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Abstract 

Discovery of biomarkers has been steadily increasing over the past decade. While a 

plethora of biomarkers have been reported in the biomedical literature, few have been 

sufficiently validated for broader clinical applications. One particular challenge that may 

have hindered the adoption of biomarkers into practice is the lack of reproducible 

biomarker cutpoints. In this article, we attempt to identify some common statistical 

issues related to biomarker cutpoint identification and provide guidance on proper 

evaluation, interpretation, and validation of such cutpoints. First, we illustrate how 

discretization of a continuous biomarker using sample percentiles results in significant 

information loss and should be avoided. Second, we review the popular ‘minimal p-

value approach’ for cutpoint identification and show that this method results in highly 

unstable p-values and unduly increases the chance of significant findings when the 

biomarker is not associated with outcome. Third, we critically review a common analysis 

strategy by which the selected biomarker cutpoint is used to categorize patients into 

different risk categories and the difference in survival curves among these risk groups in 

the same dataset is claimed as the evidence supporting the biomarker’s prognostic 

strength. We show that this method yields exaggerated p-value and overestimates the 

prognostic impact of the biomarker. We illustrate that the degree of the optimistic bias 

increases with the number of variables being considered in a risk model. Finally, we 

discuss methods to appropriately ascertain additional prognostic contribution of the new 

biomarker where standard prognostic factors already exist. Throughout the article, we 

use real examples in oncology to highlight relevant methodological issues and when 

appropriate, use simulations to illustrate more abstract statistical concepts. 
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Introduction 

Recent advances in biotechnologies have made it possible to perform extensive 

biological characterizations of human diseases. These efforts have resulted in the 

discovery of a myriad of biomarkers and generated much excitement for their potential 

to guide patient care. Possible uses of biomarkers in research and clinical setting 

include individual risk stratification, disease monitoring, and guiding the use of specific 

treatment regimens. Despite the large volume of published articles in biomedical 

journals on newly identified biomarkers, very few of these have progressed to the point 

of being clinically actionable. Many biomarkers may appear promising in the initial 

research reports but fail to retain their utility in subsequent studies. One particular 

challenge that may have hindered the adoption of biomarkers into practice is the lack of 

reproducible biomarker cutpoints. To aid clinical decision-making, medical practitioners 

are accustomed to discretizing a biomarker measured on a quantitative scale into 

different risk categories based on some partition of the scale, commonly called cut-

point(s). This is natural as it is desirable to define patient groups sharing similar 

expected prognosis (say, for treatment or surveillance), and an overly precise scale is 

not useful in this regard. However, frequently research reports lack sufficient details on 

how such cutpoints are identified. Moreover, naïve use of statistical methodology for 

cutpoint identification, invalid methods for analysis, and overconfidence in the reliability 

of cutpoint-defined risk groups have hampered the ability to compare results across 

different studies or to generalize the results to the larger disease population of interest 

in an unbiased fashion. Even in the same or similar disease setting, biomarker cutpoints 

reported are often inconsistent and irreproducible.  
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Our goal in this article is to highlight some common statistical issues that arise 

from biomarker cutpoint identification and to provide guidance on proper evaluation, 

interpretation, and validation of such cutpoints. First, we illustrate how discretization of a 

continuous biomarker using sample percentiles (for example, sample median) results in 

significant information loss and should be avoided. Second, we review a popular 

method for cutpoint identification which entails testing a range of cutpoint values and 

selecting the cutpoint that yields the smallest p-value (i.e. the minimal p-value 

approach). We show that this approach results in highly unstable p-values and is 

associated with a severely inflated false discovery rate (i.e. it unduly increases the 

chance of significant findings when the biomarker is not associated with outcome) and 

estimates of the biomarker effect that are biased (suggesting a larger effect than is 

actually present). Some methods for correcting the p-value and biomarker effect are 

referenced. Third, we critically review a common analysis strategy by which the selected 

biomarker cutpoint is used to categorize patients into different risk categories and the 

difference in survival curves among these risk groups in the same dataset is claimed as 

the evidence supporting the biomarker’s prognostic strength. We show that this method 

yields exaggerated p-value and overestimates the prognostic impact of the biomarker. 

We illustrate in a simulation study that the degree of the optimistic bias increases with 

the number of variables being considered in a risk model. We expand from that point to 

special considerations for biomarker cutpoints in disease settings where standard 

prognostic factors already exist. We discuss methods to appropriately ascertain 

additional prognostic contribution of the new biomarker and the relevance of cutpoint 

determination in such context. 
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Throughout the article, we use real examples in oncology to highlight relevant 

methodological issues and when appropriate, use simulations to illustrate more abstract 

statistical concepts. Although the examples here primarily pertain to molecular 

biomarkers, these principles generally apply to other type of biomarkers (e.g. imaging 

biomarkers, blood biomarkers) so long as they are measured on a continuous scale. 

Similarly, these statistical principles can be readily adopted to other non-cancer 

disciplines in biomedical research. 

 
Statistical Pitfalls in Biomarker Cutpoint Search and Analysis 

Loss of information due to discretization 

A popular strategy for handling continuous biomarkers is to convert them into 

discrete variables by grouping patients into distinct risk subgroups (for example, by 

splitting the patients based on sample percentiles of the biomarker values). This type of 

categorization avoids the need to make strong assumptions about the functional 

relationship between the biomarker and outcome. In reality, however, the true relation 

between a continuous biomarker and outcome is almost always smooth. Such relations 

are seldom characterized by an abrupt ‘jump’ at a given biomarker value. Figure 1 

illustrates two true relationships between the biomarker M and some continuous 

outcome of interest (e.g. patient survival) - one linear (Figure 1a) - green line) and one 

quadratic (Figure 1b)). In Figure 1a), the risk of death increases linearly with values of 

M. In Figure 1b), the risk of death decreases with M up to the point m, but increases 

linearly after m. Dichotomy of biomarkers into two patient groups assumes that a 

discontinuity in the risk occurs at some biomarker value and that the relationship 
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between the biomarker and outcome is flat for patients whose biomarker values are 

within the same intervals, as defined by the point of dichotomy. For example, consider 

the two orange dashed lines in Figure 1a), representing two groups of patients with 

distinct risks defined by the cutpoint c. Such dichotomy presumes that there is a notable 

change in prognosis at the cutpoint in that patients whose biomarker values are below c 

confer the same risk which is lower (by the magnitude Δ) than those patients whose 

biomarker values exceed c. This risk stratification based on dichotomizing the biomarker 

clearly does not adequately reflect the true linear relationship between the biomarker 

and outcome. In addition, categorizing a continuous biomarker causes considerable 

loss of valuable information, which may in turn increase the chance of missing a real 

association. For example, the dichotomy of biomarker values in Figure 1a) designates 

patients into two risk groups (e.g. “low risk” vs. “high risk”). Therefore, a patient whose 

true risk is highest in the “high risk” subgroup (i.e. whose biomarker value is c*) is 

assumed to have the same prognosis as a patient whose true risk is lowest in the same 

risk category (whose biomarker value is c). 

Consider the following example. In early stage triple-negative breast cancer, 

elevated level of neutrophil to lymphocyte ratio (NLR), a peripheral indicator of 

systematic inflammation, has been shown to be associated with poor outcomes in small 

retrospective patient cohorts [1-3]. In a recent report by investigators at the Mayo Clinic, 

six hundred and five patients who underwent breast surgery for stage I-III breast cancer 

between 1985 and 2012 at Mayo Clinic and met the criteria for triple-negative breast 

cancer phenotype were identified [4]. Clinicopathologic factors and biomarkers 

(including NLR) were collected to assess their impact on clinical outcomes. In that 
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study, the median NLR was 2.52. A common strategy of handling continuous 

biomarkers such as NLR is to dichotomize the biomarker at its sample median since this 

guarantees equal sample size between the ‘low’ and ‘high’ risk groups. Figure 2 a) 

displays the relationship between NLR and patient survival using restricted spline [5]. 

Clearly, there is a non-linear relationship between NLR and risk of death. If we apply a 

quadratic transformation to NLR (by including a continuous NLR term and its squared 

term in the regression model), there is a highly significant statistical association 

between NLR and risk of death (likelihood ratio test = 37.91, p < 0.0001). However, this 

association dissipates if NLR is dichotomized at its sample median (see Figure 2b); HR 

= 1.16 (95% CI: 0.89 – 1.52), log-rank p = 0.27). This example illustrates that arbitrary 

dichotomization of a continuous biomarker can distort its true relationship with outcome, 

resulting in significant information loss. Note that the HR estimate of 1.16 suggests that 

patients whose NLR is above the sample median (NLR = “high”) confers a 16% 

increase in the hazard of death, comapred to those with “low” NLR. In contrast, if NLR is 

modeled as a continuous variable in the Cox regression model, the resultant HR is 1.23 

suggesting that a one-unit increase in NLR is associated with 23% increase in the 

hazard of death. When interpreting the prognostic effect of a continuous biomarker, it is 

important to pay attention to its range (in the Mayo TNBC dataset, NLR ranges from 

0.14 to 10.50) since how ‘large’ a one-unit increase is relevant to the underlying scale of 

the biomarker. 

Due to the haphazard discretization of continuous biomarkers, the literature is 

plagued with biomarker cutpoints that are rarely reproducible. This makes comparison 

of biomarker effects across different studies impossible. For example, S-phase fraction 
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(SPF), the percentage of tumor cells in the S phase obtained by cell cycle analysis, was 

of considerable scientific interest as a potential prognostic biomarker in breast cancer, 

but in a review by Altman et al. a wide range of SPF cutpoints from 2.6 to 15.0 have 

been reported as ‘optimal’ in the literature, rendering the effect of SPF inconsistent 

among studies [6]. Another example is the nuclear proliferation biomarker Ki67. Ki67 is 

of interest for various applications in research and clinical management of breast 

cancer. For instance, clinical decision-making regarding treatment options for breast 

cancer often replies on the application of a Ki67 cutpoint to classify patients into “Ki67-

high” or “Ki67-low” risk groups. However, in a review of meta-analysis of 85 studies in 

32,825 patients in early breast cancer, Stuart-Harris et al. reported that Ki67 cutpoints 

ranging from 0% to 28.6% have been investigated [7]. This lack of consensus regarding 

the ‘optimal’ cutpoint for Ki67 in various settings has hindered its ability to facilitate 

clinical decision making or direct comparisons of Ki67 results across laboratories and 

clinical trials [8]. 

In general, when the goal is to explore whether a biomarker is singly prognostic, 

it would be preferable not to categorize the biomarker at all. A preferred approach to 

characterizing the relationship between a continuous biomarker and time-to-event 

outcome is by modeling the biomarker as a continuous variable in a univariate Cox 

regression model without introducing any cutpoint. This method has considerable 

advantage of retaining valuable information in the data and will improve the ability to 

directly compare results from different studies. When linearity assumption (that is, the 

risk increases or decreases linearly as the biomarker increases) is called into question, 

modern statistical techniques such as regression splines or fractional polynomial 



9 
 

models can be used to effectively model non-linear relationships between values of the 

biomarker and risk [5, 9]; the relationship between biomarker values and risk is 

represented by the fitted regression function and its associated confidence bands. 

Cutpoints for the biomarker, if desired, can then be defined based on the nature of the 

relationship. 

Cutpoint search via the minimal p-value approach 

Another common approach for identifying biomarker cutpoint is to examine a 

range of biomarker values and select the cutpoint that yields the smallest p-value. 

Altman et al. referred to this method as the “minimum p-value approach” [6]. Several 

authors have demonstrated that this naïve approach is associated with a considerable 

inflation of the type I error due to the well-known problem of multiple testing [6, 9-10]. 

Using the NLR example above, Figure 3 a) displays the log-rank p-values (testing the 

association between dichotomized NLR and recurrence-free survival) based on a range 

of NLR cutpoints. We excluded the top and bottom 20% of NLR and used 200 cutpoints. 

The NLR cutpoint associated with the smallest p-value is 3.95. It can be seen that the p-

values are highly unstable (range: 0 - 0.53) and minor change in the NRL cutpoint can 

lead to drastically different p-values. As such, if p-value was to be reported, some 

statistical adjustment for multiplicity is necessary. Altman described a formula to 

compute a corrected p-value [6]. When we apply this adjustment to the NLR example, 

the resulting p-value is 4.7*10(-5), substantially larger than the uncorrected p-value 

0.14*10^(-6). 
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We conduct simulation studies to investigate the severity of type I error inflation 

and how type I error rate changes as a function of the number of cutpoints and sample 

size. Specifically, we simulate a continuous biomarker which follows a uniform 

distribution between 0 and 1 (the biomarker takes any value between 0 and 1 with equal 

probabilities) and a survival outcome that follow an exponential distribution with rate 

0.0289 (translating to median survival of 24 months) with no censoring. Note that this 

data-generating mechanism ensures that the continuous biomarker and the survival 

outcome have no association. In each simulated dataset, we exclude 10% of smallest 

and of largest biomarker values as potential cutpoints, apply a fixed number of 

biomarker cutpoints, compute the 2-sided p-value from the log-rank test associated with 

each cutpoint, and identify the cutoff that yields the minimum p-value. We consider a 

variety of scenarios, varying the sample size (100, 300, 500) and number of biomarker 

cutpoints (50, 150, 300). For each sample size, 5,000 datasets are simulated as 

described above and the type I error (the percentage of simulations for which the 

minimal p-value is less than a nominal level of 5%) is recorded. The results of these 

simulations are shown in Figure 4. It can be seen that for a fixed number of cutpoints, 

the type I error hardly changes with the sample size. However, for a fixed sample size, 

the type I error increases with increasing number of biomarker cutpoints. For example, 

when sample size of 300, the type I error increases from 37.3% with 50 cutpoints to 

43.3% with 300 cutpoints. Notably, in all scenarios considered, the type I errors exceed 

37%. These simulations confirm that when a series of significance test is performed on 

the same dataset each with a pre-specified nominal type I error rate of, for example 5%, 

the minimal p-value approach leads to a global false discovery rate that may be much 
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higher than 5%. In particular, this approach may yield a ‘statistically significant’ result (p 

< 0.05) with a probability greater than 37% for a biomarker that has no association with 

outcome at all when the number of cutpoints tried exceeds 50. 

Another problem with the minimum p-value approach is concerned with the 

estimation of the biomarker effect. Specifically, this approach gives an exaggerated 

sense of association between the biomarker and outcome. This is because when there 

is an association between the (continuous) biomarker and outcome, the p-values 

derived from the significance tests (e.g. log-rank) are associated with the effect 

estimates (e.g. hazard ratio). As such, the smallest p-value would correspond to the 

most extreme hazard ratio (HR) estimate (e.g., positive association for HR < 1; negative 

association for HR >1). Figure 3 b) illustrates the association between HR estimates 

and p-values using the NLR example. The minimal p-value corresponds to a HR 

estimate of 0.45 (that is, patients with NLR values above the cutpoint of 3.95 confer a 

55% reduction in the hazard of death compared with patients whose NLR values are 

below 3.95) - this effect is overestimated. Several authors have proposed strategies to 

correct for the overestimation of the effect of a biomarker using the same dataset [11-

12]. The best and clearly unbiased approach to estimating the biomarker effect is to 

apply the cutpoint identified from the current study to other independent datasets. This 

approach guarantees that no optimistic bias is introduced to the effect estimation by the 

data-derived cutpoint.  

Comparison of clinical outcomes using data-driven cutpoint 
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Other methods exist for identifying cutpoints of continuous biomarkers. In 

radiology literature, for example, a common measure of discrimination for binary 

outcomes (e.g. alive vs. dead, cancer vs. non-cancer) is the receiver operating 

characteristic (ROC) curve. Discrimination quantifies how well a biomarker differentiates 

subjects at higher risk of having an event from those at lower risk. More specifically, a 

biomarker with good discrimination would predict having an event with a higher 

probability among subjects who will develop an event. The ROC curve consists of 

plotting the pairs of sensitivity and (1-specificity) [13] with a natural tradeoff between 

these two quantities. The area under the ROC curve (AUC) is a measure of 

discrimination, with values close to 0.5 indicating the discrimination no better than 

chance alone (i.e. having equal probability of classifying subjects with vs. those without 

events to an ‘event’ category). AUC values close to 0 or 1 indicate that the biomarker 

almost always correctly predict subject’s event status. Many methods are available for 

identifying a biomarker cutpoint that ‘optimizes’ its discriminant performance. The index 

proposed by Youden [14], defined as (sensitivity + specificity – 1), is an example. This 

index, ranging from 0 to 1, gives equal weight to false positive and false negative 

values. Graphically, the Youden’s index represents the height above the 45-degree 

chance line (representing AUC = 0.5). The biomarker value associated with the largest 

Youden’s index may be chosen as the ‘optimal’ cutpoint. Other methods exist for 

identifying cutpoints from the ROC [15]. 

In some disease settings, a multitude of biomarkers or clinicopathologic variable 

may be of prognostic potential. It is sometimes useful to combine these prognostic 

factors via statistical modeling strategy (e.g. logistic regression model for binary 
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endpoints, Cox proportional hazards model for time-to-event endpoints) to form a risk 

system (also sometimes referred to as a prognostic signature). For individual patients, 

the composite risk score (or prognostic index) can be computed by adding up the 

‘weighted’ factors (with the weights being the estimated regression coefficients). The 

prognostic indices then represents a new variable combining the information from all 

prognostic factors that can be used for prognostication purposes. For example, 

Haybittle et al. developed a prognostic index, the Nottingham Prognostic Index (NPI), 

from a Cox proportional hazards model for patients with primary operable breast cancer. 

The prognostic index for each patient was expressed as a linear function 0.17 x (tumor 

size in cm) + 0.76 x (lymph-node stage) + 0.81 x (tumor grade), where tumor grade = 1 

or 2 or 3, and lymph-node stage = 1 or 2 or 3; see Haybittle et al. for the definition of 

lymph-node stage [16]. The larger the value of NPI, the worse the patient prognosis. 

Three risk groups were then defined based on the range of the NPI’s. A cutpoint for the 

continuous prognostic index can be chosen based on the ROC methodology as 

described above for a single continuous biomarker.  

In practice, it is not uncommon for investigators to use the selected cutpoint of 

the model score to categorize patients and then compare the nonparametric survival 

curves of the two risk groups via the log-rank test using the same dataset. This 

approach tends to exaggerate the p-value and overestimates the effect of the model. 

Optimizing a biomarker or risk model based on outcome and then claiming good 

discriminatory value based on the survival curves on that same dataset is a prevalent 

problem in the medical literature. Simon et al. referred to the performance measure of a 

risk model (e.g. discrimination) evaluated using the same data for some form of 
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“optimization” (for example, cutpoint selection or model development) as “resubstitution 

statistics” [17]. The separation between Kaplan-Meier curves for low- and high- risk 

patients as defined by the cutpoint derived from the same dataset is an example of 

resubstitution statistics. Simon et al. maintain the importance of separating the data 

used for any aspect of optimization from the data used for performance assessment. 

Some complex statistical approaches (such as bootstrap, jackknife, and permutation 

tests) may be useful in providing a more unbiased assessment of the true utility of the 

dichotomized biomarker. These methods belong to a class of “re-sampling” methods 

[18]. One simple form of re-sampling method is the sample split. With sample split, one 

portion of the dataset is used for cutpoint optimization or model development and the 

remaining (independent) data are used to evaluate the discriminatory power of the 

biomarker or model developed with the first portion [19]. It should be recognized, 

however, that resampling methods represent interval validation and do not reflect many 

sources of variabilities present in broader practice settings. Therefore, large 

independent studies will still be required to confirm the results. 

Consider the studies by Lin et al. [20] and Casasnovas et al. [21], both aiming to 

assess the prognostic value of early Fluorine-18 fluorodeoxyglucose (18F-FDG) positron 

emission tomography (PET) using standardized uptake values (SUV) in patients with 

diffuse large B-cell lymphoma (DLBCL). A clinical endpoint of interest was event-free 

survival (EFS), defined as months from study enrollment until first evidence of 

progression, relapse, or death due to any cause in Lin et al. In order to apply standard 

ROC methodology, the investigators first replaced the continuous EFS variable with a 

binary one (i.e. event versus no-event). Of note, the approach of using a binary 
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outcome status (e.g. vital status = dead or alive) in place of a continuous outcome 

variable such as EFS suffers the drawback of information loss as it ignores the varying 

length of follow-up among patients. For example, a patient who has survived for 5 years 

would have the same binary outcome status as another patient who has survived for 1 

year (i.e. for both patients, the vital status would be “alive”). Note that statistical 

methods exist that extend the standard ROC methodology to accommodate time-to-

event outcomes such as EFS [22]. The investigators then applied the ROC 

methodology to identify an optimal cutpoint for SUV (65.7% in Lin et al. and 66% for 

Casasnovas et al.). Study subjects were then categorized into two risk groups based on 

the selected cutpoint, and the ‘significant’ p-values from log-rank test (p = 0.028 in Lin et 

al. and p < 0.0001 for Casasnovas et al.) and notable separation in the Kaplan-Meier 

survival curves (Figure 2 b) in both studies) were cited as strong evidence supporting 

the prognostic value of SUV. Again, because the cutpoint was pre-selected to 

distinguish outcome by some measure, the resultant estimated biomarker effect and p-

value obtained from the same dataset are optimistically biased and should not be 

interpreted as a confirmation of SUV’s prognostic utility. 

In general, the magnitude of resubstitution bias is further exacerbated with 

increasing number of covariates in the risk model. This problem is known as overfitting 

in that a complex statistical model containing a sufficiently large number of variables 

having no true association with clinical outcome at all can spuriously provide an 

excellent fit to a small dataset. We performed a simulation to illustrate the bias in the 

estimated discrimination. We simulated a “sample” dataset with n = 200 patients and a 

“population” dataset with a very large size (N = 10,000). The latter represents the target 
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population at large and hence the performance of the model evaluated in the population 

is regarded as the true value. In each simulated dataset, we randomly generated a set 

of k continuous variables, denoted as X = (X1, X2,…, Xk), each following a standard 

normal distribution (with mean 0 and standard deviation 1). We assumed that 2 out of 

the k variables are associated with the binary endpoint Y. Specifically, the correlation 

between (X1, X2, …, Xk) and Y is induced by a multivariable logistic regression with 

intercept 0 and regression coefficients B = (β1 = 1.2,  β2 = 1.2, β3 = 0, …, βk = 0). 

Correspondingly, the association between (X1, X2) and Y is characterized by an odds 

ratio (OR) of exp(1.2) = 3.32 whereas the remaining (k-2) variables have no association 

with the outcome (i.e. OR = 1). We considered two scenarios: k = 5 (small number of 

biomarkers) and k = 50 (large number of biomarkers). For each k, we generated 1,000 

datasets as described above and compared the distributions of AUC between the 

sample datasets and the population datasets. To arrive at the AUC estimate in a sample 

dataset, we fit a multivariable regression model of X on Y and obtained k regression 

coefficients estimates. The prognostic scores for individual patients were calculated as 

the linear combination of the variables weighted by the regression coefficients. The 

AUC was then estimated from the ROC for the new continuous score variable. Note that 

the regression model was only constructed using the sample dataset; the resultant 

regression coefficients were then fixed and applied to the population dataset to obtain 

individual prognostic scores and the “true” AUC value (i.e. with no further model building 

or refinement).  

Figure 5 displays side-by-side boxplots of the distributions of AUC’s from the 

simulated sample datasets and the population datasets for k = 5 (left) and k = 50 (right). 
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It can been seen that when k = 5, AUC’s were slightly biased upward in the sample 

distribution compared to the true population (median: 0.75 and 0.73 for samples and 

populations, respectively). The degree of optimistic bias increases drastically when the 

number of variables increases to 50 (median: 0.87 and 0.64 for samples and 

populations, respectively). This simulation exercise underscores the fact that the 

performance of a risk model is overestimated when the evaluation is performed in the 

same dataset used to construct the model, and the degree of the optimistic bias 

increases with the number of variables in the model. These results highlight the 

importance of evaluating the performance of a risk model in dataset that are 

independent from that used for model development. 

Biomarker Cutpoint in the Presence of Established Prognostic Factors 

For many cancers, certain prognostic factors are known and well established. For 

example, tumor size and the number of positive lymph modes are well-known 

prognostic factors in breast cancer. For patients with advanced non-Hodgkin’s 

lymphoma, the International Prognostic Index (IPI) was a risk system developed to 

predict patient survival [23]. The components of IPI were based on clinical features 

including age, tumor stage, serum lactate dehydrogenase concentration, performance 

status, and the number of extranodal disease sites that are easy to measure and 

prognostically important. In these settings, it is more pertinent to determine whether a 

new biomarker adds additional prognostic information to that already provided by 

standard prognostic factors alone. Statistical models such as Cox’s proportional 

hazards regression model are often used to study the joint prognostic influence of 

multiple factors. To assess the independent prognostic influence of the new biomarker 
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above and beyond recognized factors, one (reduced) multivariable model can be fitted 

containing only the standard factors and one (full) multivariable model can be fitted that 

simultaneously contain the new biomarker and standard factors. The difference in how 

well the two nested models fit the data provides a measure of statistical significance of 

whether the new factor contains additional prognostic information (e.g. via the likelihood 

ratio test) [24]. If there are multiple ‘new’ factors, this approach accounts for the number 

of new variables in the calculation of statistical significance. For example, Cheang et al. 

studied the additional prognostic information of a five-biomarker panel (estrogen 

receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 

(Her2), EGFR, and cytokeratin 5/6) above and beyond a three-biomarker panel (ER, 

PR, and Her2) in the presence of standard clinical variables for predicting breast cancer 

death-specific survival [25]. To test the statistical significance of the two additional 

biomarkers, two Cox regression models were fitted and a likelihood ratio test of the 

difference between the two models was used to evaluate the additional prognostic 

contribution of EGFR and cytokeratin 5/6. 

When the cutpoint of a biomarker is pre-selected based on clinical outcome (e.g. 

via the minimal p-value approach or the ROC methodology), the corresponding 

dichotomized biomarker will impart an inflated effect in the multivariable regression 

model and thus diminishing the relative importance of other known prognostic factors. It 

is important to note that display of Kaplan-Meier curves showing the difference in 

survival between risk groups correspond to univariate statistical tests (e.g. log-rank), 

and thus does not indicate the effect of the biomarker after accounting for the other 

variables that may influence survival. In fact, in the presence of existing prognostic 
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factors, determination of a cutpoint for the new biomarker alone is not as relevant. 

Instead, a more holistic approach would be to develop a prognostic model incorporating 

both known prognostic factors and the new biomarker. Prognostic categories can then 

be defined based on the model-predicted prognostic indices of individual patients. For 

example, Paik et al. developed the Oncotype Dx assay, a 21-gene recurrence score 

(RS), to quantify the likelihood of distant recurrence in women with node-negative, 

estrogen-receptor positive breast cancer who have been treated with tamoxifen [26]. 

The cutpoints were determined on the basis of the results of NSABP trial B-20 and 

validated using trial data B-14. The cutpoints classify patients into three risk categories 

base on predicted 10-year distant recurrence rate: low risk (RS < 18), intermediate risk 

(18 <= RS < 31), and high risk (>= 31). The authors also demonstrated that the model 

based on age, tumor size, and recurrence score provided significantly independent 

prognostic information compared to the model including age and tumor size alone 

(p<0.001 by the likelihood ratio test). 

 
Conclusions 

Discovery of biomarkers has been steadily increasing over the past decade. While a 

plethora of biomarkers and associated cutpoints have been reported in the biomedical 

literature, few have been sufficiently validated for broader clinical applications. In 

contrast to the abundance of classical clinical trial principles for guiding the design, 

conduct, analysis, and reporting of studies, relatively fewer guidelines exist for 

biomarker research [27-28]. In this article, we have attempted to identify some common 

methodological issues related to biomarker cutpoint identification and evaluation. We 

strongly advocate that discretization of continuous biomarkers be avoided. If cutpoint 
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identification is performed, it should be handled with statistical care. Biased 

resubstitution should either not be reported or be clearly noted as an unreliable 

representation of the true discriminant value of the biomarker. When feasible, large 

independent datasets are ideal for confirmation of the prognostic value of the biomarker 

and its cutpoint. A schema for the consideration of biomarker analysis and cutpoint 

evaluation is proposed in Figure 6. We hope that the discussions here will draw 

attention to critical statistical issues associated with development and evaluation of 

biomarker cutpoints and will in turn help improve methodological rigor in this line of 

research. 
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Figure 1: Hypothetical relationship between biomarker (M) and clinical outcome 

 

In Figure 1a), the green line depicts a linear relationship between biomarker (M) and 
outcome – the risk of outcome increases linearly with increasing biomarker values. The 
orange dashed line in Figure 1a) illustrates the effect of dichotomizing M. It assumes 
that a discontinuity in the risk occurs at a cutpoint c (patients whose biomarker values 
are below c confer the same risk, which is lower by the magnitude Δ than those patients 
whose biomarker values exceed c. Figure 1b) depicts a quadratic relationship between 
M and outcome - the risk of outcome decreases with M up to the point m, and increases 
linearly after m. 
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Figure 2: Dichotomy of a continuous biomarker (neutrophil lymphocyte ratio example) 

 

Figure 2 a): Non-linear relationship between neutrophil to lymphocyte ratio (NLR) and 
patient survival in the Mayo Clinic triple-negative breast cancer (TNBC) dataset using 
restricted spline method.  

Figure 2b): The effect of dichotomizing NLR at its sample median - the association 
between NLR and survival is no longer significant (log-rank p-value = 0.27). 
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Figure 3: Minimal p-value approach (NLR example): (a) highly unstable p-values; b) 

inverse correlation between hazard ratios and p-values 

 

Figure 3 a): P-value of the log-rank test as a function of the cutpoint used for NLR in the 
Mayo Clinic triple-negative breast cancer (TNBC) dataset. The top and bottom 20% of 
the NLR values were excluded and 200 cutpoints were used. P-values are highly 
unstable within the NLR range. 

Figure 3b): Strong correlation between estimated hazard ratios (HR) and log-rank 
values for NLR in the Mayo Clinic TNBC dataset – smallest p-value corresponds to the 
most extreme HR estimate. 
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Figure 4: Type I error inflation associated with minimal p-value approach 

 

Type I error as a function of number of cutpoints and sample size using the minimal p-
value approach. In each simulation, 10% of smallest and largest biomarker values were 
not considered as potential cutpoints. A 2-sided p-value from the log-rank test was 
computed for each cutpoint applied. Each plotted point represents the percentage of 
5,000 simulations for which the minimal p-value is less than the nominal 5% level based 
on the assumption that there is no association between the biomarker and time-to-event 
outcome (i.e. type I error). No censoring in the outcome was assumed. 
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Figure 5: Resubstitution bias in the area under the ROC curve 

 

The effect of number of covariates (k) in the risk model on resubstitution bias. The 
“population” boxplot represents the true AUC distribution in the interested population at 
large. The ‘sample’ boxplot represents the distribution of AUC derived from the sample 
dataset used to construct the risk model. Each boxplot was based on 1,000 simulations. 
When k = 5 (left panel), there is a slight upward (optimistic) bias in the sample AUC 
distribution compared to the true population. The degree of optimistic bias increases 
drastically when k increases to 50 (right panel). 
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Figure 6: Schema for biomarker cutpoint analysis and evaluation 

 

 

 


