass index (kg/m2) 

4 conduction disease (0, 1) 

5 current smoker (0, 1) 

6 past smoker (0, 1) 

7 diabetes mellitus (0, 1) 

8 dyslipidemia (0, 1) 

9 family history of premature coronary artery disease (0, 1) 

10 height (cm) 

11 hypertension (0, 1) 

12 past cerebrovascular accident 

13 past coronary artery bypass surgery (0, 1) 

14 past myocardial infarction (0, 1) 

15 past open-heart surgery (0, 1) 

16 past percutaneous coronary intervention (0, 1)* 



17 peripheral vascular disease (0, 1) 

18 coronary stent (0, 1) 

19 coronary stent in LM, LAD 

20 coronary stent in LCX 

21 coronary stent in RCA 

22 rest DBP (mmHg) 

23 rest heart rate (bpm) 

24 rest SBP (mmHg) 

25 sex (m, f) 

26 atrial fibrillation (0, 1) 

27 weight (kg) 

28 Aspirin (0, 1) 

29 PY12_anatagonist (0, 1) 

30 Statin (0, 1) 

31 ACE inhibitors (0, 1) 

32 ARB (0, 1) 

33 Diuretic (0, 1) 



34 Beta_Blocker (0, 1) 

35 Calcium_Channel_Blocker (0, 1) 

36 Isosorbide mononitrate (0, 1) 

37 Nicorandil (0, 1) 

38 Ivabradine (0, 1) 

39 Warfarin/NOACS (0, 1) 

40 Nitrate Spray (0, 1) 

41 Metformin (0, 1) 

42 Gliclazide (0, 1) 

43 insulin (0, 1) 

44 Proton pump inhibitors (0, 1) 

45 Alpha blockers (0, 1) 

46 Haemoglobin g/L 

47 WBC n/dL 

48 Platelets n/dL 

49 Urea mmol/L 

50 Sodium mmol/L 



51 Potassium mmol/L 

52 Creatinine mmol/L 

53 eGFR ml/m2 

54 Random Glucose mg/dL 

55 HbA1c % 

56 hsTnI ng/L 

57 Total Cholesterol mmol/L 

58 LDL mmol/L 

59 HDL mmol/L 

60 Triglycerides mmol/L 

61 SMART risk score (integer) 

 62 Recent acute coronary syndrome (0, 1)* 

Computed 

Tomography 

– qualitative 

and non-

contrast 

63 Duke coronary artery disease score (integer) 

64 Left Main Stenosis (0-5) 

65 pLAD Stenosis (0-5) 

66 mLAD Stenosis (0-5) 

67 dLAD Stenosis (0-5) 



68 Diagonal Stenosis (0-5) 

69 pLCx Stenosis (0-5) 

70 AVCx Stenosis (0-5) 

71 dLCx Stenosis (0-5) 

72 OM Stenosis (0-5) 

73 pRCA Stenosis (0-5) 

74 mRCA Stenosis (0-5) 

75 dRCA Stenosis (0-5) 

76 PDA Stenosis (0-5) 

77 Multivessel Disease (0, 1) 

78 Maximum Stenosis Grade (0-5) 

79 Obstructive coronary artery disease (0, 1) 

80 Segment Involvement Score (0-16) 

81 Coronary calcium score (integer) 

82 Coronary calcium score <1000 (0, 1) 

83 Coronary calcium score <1199 (0, 1) 

84 Total plaque volume (continuous) 



Computed 

tomography 

- qualitative 

85 Non-calcified plaque volume (continuous) 

86 Calcified plaque volume (continuous) 

87 Low attenuation plaque volume (continuous) 

88 Total plaque burden (continuous) 

89 Non-calcified plaque burden (continuous) 

90 Calcified plaque burden (continuous) 

91 Low attenuation plaque burden (continuous) 

92 Area stenosis (continuous) 

93 Contrast density difference (continuous) 

94 Minimal lumen area (continuous) 

95 Minimal lumen dimension (continuous) 

96 Remodelling index (continuous) 

97 Plaque length (continuous) 

98 Plaque composition LAP% (continuous) 

99 Plaque composition non-calcified plaque (continuous) 

100 Plaque composition calcified plaque (continuous) 

101 Ischemia score (continuous) 



18F-NaF  102 CMA (continuous)  

103 CMA LAD (continuous) 

104 CMA RCA (continuous) 

105 CMA LCX (continuous) 

106 CMA > 1.56 (0, 1) 

107 CMA < 0 (0, 1) 

108 Maximum TBR (continuous) 

109 Maximum SUV (continuous) 

ACS – acute coronary syndrome, CMA – coronary microcalcificatin activity, CCS – coronary 

calcium score, CVA – cardiovascular accident, DG – diagonal, eGFR – estimated glomerular 

filtration rate, HDL – High density lipoprotein, LAD – left anterior descending, LCX – left 

circumflex, LMN – left main, LDL – low density lipoprotein, RCA – right coronary artery, SD – 

standard deviation, SIS – segment involvement score, SUV – standard uptake value, TAG – 

Triglicerydes, TBR – target to background ratio 

*Because 61 patients in our study were subjects imaged shortly after an acute coronary syndrome 

for machine-learning we choose to differentiate them from subjects who had a percutaneous 

coronary intervention performed at a greater interval from PET imaging. These 61 patients were 

coded as recent ACS individuals and were considered positive for PCI only if an intervention 

was also conducted irrespective of the recent ACS. 
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