PSMA- and GRPR-targeted PET: Results from 50 Patients with Biochemically Recurrent **Prostate Cancer** Lucia Baratto¹, Hong Song¹, Heying Duan¹, Negin Hatami¹, Hilary P. Bagshaw², Mark Buyyounouski², Steven Hancock², Sumit Shah³, Sandy Srinivas³, Patrick Swift², Farshad Moradi¹, Guido Davidzon¹, Andrei lagaru¹ ¹ Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA ² Department of Radiation Oncology, Stanford University, Stanford, CA ³ Department of Medicine, Division of Oncology, Stanford University, Stanford, CA ## First author: Lucia Baratto, MD Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Stanford University 300 Pasteur Drive, H2200 Stanford, CA 94305 Phone: +1 650 725 4711 Fax: +1 650 498 5047 lbaratto@stanford.edu ## Corresponding author: Andrei lagaru, MD Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Stanford University 300 Pasteur Drive, H2200 Stanford, CA 94305 Phone: +1 650 725 4711 Fax: +1 650 498 5047 aiagaru@stanford.edu Word count: 4979 Running title: PSMA and GRPR PET in Prostate Cancer Clinicaltrials.gov Identifier: NCT 02624518 (68Ga-RM2), NCT02673151 (68Ga-PSMA11) and NCT03501940 (18F-DCFPyL) Abstract: Rationale: Novel radiopharmaceuticals for positron emission tomography (PET) are evaluated for the diagnosis of biochemically recurrent prostate cancer (BCR PC). Here, we compare the gastrin releasing peptide receptors (GRPR) - targeting 68Ga-RM2 with the prostate specific membrane antigen (PSMA) – targeting ⁶⁸Ga-PSMA11 and ¹⁸F-DCFPyL. Methods: Fifty patients had both 68Ga-RM2 PET/MRI and 68Ga-PSMA11 PET/CT (n=23) or 18F- DCFPyL PET/CT (n=27) at an interval ranging from 1 to 60 days (mean±SD: 15.8±17.7). Maximum standardized uptake values (SUV_{max}) were collected for all lesions. Results: RM2 PET was positive in 35 and negative in 15 of the 50 patients. PSMA PET was positive in 37 and negative in 13 of the 50 patients. Both scans detected 70 lesions in 32 patients. Forty-three lesions in 18 patients were identified only on one scan: ⁶⁸Ga-RM2 detected 7 more lesions in 4 patients, while PSMA detected 36 more lesions in 13 patients. Conclusions: ⁶⁸Ga-RM2 remains a valuable radiopharmaceutical even when compared with the more widely used ⁶⁸Ga-PSMA11/¹⁸F-DCFPyL in the evaluation of BCR PC. Larger studies are needed to verify that identifying patients for whom these two classes of radiopharmaceuticals are complementary may ultimately allow for personalized medicine. **Key words:** ⁶⁸Ga-RM2; ⁶⁸Ga-PSMA11; ¹⁸F-DCFPyL; PET; prostate cancer #### INTRODUCTION Prostate cancer (PC) is the most-common non-cutaneous cancer diagnosed in the United States, accounting for an estimated 191,930 new cases and 33,330 deaths (second only after lung cancer) in 2020 (1). Biochemical recurrence (BCR) within 10 years after primary treatment occurs in 20-40% of cases after radical prostatectomy and 30-50% of cases after radiation therapy (2,3). Despite lack of consensus, the prostate-specific antigen (PSA) remains the biomarker of disease after primary treatment. BCR is characterized by heterogeneity; therefore, a single biological target is unlikely to allow for complete understanding and accurate treatment. Prostate specific membrane antigen (PSMA) is currently the most evaluated positron emission tomography (PET) molecular target for PC (4), showing better sensitivity and specificity than standard imaging for the detection of metastatic disease even at low PSA values (5). Commonly used radiopharmaceuticals targeting PSMA include ⁶⁸Ga-PSMA-HBED-CC (⁶⁸Ga-PSMA11) (6) and ¹⁸F-DCFPyL (7). Another class of radiopharmaceuticals used for the assessment of PC patients are the gastrin releasing peptide (GRP) analogs. Among them, ⁶⁸Ga-BAY86-7548 (RM2) has been reported in clinical studies (8,9). Our group showed a higher ⁶⁸Ga-RM2 PET detection rate for PC when compared to magnetic resonance imaging (MRI) in a cohort of 32 patients (9). Here, we compared ⁶⁸Ga-RM2 to ⁶⁸Ga-PSMA11 and ¹⁸F-DCFPyL. In the age of personalized medicine and theragnostics, it is important to identify which patients will benefit from one class of radiopharmaceutical or the other. This cohort was not previously reported. #### MATERIALS AND METHODS # **Patient Population** Participants with suspected BCR PC after primary treatment were prospectively enrolled in 3 clinical trials evaluating the performance of ⁶⁸Ga-RM2 (NCT 02624518), ⁶⁸Ga-PSMA11 (NCT02673151) and ¹⁸F-DCFPyL (NCT03501940). Twenty-three patients had both ⁶⁸Ga-RM2 PET/MRI and ⁶⁸Ga-PSMA11 PET/CT, while another 27 patients had both ⁶⁸Ga-RM2 PET/MRI and ¹⁸F-DCFPyL PET/CT. BCR was diagnosed after prostatectomy with or without adjuvant radiotherapy at a PSA level of 0.2 ng/mL or greater, with a second confirmatory PSA level of at least 0.2 ng/mL (*10*). For post radiation therapy patients, BCR was diagnosed as rise of PSA measurement of 2 or more ng/mL over the nadir (*11*). All participants signed an informed consent and the protocols were approved by the local institutional review board. Data collected in these 3 trials was retrospectively analyzed for this comparison. Clinical parameters including stage of disease, Gleason score, PSA nadir, PSA within 30 days of the scan, PSA velocity, primary and subsequent treatments were obtained from the electronic medical records. ## **Scanning Protocols** All ⁶⁸Ga-PSMA11 and ¹⁸F-DCFPyL scans were acquired using a silicon photomultiplier (SiPM)-based PET/CT system (Discovery Molecular Insights – DMI, GE Healthcare, Waukesha, WI). The scans were performed according to PSMA PET guidelines (*12*) and as previously described (*7*). All ⁶⁸Ga-RM2 scans were acquired using a time-of-flight enabled simultaneous PET/MRI scanner (SIGNA, GE Heatlhcare), as previously described (9). The choice of PET/CT or PET/MRI was dictated by the funding available to support the clinical trials. The PET/CT and PET/MRI use the same SiPM-based detectors and we previously reported their clinical evaluation (13,14). # Image Analysis Two Nuclear Medicine physicians (AI and LB) reviewed and analyzed all images using MIMvista version 6.9.2 (MIMvista Corp, Cleveland, OH, USA). LB subsequently recorded semi-quantitative measurements (maximum standardized uptake values - SUV_{max}). All areas of increased radiotracer uptake in sites not expected to show physiological accumulation were reported as "abnormal". Increased uptake was defined as focal tracer uptake higher than adjacent background. ⁶⁸Ga-RM2 uptake was considered as physiological in the following tissues: gastrointestinal tract, liver, spleen, pancreas, kidneys, ureters, bladder (*15*). This approach is similar to guidelines for standard image interpretation for ⁶⁸Ga-PSMA11 PET (*16*). The PETedge tool was used for evaluation of focal uptake outside the expected biodistribution. The diameter of anatomical structures corresponding to focal uptake were measured on T1-weighted MR for ⁶⁸Ga-RM2 and on CT for ⁶⁸Ga-PSMA11 and ¹⁸F-DCFPyL. The majority of patients with a positive scan (⁶⁸Ga-RM2 PET/MRI and/or ⁶⁸Ga-PSMA11/¹⁸F-DCFPyL) started therapy after the examination; therefore, follow-up comparison with other imaging modalities was not possible. Pathologic confirmation of the findings was done in 5 participants. ## **Statistical Analyses** Statistical analysis was performed with SPSS v26 (SPSS Inc. Chicago, IL). Continuous data are presented as mean±standard deviation (SD), minimum-maximum values and frequencies (%). Welch's test was used to compare PSA and PSA velocity between positive vs negative scans. Paired Wilcoxon signed-rank test was used to compare differences in SUV_{max} measurements in lesions between the radiopharmaceuticals. Fisher's exact tests was used to correlate clinical parameters with positivity vs negativity of the two radiopharmaceuticals. A *P*-value <0.05 was considered significant. ## **RESULTS** ## **Patients' Characteristics** Fifty patients, 52-81 year-old (mean±SD: 69.4 ± 7) had both 68 Ga-RM2 PET/MRI and 68 Ga-PSMA11 PET/CT (n=23) or 18 F-DCFPyL PET/CT (n=27). Thirty-six of the 50 had radical prostatectomy as primary treatment and 14 had radiation therapy. Fifteen patients were treated with androgen deprivation therapy before the scans, while 23 started androgen deprivation therapy after the scans. PSA at the time of the scans ranged from 0.1 to 21.5 ng/mL (mean±SD: 4.2±5). Tables 1 and 2 summarize clinical and imaging characteristics of this cohort of patients. The injected dose ranged from 111 to 155.4 MBq (mean±SD: 114.3±7.4) for ⁶⁸Ga-RM2, from 129.5 to 199.8 MBq (mean±SD: 151.7±14.8) for ⁶⁸Ga-PSMA11 and from 270.1 to 366.3 MBq (mean±SD: 333±25.9) for ¹⁸F-DCFPyL. The uptake time ranged from 39 to 100 minutes (mean±SD: 52.7±11) for ⁶⁸Ga-RM2 PET/MRI, from 45 to 107.9 minutes (mean±SD: 66.3±15) for ⁶⁸Ga-PSMA11 PET/CT, and from 60 to 120 minutes (mean±SD: 81.2±17) for ¹⁸F-DCFPyL. The interval between RM2 and PSMA scans ranged from 1 to 60 days (mean±SD: 15.8±17.7). # PSMA (68Ga-PSMA11 and 18F-DCFPyL) vs 68Ga-RM2 Findings ⁶⁸Ga-RM2 PET was positive in 35 (70%) and negative in 15 (30%) of the 50 patients. PSMA PET was positive in 37 (74%) and negative in 13 (26%) of the 50 patients. Both scans detected 70 lesions in 32 patients, (42 lymph nodes, 7 prostate bed, 6 seminal vesicles, 6 hepatic lesions and 9 bone lesions). SUV_{max} for these 70 lesions ranged from 1.7 to 52.5 (mean±SD: 8.1±9.4) for RM2 and from 1.6 to 79.3 (mean±SD: 16.7±17.4) for PSMA. The difference in SUV_{max} was statistically significant (*P*<0.001). PSA ranged from 0.3 to 21.5 ng/mL (mean \pm SD:4.4 \pm 4.8) and from 0.1 to 19.2 ng/mL (mean \pm SD: 3.6 \pm 5.7) for RM2 positive vs. negative scans, respectively and the difference was not significant (NS) (P=0.775). PSA ranged from 0.2 to 21.5 ng/mL (mean \pm SD: 4.2 \pm 4.7) and from 0.1 to 19.2 ng/mL (mean \pm SD: 3.6 \pm 6.1) for PSMA positive vs. negative scans, respectively and the difference was NS (P=0.739). PSA velocity ranged from 0.1 to 42 ng/mL/year (mean±SD: 5.7±9.8) and from 0.1 to 21.3 ng/mL/year (mean±SD: 3.5±5.5) for RM2 positive vs. negative scans, respectively and the difference was NS (*P*=0.320). PSA velocity ranged from 0.1 to 42 ng/mL/year (mean±SD: 5.6±9.8) and from 0.1 to 12.2 ng/mL/year (mean±SD: 2.9±3.9) for PSMA positive vs. negative scans, respectively and the difference was NS (*P*=0.174). The positivity rate for PSA \le 0.5, >0.5 to \le 1, >1 to \le 2, >2 to \le 5 and > 5 was 38% (n=3/8), 90% (n=9/11), 50% (n=4/8), 89% (n=8/9) and 79% (n=11/14) for 68 Ga-RM2 and 22% (n=2/9), 91% (n=10/11), 75% (n=6/8), 100% (n=9/9) and 77% (n=10/13) for PSMA. 68 Ga-RM2 detected 7 more lesions in 4 patients compared to PSMA (3 lymph nodes, 3 bone lesions and 1 adrenal gland lesion). Average SUV_{max} of these lesions was 5.8 and 6/7 had a diameter <1 cm. The mean PSA in these patients was 5 ng/mL and 3 of them had a negative PSMA scan. PSMA detected 36 more lesions in 13 patients compared to RM2 (27 lymph nodes, 1 lung nodule, 8 bone metastases). Average SUV_{max} of these lesions was 14.8 and 23/36 measured <1 cm. The mean PSA value of these patients was 4.6 ng/mL and 5 of them had a negative RM2 scan. Ten participants had both negative RM2 and PSMA scans. Their PSA at the time of the scans ranged 0.1-19.2 ng/ml (mean±SD: 3.1±6.1). This subgroup included 6 participants with PSA ≤0.5 ng/ml, 2 participants with PSA of 1.2 ng/ml and 1.4 ng/ml, respectively, and 2 participants with PSA of 8.2 ng/ml and 19.2 ng/ml, respectively. We did not identify any significant correlation between radiological findings (RM2 and PSMA positive vs. negative scans) and clinical parameters such as Gleason score ($\leq 3+4$; $\geq 4+3$), primary treatment (radical prostatectomy vs radiation therapy) or androgen deprivation therapy before imaging. Figures 1 and 2 and Supplemental Figures 1 and 2 show pairs of ⁶⁸Ga-RM2 and ¹⁸F-DCFPyL findings in different participants. We previously published images comparing ⁶⁸Ga-RM2 and ⁶⁸Ga-PSMA11 (8). Lesions analysis for ⁶⁸Ga-RM2 vs ⁶⁸Ga-PSMA11/¹⁸F-DCFPyL is shown in Table 3. #### DISCUSSION Our study evaluated GRPR and PSMA PET radiopharmaceuticals in patients with BCR PC. The ⁶⁸Ga-RM2 positivity rate is similar to our prior published reports (*8*,*9*). The overall semi-quantitative analysis showed that PSMA radiopharmaceuticals had higher SUV_{max} measurements than RM2, and the difference was statistically significant. However, there were differences between ⁶⁸Ga-PSMA11 and ¹⁸F-DCFPyL measurements against ⁶⁸Ga-RM2, with higher and statistically significant values only for ¹⁸F-DCFPyL. This may be due to differences between ⁶⁸Ga and ¹⁸F labeled radiopharmaceuticals. Prior work by Dietlein et al. showed that same lesions have higher uptake measured on ¹⁸F-DCFPyL than on ⁶⁸Ga-PSMA11 PET (*17*). PSA velocity for patients with positive vs. negative scans was not statistically significant for either GRPR or PSMA PET in this cohort. We previously reported the first comparson of ⁶⁸Ga-RM2 and ⁶⁸Ga-PSMA11 in a small pilot study (8). Here we expanded with a new cohort of patients and two different PSMA targeting radiopharmaceuticals. Hoberuck et al reported data from 16 patients with mostly advanced PC who underwent both ⁶⁸Ga-PSMA11 PET/CT or ⁶⁸Ga-PSMA11 PET/MRI and ⁶⁸Ga-RM2 PET/CT (18). ⁶⁸Ga-RM2 PET/CT showed two osseous lesions not seen by ⁶⁸Ga-PSMA11, while the latter showed avid uptake in several locations not visible with ⁶⁸Ga-RM2. No previous studies compared ¹⁸F-DCFPyL and ⁶⁸Ga-RM2. PSMA ligands have high positivity rate even at low PSA values (5). One study showed 50% positivity when PSA < 0.5 ng/mL in a cohort of 319 participants (19). In our cohort, the positivity rate was similar for PSMA and RM2 (2/9 and 3/8, respectively) at PSA < 0.5 ng/mL. Larger studies are needed to confirm these preliminary observations. GRPR are not highly expressed in advanced states of androgen-independent PC, especially in osseous metastases (20). Here, ⁶⁸Ga-RM2 identified 3 bone lesions in 1 patient that were not conspicuous on PSMA. This patient was previously treated with radical prostatectomy and ADT, subsequently becoming androgen-independent. On the other hand, ⁶⁸Ga-RM2 PET did not identify 8 osseous lesions seen by PSMA in other patients. These findings require further evaluation. Some of the patients in this cohort had ADT before the scans and this may have influenced the uptake of the two radiopharmaceuticals. PSMA uptake is regulated by androgen hormones and ADT may considerably increase PSMA-ligand uptake (21-23). A single study suggests that ADT induces GRP activity, activation of NF-kB and increased levels of AR-V7 expression resulting in progression to CRPC (24). Recently, interest in metastasis directed therapies in patients with minimal metastatic tumor burden ("oligometastatic disease") has increased (25); in these patients, for whom the exact number and localization of the lesions is of great importance, having access to different classes of radiopharmaceuticals may be very useful. Whether the PSA rise reflects a loco-regional recurrence or distant metastatic disease still remain an important question in BCR PC, because treatment planning would change accordingly from a potentially curative local therapy to watchful waiting or palliative systemic treatment. In this setting and considering how heterogeneous PC is, identifying patients for whom different classes of radiopharmaceuticals are complementary may ultimately allow for personalized medicine. The use of combination therapies with non-overlapping toxicities may allow delivery of greater doses to lesions, as well as possibly less adverse events. Our study has limitations including the relatively small number of patients analyzed (albeit the largest dataset of GRPR vs PSMA PET imaging at BCR PC) and the different methods used for scanning patients, dictated by available research funding. However, both PET/CT and PET/MRI used the same SiPM-based detectors that provide similar performance in both modalities. MRAC is not ideal for the skeleton; it is known that improperly accounting for bone may lead to underestimation of PET signal in tissues near bone (26) and this may have impacted the results of ⁶⁸Ga-RM2. Lastly, pathology confirmation of the identified lesions was limited to a small number of participants (10%) due to a bias from the referring physicians who accepted putative sites of disease on imaging after initial biopsies returned no false positive ⁶⁸Ga-RM2 findings; in addition, PSMA findings are now widely accepted by treating physicians. In an attempt to find correlation between clinical features and GRPR vs. PSMA positive or negative lesions we ran Fisher's exact test but did not observe any significant associations. This may be due to the small cohort of patients enrolled. Furthermore, 20% of our participants had negative PSMA and RM2 scans, including at PSA >5ng/ml. These underline the complexity of the PC biology and should be evaluated in larger prospective studies. ## **CONCLUSIONS** ⁶⁸Ga-RM2 remains a valuable radiopharmaceutical even when compared with the more widely used ¹⁸F-DCFPyL/⁶⁸Ga-PSMA11 in the evaluation of BCR PC. Larger studies are needed to verify that identifying patients for whom these two classes of radiopharmaceuticals are complementary may ultimately allow for personalized medicine. ### DISCLOSURE NCT 02624518 (⁶⁸Ga-RM2) was supported by Department of Defense Impact Award (W81XWH-16-1-0604). NCT02673151 (⁶⁸Ga-PSMA11) was partially supported by institutional support from GE Healthcare and by Department of Radiology discretionary funds. NCT03501940 (¹⁸F-DCFPyL) was partially supported by Department of Radiology discretionary funds. Life MI provided the RM2 precursor. Progenics Pharmaceuticals provided ¹⁸F-DCFPyL as part of a Research Access Program. No potential conflicts of interest relevant to this article exist. #### **KEY POINTS** QUESTION: Is there a benefit to using GRPR PET in addition to PSMA PET in patients with BCR PC? PERTINENT FINDINGS: 50 participants with BCR PC had both ⁶⁸Ga-RM2 and ⁶⁸Ga-PSMA11/¹⁸F-DCFPyL PET. RM2 PET was positive in 35 (70%) and negative in 15 (30%) of the 50 patients. PSMA PET was positive in 37 (74%) and negative in 13 (26%) of the 50 patients. Both scans detected 70 lesions in 32 patients, (42 lymph nodes, 7 prostate bed, 6 seminal vesicles, 6 hepatic lesions and 9 bone lesions). Forty-three lesion in 18 patients were seen only by one class of radiopharmaceutical: ⁶⁸Ga-RM2 detected 7 more lesions in 4 patients, while PSMA detected 36 more lesions in 14 patients (9 lesions were identified by ⁶⁸Ga-PSMA11 and 27 by ¹⁸F-DCFPyL). IMPLICATIONS FOR PATIENT CARE: ⁶⁸Ga-RM2 remains a valuable radiopharmaceutical even when compared with the more widely used ⁶⁸Ga-PSMA11/¹⁸F-DCFPyL in the evaluation of BCR PC. Larger studies are needed to verify that identifying patients for whom these two classes of radiopharmaceuticals are complementary may ultimately allow for personalized medicine. #### References: - 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7-30. - 2. Roehl KA, Han M, Ramos CG, Antenor JA, Catalona WJ. Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: long-term results. *J Urol.* 2004;172:910-914. - **3.** Freedland SJ, Humphreys EB, Mangold LA, et al. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. *JAMA*. 2005;294:433-439. - **4.** De Visschere PJL, Standaert C, Futterer JJ, et al. A Systematic Review on the Role of Imaging in Early Recurrent Prostate Cancer. *Eur Urol Oncol.* 2019;2:47-76. - **5.** Maurer T, Eiber M, Schwaiger M, Gschwend JE. Current use of PSMA-PET in prostate cancer management. *Nat Rev Urol.* 2016;13:226-235. - **6.** Afshar-Oromieh A, Holland-Letz T, Giesel FL, et al. Diagnostic performance of (68)Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. *Eur J Nucl Med Mol Imaging*. 2017;44:1258-1268. - **7.** Song H, Harrison C, Duan H, et al. Prospective Evaluation of (18)F-DCFPyL PET/CT in Biochemically Recurrent Prostate Cancer in an Academic Center: A Focus on Disease Localization and Changes in Management. *J Nucl Med.* 2020;61:546-551. - **8.** Minamimoto R, Hancock S, Schneider B, et al. Pilot Comparison of (6)(8)Ga-RM2 PET and (6)(8)Ga-PSMA-11 PET in Patients with Biochemically Recurrent Prostate Cancer. *J Nucl Med.* 2016;57:557-562. - **9.** Minamimoto R, Sonni I, Hancock S, et al. Prospective Evaluation of (68)Ga-RM2 PET/MRI in Patients with Biochemical Recurrence of Prostate Cancer and Negative Findings on Conventional Imaging. *J Nucl Med.* 2018;59:803-808. - **10.** Cookson MS, Aus G, Burnett AL, et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. *J Urol.* 2007;177:540-545. - **11.** Roach III M, Hanks G, Thames Jr H, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. *International Journal of Radiation Oncology* Biology* Physics*. 2006;65:965-974. - **12.** Fendler WP, Eiber M, Beheshti M, et al. (68)Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. *Eur J Nucl Med Mol Imaging*. 2017;44:1014-1024. - **13.** Iagaru A, Mittra E, Minamimoto R, et al. Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality. *Clin Nucl Med.* 2015;40:1-8. - **14.** Baratto L, Park SY, Hatami N, et al. 18F-FDG silicon photomultiplier PET/CT: A pilot study comparing semi-quantitative measurements with standard PET/CT. *PLoS One*. 2017;12:e0178936. - **15.** Baratto L, Duan H, Laudicella R, et al. Physiological (68)Ga-RM2 uptake in patients with biochemically recurrent prostate cancer: an atlas of semi-quantitative measurements. *Eur J Nucl Med Mol Imaging*. 2020;47:115-122. - **16.** Fanti S, Minozzi S, Morigi JJ, et al. Development of standardized image interpretation for 68Ga-PSMA PET/CT to detect prostate cancer recurrent lesions. *Eur J Nucl Med Mol Imaging*. 2017;44:1622-1635. - **17.** Dietlein M, Kobe C, Kuhnert G, et al. Comparison of [(18)F]DCFPyL and [(68)Ga]Ga-PSMA-HBED-CC for PSMA-PET Imaging in Patients with Relapsed Prostate Cancer. *Mol Imaging Biol.* 2015;17:575-584. - **18.** Hoberuck S, Michler E, Wunderlich G, et al. 68Ga-RM2 PET in PSMA- positive and negative prostate cancer patients. *Nuklearmedizin*. 2019;58:352-362. - **19.** Afshar-Oromieh A, Malcher A, Eder M, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. *Eur J Nucl Med Mol Imaging*. 2013;40:486-495. - **20.** Beer M, Montani M, Gerhardt J, et al. Profiling gastrin-releasing peptide receptor in prostate tissues: clinical implications and molecular correlates. *Prostate*. 2012;72:318-325. - **21.** Evans MJ, Smith-Jones PM, Wongvipat J, et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. *Proc Natl Acad Sci U S A*. 2011;108:9578-9582. - **22.** Murga JD, Moorji SM, Han AQ, Magargal WW, DiPippo VA, Olson WC. Synergistic cotargeting of prostate-specific membrane antigen and androgen receptor in prostate cancer. *Prostate*. 2015;75:242-254. - **23.** Meller B, Bremmer F, Sahlmann CO, et al. Alterations in androgen deprivation enhanced prostate-specific membrane antigen (PSMA) expression in prostate cancer cells as a target for diagnostics and therapy. *EJNMMI Res.* 2015;5:66. - **24.** Qiao J, Grabowska MM, Forestier-Roman IS, et al. Activation of GRP/GRP-R signaling contributes to castration-resistant prostate cancer progression. *Oncotarget*. 2016;7:61955-61969. - **25.** Giannarini G, Fossati N, Gandaglia G, et al. Will Image-guided Metastasis-directed Therapy Change the Treatment Paradigm of Oligorecurrent Prostate Cancer? *Eur Urol.* 2018;74:131-133. - **26.** Chen Y, An H. Attenuation Correction of PET/MR Imaging. *Magn Reson Imaging Clin N Am.* 2017;25:245-255. ## FIGURE LEGENDS **Figure 1:** 63 year-old man previously treated with radical prostatectomy, followed by salvage RT+ADT, presenting with BCR PC (PSA 0.4 ng/mL and PSA velocity 1.6 ng/mL/year). Maximum intensity projection (MIP) of ⁶⁸Ga-RM2 (A) and ¹⁸F-DCFPyL (B), axial PET of ⁶⁸Ga-RM2 (C) and ¹⁸F-DCFPyL (E), fused axial PET/MRI of ⁶⁸Ga-RM2 (D) and fused axial ¹⁸F-DCFPyL PET/CT (F) are shown. Red arrows mark left peri-rectal lymph nodes with significantly lower ⁶⁸Ga-RM2 uptake than ¹⁸F-DCFPyL uptake. **Figure 2:** 66 year-old man previously treated with RT+ADT, presenting with BCR PC (PSA 11.6 ng/mL and PSA velocity 12.2 ng/mL/year). MIP of ⁶⁸Ga-RM2 (A) and ¹⁸F-DCFPyL (B), axial PET of ⁶⁸Ga-RM2 (C) and ¹⁸F-DCFPyL (E), fused axial PET/MRI of ⁶⁸Ga-RM2 (D) and fused axial ¹⁸F-DCFPyL PET/CT (F) are shown. Red arrows mark right adrenal lesion clearly seen on ⁶⁸Ga-RM2 but not prospectively identified on ¹⁸F-DCFPyL given similar uptake in the adrenal gland and liver parenchyma. Blue arrows mark physiologic ⁶⁸Ga-RM2 uptake in the pancreas. Table 1: 68Ga-RM2 vs. 68Ga-PSMA11 - patients characteristics and PET imaging results | Age | TNM | GS* | Primary
Treatment
(year) | Subsequent
Treatment
(year) | PSA
nadir | PSA+ | PSA
Velocity | RM2 PET | PSMA11 PET | Days
between
scans
(days) | FU | | |-----|---------|-----|--------------------------------|-----------------------------------|--------------|------|-----------------|--|---|------------------------------------|--|--| | 73 | N/A | 5+3 | RP (2004) | Salvage
RT+ADT
(2006) | <0.05 | 5.8 | 5.7 | Retroperitoneal
LNs | Negative | 12 | ADT | | | 69 | T1N0M0 | 3+3 | BrachyT
(2003) | RT (2011) | <0.05 | 4.2 | 6.8 | Negative | Retroperitoneal
LNs | 11 | ADT | | | 79 | T3aN0M0 | 3+4 | RP (2011) | None | <0.05 | 0.8 | 0.3 | Negative | Left pelvic LN | 15 | RT to the LN + ADT | | | 73 | T2bN0M0 | 3+3 | BrachyT
(2015) | None | <0.05 | 7.9 | 3.3 | Left seminal vesicle | Left seminal vesicle | 2 | BrachyT to the left
prostate and seminal
vesicle
(biopsy proven
recurrence) | | | 64 | T2NXM0 | 3+4 | RP (2011) | None | | 0.2 | 0.1 | Negative | Negative | 9 | N/A | | | 68 | T3aN0M0 | 3+4 | RP (2016) | None | < 0.05 | 0.3 | 0.2 | Left pelvic LNs | Negative | 9 | RT to the pelvis +ADT | | | 74 | T1cNXM0 | 4+3 | BrachyT
(2007) | None | N/A | 5.8 | 2.5 | Left prostate
bed | Left prostate
bed, right 3r ^d
rib | 6 | BrachyT to the prostate
bed (biopsy proven
recurrence) + SBRT to
the 3d right rib | | | 73 | T3aN0M0 | 3+4 | RP (2003) | None | <1 | 10.6 | 39.9 | Left pelvic mass | Right prostate
bed, left pelvic
mass,
retroperitoneal
LNs | 18 | RT to the pelvis and para-aortic LNs+ADT | | | 66 | T3aN0M0 | 4+3 | RP (2017) | None | <0.05 | 0.7 | 5.7 | Right pelvic
LNs, right femur | Right pelvic
LNs, right
femur | 1 | RT to the pelvis and prostate bed +ADT | | | 66 | T2cN0Mx | 3+4 | RP (2011) | Salvage
RT+ADT
(2011) | N/A | 8.2 | 14.4 | Negative | Negative | 1 | ADT | | | 62 | T3aN1M0 | 4+3 | RP (2017) | None | <0.05 | 0.4 | 1.2 | B/L Pelvic LNs | B/L Pelvic LNs | 43 | RT to the Pelvis and
Prostate Bed +ADT | | | 70 | T3cN0M0 | 4+3 | RP (2001) | Salvage
RT+ADT
(2008) | <0.05 | 1.8 | 0.6 | Retroperitoneal
LNs | Retroperitoneal
LNs | 2 | ADT | | | 72 | T3N0Mx | 3+4 | RP (2005) | None | N/A | 0.7 | 0.4 | Right prostate bed | Right prostate bed | 7 | N/A | | | 77 | N/A | 4+4 | RT+ADT
(2001) | ADT | N/A | 54 | 21.5 | Retroperitoneal
LNs, left
supraclavicular
LNs | Retroperitoneal
LNs, left
supraclavicular
LNs | 7 | ADT | | | 71 | T1cN0M0 | 3+3 | RP (2013) | Salvage RT
(2014) | 0.7 | 62 | 3.1 | Retroperitoneal LNs | Retroperitoneal LNs | 5 | ADT | | | 60 | T2cN0M0 | 3+4 | RP (2011) | BachyT+ADT
(2013) | <0.05 | 56.4 | 1.9 | Left pelvic nodule | Left pelvic nodule | 3 | RT to the left pelvic nodule | | | 71 | T4N0M0 | 4+5 | RT+ADT
(2014) | None | 0.1 | 1.5 | 1.9 | Right prostate
bed | Right prostate
bed | 2 | HIFU to the
prostate+ADT
(biopsy proven
recurrence) | | | 63 | T2bN0M0 | 3+4 | RP (2017) | None | <0.05 | 0.2 | 0.6 | Negative | Negative | 14 | Salvage RT | | | 78 | T3aN0M0 | 4+3 | RP (2009) | None | 0.15 | 4.3 | 3.5 | B/L pelvic LNs | B/L pelvic LNs | 11 | N/A | | | 79 | T3bN0M0 | 5+4 | RP (2012) | Salvage
RT+ADT
(2013) | <0.05 | 1.7 | 3.4 | Negative | Lung nodule | 25 | ADT | | | 67 | T2cN0M0 | 3+4 | RP (2017 | None | < 0.05 | 1.2 | 1.7 | Negative | Negative | 1 | Salvage RT | | | 74 | T3bN0M0 | 4+4 | RP (2011) | Salvage
RT+ADT+
SBRT (2011) | N/A | 1 | 2.1 | B/L hilar and
subcarinal LNs | B/L hilar and subcarinal LNs | 19 | ADT | | GS: Gleason score; RP: radical prostatectomy; RT: radiation therapy; ADT: androgen deprivation therapy; BrachyT: brachytherapy; LN(s): Lymph node(s); SBRT: stereotactic body radiation therapy; B/L: bilateral; HIFU: high Intensity focused ultrasound; MET(s): metastasis/metastases; CR: castration resistant; VMAT: volumetric arc therapy *: at the time of RM2 and PSMA11 scan; *: at the time of primary treatment N/A: not available (patients self-referred from outside our healthcare system were only required to provide documentation for inclusion/exclusion criteria; therefore, some clinical data was not available) Table 2: ⁶⁸Ga-RM2 vs. ¹⁸F-DCFPyL - patients characteristics and PET imaging results | Age | TNM/Stage* | GS* | Primary
Treatment
(year) | Subsequent
Treatment
(year) | PSA
nadir | PSA ⁺ | PSA
Velocity | RM2 PET | DCFPYL PET | Days
between
scans
(days) | FU | |-----|------------|-----|--------------------------------|-----------------------------------|--------------|------------------|-----------------|--|--|------------------------------------|---| | 74 | T2cN0M0 | 3+4 | VMAT+
ADT (2011) | Salvage RT
(2016) | <0.05 | 12.5 | 5.2 | Rt seminal vesicle
and pelvic mass | Rt seminal vesicle
and pelvic mass | 8 | ADT | | 62 | N/A | 4+4 | RP (2012) | None | <0.05 | 0.2 | 0.1 | Negative | Negative | 18 | Salvage RT | | 73 | T3bN0M0 | 4+5 | RP (2014) | Salvage RT
(2015) | 0.08 | 1.8 | 0.4 | Seminal vesicles | Seminal vesicles | 6 | N/A | | 77 | T2aN0M0 | 4+4 | RT+ADT
(2012) | None | <0.05 | 13.4 | 21.3 | Negative | Bone METs | 1 | ADT | | 59 | T3 | 3+4 | RT (2012) | None | <0.05 | 5.1 | 1 | Right seminal vesicle | Right seminal vesicle | 1 | N/A | | 78 | T3bN0M0 | 4+3 | RP (2016) | Salvage
RT+ADT
(2016) | 1 | 0.9 | 1 | Sternum | Sternum** | 35 | RT to the
Sternum+ADT | | 63 | T3bN1M0 | 5+4 | RP (2015) | Salvage
RT+ADT
(2015) | <0.05 | 0.4 | 1.6 | Pelvic LNs | Pelvic LNs ⁺⁺ , left iliac
LN | 22 | ADT | | 68 | T3aN0M0 | 4+4 | RP (2018) | Salvage RT
(2018) | N/A | 4 | 2.8 | Right pelvic LNs | Right pelvic LNs | 32 | ADT | | 69 | T3aN0M0 | 4+4 | RP (2015) | Salvage RT
(2016) | N/A | 9.8 | 7.4 | Liver capsule,
retroperitoneal LNs++ | Liver capsule,
retroperitoneal LNs | 55 | ADT | | 78 | T3aN0M0 | 4+3 | RP (2009) | None | 0.15 | 3 | 3.5 | B/L pelvic LNs | B/L pelvic LNs | 16 | N/A | | 73 | T3aN1M0 | 4+4 | RP (2013) | Salvage
RT+ADT
(2014) | 0.1 | 0.8 | 0.3 | Right pelvic LN | Right pelvic LN | 3 | N/A | | 76 | T3bN0MX | 4+3 | RP (2010) | Salvage
RT+ADT
(2011) | 5.4 | 4.2 | 5.8 | Multiple bone METs** | Multiple bone METs | 1 | Docetaxel and
Carboplatin | | 78 | T2cN0Mx | 3+4 | RT (2014) | None | N/A | 3.3 | 1.1 | Left prostate bed | Left prostate bed++ | 47 | N/A | | 56 | T3aN0M0 | 4+4 | RP (2014) | Salvage RT
(2015) | <0.05 | 0.6 | 0.4 | Retroperitoneal LNs,
right pelvic LNs | Retroperitoneal LNs,
right pelvic LNs ⁺⁺ | 10 | N/A | | 76 | T2aN0M0 | 4+4 | RP (2010) | None | 0.1 | 0.5 | 0.1 | Negative | Negative | 54 | Salvage
RT+ADT | | 69 | T3aN0M0 | 4+5 | RP (2017) | Salvage RT
(20180 | <0.05 | 2.3 | 3.5 | Multiple bone METs,
retroperitoneal/pelvic
LNs | Multiple bone METs,
retroperitoneal/pelvic
LNs** | 1 | ADT | | 75 | T2cN0M0 | 3+3 | RP (2014) | Salvage RT
(2017) | 0.2 | 0.9 | 0.4 | Left seminal vesicle | Left seminal vesicle | 1 | N/A | | 63 | T3aN0M0 | 4+5 | RP (2017) | Salvage RT
(2017) | 0.1 | 1.4 | 0.8 | Negative | Negative | 10 | N/A | | 81 | T3aN0M0 | 3+4 | BrachyT+ADT
(2016) | ADT (2017) | N/A | 19.2 | 6.5 | Negative | Negative | 60 | N/A | | 66 | T1cN0M0 | 4+3 | RT (2013) | None | 0.7 | 6.2 | 4.8 | Mediastinal LNs | Mediastinal LNs | 53 | Biopsy of
mediastinal LN
was FN
(sample error) | | 54 | T3aN0M0 | 4+3 | RP (2018) | None | 1.8 | 2 | 3.5 | Negative | Pelvic LNs | 46 | N/A | | 72 | T3bN0M0 | 4+5 | RP (2019) | None | 0.10 | 0.2 | 0.6 | Negative | Left external iliac LN,
iliac bone | 28 | Salvage
RT+ADT | | 66 | T4N0M0 | 4+4 | RT+ADT
(2012) | None | N/A | 11.6 | 12.2 | Right adrenal gland | Negative | 6 | RT to the
adrenal gland | | 52 | T2cN1M0 | 4+3 | RP (2017) | None | <0.05 | 0.1 | 0.2 | Negative | Negative | 49 | N/A | | 74 | T2cNXMO | 3+4 | RP (2006) | Salvage
RT+ADT
(2015) | 0.08 | 12.9 | 42 | Left supraclavicular,
retroperitoneal LNs | Left supraclavicular,
retroperitoneal LNs** | 8 | Biopsy of the
left
supraclavicular
LN was TP | | 67 | N/A | N/A | BrachyT
(2013) | None | 0.3 | 4.7 | 2.9 | Prostate bed | Prostate bed | 1 | None | | 66 | T2cN0M0 | 4+4 | RP (2010) | Salvage RT+
ADT (2012) | 1.87 | 0.7 | 0.1 | Left pelvic LN | Left pelvic LN ⁺⁺ | 4 | N/A | | 57 | T2cN0M0 | 4+3 | RP (2016) | None | 0.009 | 0.23 | 0.1 | Left prostate bed | Left prostate bed | 1 | Salvage RT | ^{*:} at the time of RM2 and PSMA11 scan; **: the uptake was higher compared to the other radiopharmaceutical. *: at the time of primary treatment. N/A: not available (patients self-referred from outside our healthcare system were only required to provide documentation for inclusion/exclusion criteria; therefore, some clinical data was not available) Table 3: Analysis of lesions from ⁶⁸Ga-RM2 vs. ⁶⁸Ga-PSMA11/¹⁸F-DCFPyL | Radiopharmaceutical | Local
Recurrence
(n) | SUV _{max}
average
(local
recurrence) | Lymph
Nodes
(n) | SUV _{max}
average
(nodal
metastases) | Bone
metastases
(n) | SUV _{max}
average
(bone
metastases) | |---------------------|----------------------------|--|-----------------------|--|---------------------------|---| | RM2 | 13 | 13.3 | 45* | 7.9 | 12* | 6.1 | | PSMA | 13 | 11.6 | 69** | 17.7 | 17** | 14.3 | PSMA also identified one lung nodule RM2 also identified one adrenal gland metastasis Both PSMA and RM2 also identified 6 hepatic lesions *3 lymph nodes were not detected by ⁶⁸Ga-PSMA11; 3 bone lesions were not detected by ⁶⁸Ga-RM2 ** 27 lymph nodes were not detected by ⁶⁸Ga-RM2; 8 bone lesions were not detected by ⁶⁸Ga-RM2 **Supplemental Figure 1:** 76 year-old man previously treated with radical prostatectomy, followed by salvage RT+ADT, presenting with BCR PC (PSA 4.2 ng/mL and PSA velocity 5.8 ng/mL/year. MIP of ⁶⁸Ga-RM2 (A) and ¹⁸F-DCFPyL (D), axial PET of ⁶⁸Ga-RM2 (E, G) and ¹⁸F-DCFPyL (H, J), fused axial PET/MRI of ⁶⁸Ga-RM2 (B, F) and fused axial ¹⁸F-DCFPyL PET/CT (C, I) are shown. Red arrows mark a lesion in the T7 vertebra with more intense uptake on ⁶⁸Ga-RM2 then on ¹⁸F-DCFPyL PET. Blue arrows mark a lesion in the glenoid process of the right scapula on ⁶⁸Ga-RM2, but not on ¹⁸F-DCFPyL PET. **Supplemental Figure 2:** 77 year-old man previously treated with RT+ADT, presenting with BCR PC (PSA 13.4 ng/mL and PSA velocity 21.3 ng/mL/year). MIP of ⁶⁸Ga-RM2 (A) does not show any of the small bone marrow lesions seen on MIP of ¹⁸F-DCFPyL (B).