1	Prognostic value of bone marrow metabolism on pretreatment ¹⁸ F-FDG
2	PET/CT in patients with metastatic melanoma treated with anti-PD-1
3	therapy
4	Ryusuke Nakamoto ¹ , Lisa C. Zaba ² , Tie Liang ¹ , Sunil Arani Reddy ³ , Guido Davidzon ¹ , Carina Mari
5	Aparici ¹ , Judy Nguyen ¹ , Farshad Moradi ¹ , Andrei Iagaru ¹ , Benjamin Lewis Franc ¹
6	1 Department of Radiology, Stanford University
7	2 Department of Dermatology, Stanford University
8	3 Department of Oncology, Stanford University
9	
10	Corresponding author
11	Ryusuke Nakamoto, MD, PhD (Postdoctoral fellow)
12	Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University,
13	300 Pasteur Drive, Stanford, CA 94305-5281, USA
14	Phone. +1-650-725-4711 Fax. +1-650-498-5147
15	E-mail: <u>inabook@stanford.edu</u>
16	
17	Running title: ¹⁸ F-FDG PET in melanoma before anti-PD-1
18	
19	Total word count: 2477 words
20	
21	

1 ABSTRACT

- 2 **Purpose:** To investigate the prognostic value of ¹⁸F-FDG PET/CT parameters in melanoma patients
- 3 before beginning anti-PD-1 therapy.

4 Methods: Imaging parameters including SUVmax, metabolic tumor volume (MTV), and bone marrow

5 to liver SUVmean ratio (BLR) were measured from baseline PET/CT in 92 patients before the start of

6 anti-PD-1 therapy. Association with survival and imaging parameters combined with clinical factors was

7 evaluated. Clinical and laboratory data between high (> median) and low (≤ median) BLR groups were

- 8 compared.
- 9 **Results:** Multivariate analyses demonstrated that BLR was an independent prognostic factor for PFS and
- 10 OS (P = 0.017, P = 0.011, respectively). The high BLR group had higher levels of white blood cell

11 count/neutrophil count and C-Reactive Protein than the low BLR group (P < 0.05).

- 12 **Conclusion:** Patients with high BLR were associated with poor PFS and OS, potentially explained by
- 13 evidence of systemic inflammation known to be associated with immunosuppression.
- 14 Key words: ¹⁸F-FDG, PET/CT, bone marrow uptake, immunotherapy, melanoma

1 INTRODUCTION

2	Metabolic tumor volume (MTV) and glucose metabolism of normal tissues associated with
3	immunity on ¹⁸ F-FDG PET/CT before and during immune checkpoint inhibitor (ICI) therapy have been
4	explored as predictors of therapeutic efficacy (1-4). The link between ¹⁸ F-FDG uptake by immune-
5	mediating tissues, such as the bone marrow (BM) and spleen, and poor cancer outcomes is hypothesized
6	to be explained by generalized (5,6).
7	We hypothesized that imaging parameters, including physiologic uptake in hematopoietic
8	tissues on baseline PET/CT, combined with known clinical prognostic factors for melanoma, may more
9	accurately predict the therapeutic efficacy and prognosis of melanoma patients treated with antibodies to
10	the programed cell death 1 receptor (anti-PD-1) than clinical factors alone.
11	
12	MATERIALS AND METHODS
13	Patients
14	Ninety-two melanoma patients who received anti-PD-1 antibody (pembrolizumab or
15	nivolumab) as first line immunotherapy between April 2012 and June 2019 were enrolled in this
16	retrospective study. The Institutional Review Board approved this study and waived the requirement for
17	obtaining written informed consent.
18	¹⁸ F-FDG PET/CT protocol and data analysis
19	Approximately 1 h after intravenous injection of ¹⁸ F-FDG, PET/CT images from the vertex
20	to the toes were acquired per standard of care protocol at our institution using the Discovery 600, 690,
21	710 - MI
	710, or MI scanners (General Electric, Milwaukee WI). Maximum standardized uptake value

(SUVmax), mean standardized uptake value (SUVmean), MTV and TLG with SUV ≥ 2.5 were
 measured for all ¹⁸F-FDG-avid lesions.

- 3 Liver and spleen SUVmean were measured by drawing a spherical volume of interest (VOI) 4 in the center of an area of non-diseased right hepatic lobe (3cm) (Fig.1A) and spleen (2cm) (Fig.1C), 5 respectively. For the BM, spherical 1.5cm VOIs were placed within the center of nondiseased L1 to L4 6 (lumbar) vertebral bodies (Fig.1B), and an average SUVmean of the lumbar vertebral bodies was 7 calculated. Then, the BM to Liver Ratio (BLR) and Spleen to Liver Ratio (SLR) were calculated, by 8 dividing the BM SUVmean by the liver SUVmean and the spleen SUVmean by the liver SUVmean, 9 respectively (1, 7, 8). 10 Comparison of the clinical characteristics and imaging parameters of patients with high and low
- Comparison of the clinical characteristics and imaging parameters of patients with high and low
 BLR

12 To clarify the clinical characteristics of patients with increased BM uptake, patients were 13 classified into the high BLR (> median) group and low BLR (\leq median) group, respectively, and 14 physical and laboratory data as well as imaging parameters were compared between the two groups. 15

16 Statistical Analysis

17 Values between groups were compared using the Mann-Whitney U test. Progression free 18 survival (PFS) was assessed from the start date of immunotherapy to disease progression based on 19 irRECIST (9). Overall survival (OS) was assessed from the start date of immunotherapy to death or last 20 follow-up. Cutoff values of age and imaging parameters were set on median values. The patients' cohort 21 was divided into separate groups based on the following parameters: age, gender, primary site, BRAF 22 mutation status, presence of brain metastasis, serum lactate dehydrogenase (LDH) level, and imaging 23 parameters. Factors identified as being significant in the log-rank test (P < 0.05) were entered into a 24 multivariate Cox proportional hazards model. Kaplan-Meier curves were generated for subgroups. The

1	method of Holm was used to adjust the P values for multiple comparisons. Spearman's rank correlation
2	coefficients were calculated to assess the relationships between continuous variables. P values < 0.05
3	were considered statistically significant.
4	
5	RESULTS
6	Relationship of ¹⁸ F-FDG PET Parameters with PFS and OS
7	Patient characteristics are summarized in Table 1. After the median follow-up of 18.2 months,
8	53 patients had disease progression, and 32 of them expired. Median PFS and OS were 11.6 months
9	(95% CI 7.1 - 28.3 months) and more than 60 months, respectively. Multivariate analysis based on the
10	results of univariate analysis (Supplemental Table 1) demonstrated that BLR and BRAF mutation were
11	independent prognostic factors for PFS ($P = 0.017$ and 0.018, respectively), and BLR, BRAF mutation,
12	and LDH elevation were independent prognostic factors for OS ($P = 0.011, 0.0078$, and 0.013,
13	respectively) (Table 2). Figure 2 shows Kaplan-Meier curves generated for subgroups divided with
14	variables significant in multivariate analysis for PFS and OS. The median PFS of the high BLR (> 0.78)
15	group was 8.6 months (95% CI 3.0 to 42.5 months), significantly shorter than that of the low BLR group
16	(28.3 months, 95% CI 7.7 to 54.9 months) ($P = 0.027$). Similarly, the median OS of the high BLR group
17	was 28.0 months (95% CI 17.2 to 28.7 months), significantly shorter than that of the low BLR group
18	(more than 60 months) ($P = 0.019$).
19	Combining BLR and clinical factors
20	Combining BLR and independent clinical factors (BRAF mutation and LDH elevation)
21	provided further patient stratification. The population was stratified in three risk categories: 1) low risk
22	(low BLR and favorable clinical risk factors); (2) intermediate risk (low BLR and unfavorable clinical
23	risk factors or high BLR and favorable clinical risk factors); and (3) high risk (high BLR and
24	unfavorable clinical risk factors). OS of the high-risk group was significantly worse than that of any

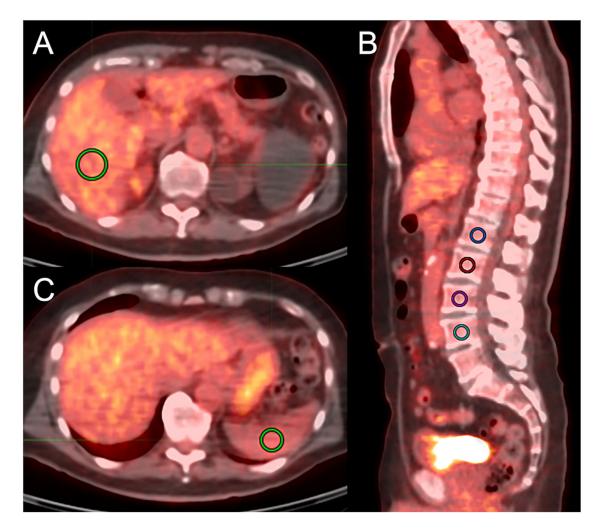
25 other risk group (Fig.3), and this combined approach to risk stratification differentiated patients

1	according to survival better than BLR or the set of clinical parameters alone. The median OS of patients
2	with high BLR was 28.0 months, while in patients with high BLR together with BRAF mutation or LDH
3	elevation, OS was 16.9 and 1.0 months, respectively.
4	Comparison of the clinical characteristics and imaging parameters of patients with high and low
5	BLR
6	The high BLR group had higher counts of white blood cells, neutrophils, red blood cells,
7	higher CRP level, and higher MTV; and lower levels of hemoglobin and albumin than the low BLR
8	group ($P < 0.05$) (Supplemental Table 2). Neutrophil count had the strongest correlation with BLR ($\rho =$
9	0.40, $P = 0.0002$) among laboratory data, and MTV was weakly correlated with BLR ($\rho = 0.34$, $P =$
10	0.0011) (Supplemental Table 3).
11	
12	DISCUSSION
13	BLR on baseline ¹⁸ F-FDG PET was significantly correlated inversely with PFS and OS in
14	melanoma patients treated with anti-PD-1 therapy. Like previously published studies showing a
15	relationship between laboratory markers of inflammation and BM metabolism $(7, 10)$, we found a
16	significantly positive correlation between ¹⁸ F-FDG uptake in the BM and neutrophil count ($\rho = 0.40$)
17	(11) This correlation could potentially be explained by the predominance of neutrophils in the BM,
18	high rates of granulopoiesis required to maintain the neutrophil population, and the preference of
19	neutrophils to utilize glycolysis for energy production (11,12). A weak positive correlation between BLR
20	and tumor burden (MTV, $\rho = 0.34$) was also found. Accumulation of inflammatory factors leads to
21	immunosuppression which is associated with cancer progression and poor outcomes (5). In melanoma,
22	bone marrow-derived cells play a key role in tumor progression, neo-vascularization and priming of
23	metastasis (13,14), potentially explaining the negative relationship between BM hypermetabolism and

24 clinical outcomes observed in our study.

1	By combining information on BRAF and LDH elevation with BLR, we could extract a very
2	poorly prognostic high risk group with the median OS of 16.9 and 1.0 months, respectively. We believe
3	that this combination of predictive factors could allow the identification of high risk patients who are not
4	expected to benefit from anti-PD-1 therapy prior to treatment, allowing rapid selection of a potentially
5	more efficacious treatment, such as novel therapies targeting cancer-related inflammation (15) .
6	
7	A recent retrospective study of 55 melanoma patients prior to treatment with anti-PD-1 has
8	reported the utility of BLR for predicting outcomes (3). The difference between the current study and the
9	previous one is that we analyzed a larger number of patients ($n = 92$) and included patients with brain
10	metastasis. Brain metastasis is not less frequent in patients with advanced melanoma who receive
11	immunotherapy (16) ; in fact, 28.6% of our patients had brain metastasis before immunotherapy.
12	Therefore, we determined that patients with brain metastasis should be included in the search for
13	imaging biomarkers useful for predicting treatment response and prognosis of immunotherapy based on
14	real-world clinical scenarios. While, there was a recent report that contradicting our results that
15	melanoma patients who responded to immunotherapy had significantly higher ¹⁸ F-FDG uptake in BM
16	(BM SUVmean normalized by blood pool activity) than non-responders (17).
17	Our study has several limitations. First, it was retrospective in design. In addition, the use of
18	different PET scanners could have resulted in variability in SUV measurements of MTV. However, the
19	estimation of BM metabolism was assessed by standardizing values with liver background, allowing for
20	the harmonization of PET features and potential generalizability of our model.
0.1	

1 CONCLUSION


2	Patients with increased metabolism in the bone marrow were associated with poor PFS and
3	OS, potentially explained by evidence of systemic inflammation known to be associated with
4	immunosuppression.
5	
6	DISCLOSURE
7	No potential conflicts of interest relevant to this article exist.
8	
9	KEY POINTS
10	QUESTION: Is pretreatment ¹⁸ F-FDG uptake in the bone marrow useful in the prognostic evaluation of
11	advanced melanoma patients treated with anti-PD-1 therapy?
12	PERTINENT FINDINGS: Univariate and multivariate analyses revealed that bone marrow to liver
13	SUVmean ratio (BLR) was an independent prognostic factor for PFS and OS ($P = 0.017$, $P = 0.011$,
14	respectively). Patients with high BLR uptake (> median) had a tendency to have systemic inflammation
15	known to be associated with immunosuppression.
16	IMPLICATIONS FOR PATIENT CARE: BLR may be a helpful imaging biomarker to select patients
17	with advanced melanoma for immune-modulating therapies

1 **REFERENCES**

2 Wong A, Callahan J, Keyaerts M, et al. 18 F-FDG PET/CT based spleen to liver ratio 1. 3 associates with clinical outcome to ipilimumab in patients with metastatic melanoma. Cancer Imaging. 4 2020;20:1-12. 5 6 2. Nakamoto R, Zaba LC, Rosenberg J, et al. Prognostic value of volumetric PET parameters 7 at early response evaluation in melanoma patients treated with immunotherapy. Eur J Nucl Med Mol 8 Imaging. 2020;47:2787-2795. 9 10 3. Seban R-D, Nemer JS, Marabelle A, et al. Prognostic and theranostic 18F-FDG PET 11 biomarkers for anti-PD1 immunotherapy in metastatic melanoma: association with outcome and 12 transcriptomics. Eur J Nucl Med Mol Imaging. 2019;46:2298-2310. 13 14 4. Ito K, Schoder H, Teng R, et al. Prognostic value of baseline metabolic tumor volume 15 measured on (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in 16 melanoma patients treated with ipilimumab therapy. Eur J Nucl Med Mol Imaging. 2019;46:930-939. 17 18 5. Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation and 19 treatment effectiveness. Lancet Oncol. 2014;15:e493-e503. 20 21 6. Seban R-D, Robert C, Dercle L, et al. Increased bone marrow SUVmax on 18F-FDG PET is 22associated with higher pelvic treatment failure in patients with cervical cancer treated by 23 chemoradiotherapy and brachytherapy. OncoImmunology. 2019;8:e1574197. 2425 7. Lee JW, Ban MJ, Park JH, Lee SM. Effect of F-18 fluorodeoxyglucose uptake by bone marrow 26 on the prognosis of head and neck squamous cell carcinoma. J Clin Med. 2019;8:1169. 2728 8. Prévost S, Boucher L, Larivée P, Boileau R, Bénard F. Bone marrow hypermetabolism on 29 18F-FDG PET as a survival prognostic factor in non-small cell lung cancer. J Nucl Med. 2006;47:559-30 565. 31 32 9. Bohnsack O, Hoos A, Ludajic K. Adaptation of the immune related response criteria: 33 irRECIST [Internet]. Lugano: OncologyPRO; c2014 [cited 2014 Sep 29]. 34 35 10. Lee JW, Seo KH, Kim ES, Lee SM. The role of (18)F-fluorodeoxyglucose uptake of bone

1	marrow	on PET/CT in predicting clinical outcomes in non-small cell lung cancer patients treated with
2	chemor	adiotherapy. <i>Eur Radiol.</i> 2017;27:1912-1921.
3		
4	11.	Murata Y, Kubota K, Yukihiro M, Ito K, Watanabe H, Shibuya H. Correlations between 18F-
5	FDG u	ptake by bone marrow and hematological parameters: measurements by PET/CT. Nucl Med
6	<i>Biol.</i> 20	006;33:999-1004.
7		
8	12.	Yagi M, Froelich J, Arentsen L, et al. Longitudinal FDG-PET Revealed Regional Functional
9	Hetero	geneity of Bone Marrow, Site-Dependent Response to Treatment and Correlation with
10	Hemate	ological Parameters. <i>J Cancer.</i> 2015;6:531-537.
11		
12	13.	Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow
13	progen	itors initiate the pre-metastatic niche. Nature. 2005;438:820-827.
14		
15	14.	Hiratsuka S, Nakamura K, Iwai S, et al. MMP9 induction by vascular endothelial growth
16	factor r	eceptor-1 is involved in lung-specific metastasis. Cancer Cell. 2002;2:289-300.
17		
18	15.	Urbanska AM, Zhang X, Prakash S. Bioengineered Colorectal Cancer Drugs: Orally
19	Deliver	ed Anti-Inflammatory Agents. Cell Biochem Biophys. 2015;72:757-769.
20		
21	16.	Zhang D, Wang Z, Shang D, Yu J, Yuan S. Incidence and prognosis of brain metastases in
22	cutaneo	ous melanoma patients: a population-based study. <i>Melanoma Res.</i> 2019;29:77-84.
23		
24	17.	Schwenck J, Schörg B, Fiz F, et al. Cancer immunotherapy is accompanied by distinct
25	metabo	lic patterns in primary and secondary lymphoid organs observed by non-invasive in vivo 18F-
26	FDG-P	ET. Theranostics. 2020;10:925.
27		
28		

1 FIGURE LEGENDS

- 2
- 3 **FIGURE 1** Illustration of the placement of volume of interest (VOI) in the liver (A), the L1 to L4

^{4 (}lumbar) vertebral bodies (B), and spleen (C).

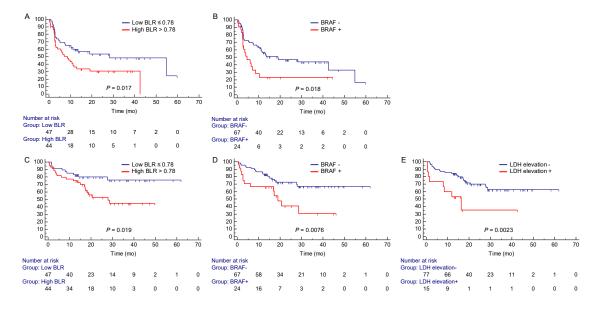
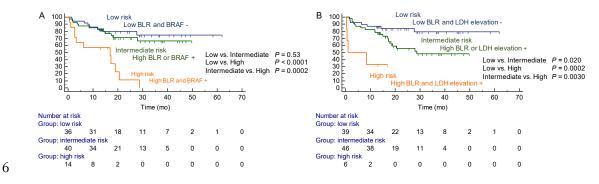
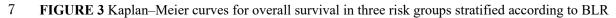
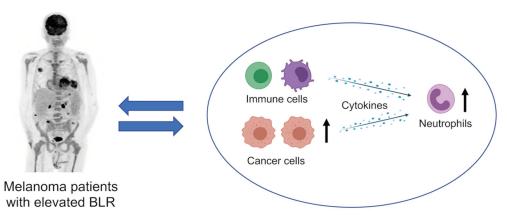




FIGURE 2 Kaplan-Meier curves for progression free survival (A, B) and overall survival (C - E)
divided into the two groups based on the factors identified as being significant in the multivariate
analysis.

1

8 combined with BRAF mutation (A) or LDH elevation (B).

TABLE 1 Patient characteristics


Detiente	
Patients	n = 92
White, n (%)	79 (85.9%)
Hispanic, n (%)	8 (8.7%)
Asian, n (%)	3 (3.3%)
Other, n (%)	2 (2.2%)
Age (years), median (interquartile range)	69 (55 – 76)
Male, n (%)	55 (59.8%)
Primary site, n (%)	
Skin	74 (80.4%)
Other or unknown	18 (19.6%)
BRAF V600 mutation, n (%)	24/91 (26.4%)
Brain metastasis, n (%)	26/91 (28.6%)
LDH level > normal, n (%)	15/92 (16.3%)
Immune checkpoint inhibitors	
Pembrolizumab (anti-PD-1 antibody)	72
Nivolumab (anti-PD-1 antibody)	9
Nivolumab and ipilimumab (anti-CTLA-4 antibody)	10
Nivolumab and relatlimab (anti-LAG-3 antibody)	1
Intervals (days), median (interquartile range)	
Baseline PET to therapy initiation	33.5 days (18 - 50)
Baseline PET and laboratory test	22 days (9 – 34.3)

X7 11		Progression free survival		Overall survival			
Variable	Hazard ratio	95% confidence interval	Р	Hazard ratio	95% confidence interval	Р	
High BLR (> 0.78)	2.07	1.14 to 3.77	0.017	2.85	1.28 to 6.39	0.011	
BRAF mutation	2.06	1.13 to 3.75	0.018	2.71	1.30 to 5.65	0.0078	
Brain metastasis	1.85	0.99 to 3.45	0.053	2.09	0.99 to 4.43	0.054	
Elevated LDH	2.00	0.90 to 4.42	0.085	3.31	1.29 to 8.46	0.013	

TABLE 2 Results of multivariate analyses for predicting progression free survival and overall survival

2 LDH, lactate dehydrogenase; BLR, bone marrow to liver ratio3

Graphical abstract

		Median PFS (months)		Media	Median OS (m	dian OS (months)			
Variable		95% confidenc		interval	P		95% confidence interval		Р
		Median	Lower limit	Upper limit		Median	Lower limit	Upper limit	—
	> 69 (43)	28.3	9.1	54.9	0.12	n/a	n/a	n/a	0.05
Age	≤ 69 (49)	8.6	3.3	13.3	0.12	n/a	n/a	n/a	0.25
Gender	Male (55)	19	7.3	54.9	0.25	n/a	n/a	n/a	0.39
Gender	Female (37)	10.3	3.0	19.1	0.25	n/a	n/a	n/a	0.39
Primary site	Other (18)	12.9	2.4	13.3	1.00	n/a	n/a	n/a	0.17
Frimary site	Skin (74)	11.2	6.5	42.5	1.00	n/a	n/a	n/a	0.17
BRAF mutation	Presence (24)	4.5	2.6	8.6	0.012	18.9	3.3	28.7	0.0076
BRAF mutation	Absence (67)	19	10.8	54.9	0.013	n/a	n/a	n/a	
Brain metastasis	Presence (26)	3.5	2.6	11.6	0.0080	18.2	3.7	28.7	0.0022
Brain metastasis	Absence (65)	19.1	9.1	54.9		n/a	n/a	n/a	
Elevated LDH	Yes (15)	6.5	0.6	13.3	0.030	16.3	1	16.3	0.0023
Elevated LDH	No (77)	13.5	7.7	54.9		n/a	n/a	n/a	
SUVmax	> 14.27 (46)	9.1	3.5	42.5	0.20	n/a	n/a	n/a	0.15
SUVmax	≤ 14.27 (46)	19	7.3	54.9	0.30	n/a	n/a	n/a	
SUVmean	> 5.20 (46)	13.3	5.6	42.5	0.44	n/a	n/a	n/a	0.63
SUvmean	≤ 5.20 (46)	10.8	4.5	54.9	0.44	n/a	n/a	n/a	
MTV	> 25.62 (46)	10.8	3.3	19.1	0.36	n/a	n/a	n/a	0.61
IVI I V	≤ 25.62 (46)	19.0	5.1	54.9	0.30	n/a	n/a	n/a	0.01
TLG	> 126.84 (46)	10.8	3.0	19.1	0.32	n/a	n/a	n/a	0.55
110	≤ 126.84 (46)	19.0	5.6	54.9	0.32	n/a	n/a	n/a	0.55
BLR	> 0.78 (44)	8.6	3.0	42.5	0.027	28.0	17.2	28.7	0.019

SUPPLEMENTAL TABLE 1 Results of univariate analyses for predicting progression free survival and overall survival

	≤ 0.78 (47)	28.3	7.7	54.9		n/a	n/a	n/a	
CI D	> 0.82 (45)	8.6	3.3	54.9	0.16	28	17.2	28.7	0.0475
SLR	≤ 0.82 (46)	12.9	7.7	19.0	0.16	n/a	n/a	n/a	0.04/5

LDH, lactate dehydrogenase; MTV, metabolic tumor volume; TLG, total lesion glycolysis; BLR, bone marrow to liver ratio; SLR, spleen to liver ratio

and low BLR gro		High BLR (> 0.78)	Low BLR (≤ 0.78)	Р
Age (years)		60.5 (49 - 75)	72 (63.8 - 79)	0.0008
Male		178 (172.8 - 183)	178 (173 - 183)	0.68
Height (cm)	Female	160 (152.3 – 167.8)	162 (157 - 168)	0.61
	Male	82.6 (76.0 - 99.4)	84.4 (79.5 - 98.4)	0.60
Body weight (kg)	Female	69.1 (58.2 - 76.1)	63.2 (57.3 – 71.2)	0.47
III (1)	Male	61.1 (57.8 - 70.6)	63.8 (60.1 - 68.5)	0.38
Lean body mass (kg)	Female	46.7 (40.3 - 49.6)	44.6 (42.3 – 47.1)	0.92
White blood cell count (×10 ³ / μ L)		7.80 (6.10 - 9.60)	6.00 (5.00 - 7.30)	0.0014
Neutrophil count (×10	³ /μL)	5.02 (3.98 - 6.78)	3.65 (2.78 - 4.42)	0.0006
Red blood cell count (>	<10 ⁶ /µL)	4.63 (4.33 - 5.12)	4.45 (4.19 - 4.73)	0.043
Hemoglobin (g/dL)		13.1 (11.2 - 14.1)	13.9 (13.3 - 14.7)	0.030
Hematocrit (%)		39.8 (35.6 - 43.0)	41.3 (39.3 – 44.2)	0.085
Platelet count (×10 ³ /µL	.)	240 (194.8 - 311.3)	208 (183.8 - 270.8)	0.099
Lactate dehydrogenase	(U/L)	191 (166 - 238)	194 (175.5 - 243)	0.67
Total protein (g/dL)		7.3 (7.0 - 7.7)	7.25 (6.9 - 7.6)	0.56
Albumin (g/dL)		3.6 (3.4 - 4.0)	3.95 (3.5 - 4.3)	0.042
C-Reactive Protein (m	ng/dL)	0.5 (0.2 - 1.9)	0.2 (0.2 - 0.8)	0.0046
SUVmax		17.8 (11.3 – 29.8)	12.7 (8.1 – 17.3)	0.0053
SUVmean		5.4 (4.1 - 6.6)	4.6 (3.6 – 5.7)	0.045
Metabolic tumor volume (ml)		umor volume (ml) 41.4 (11.2 – 164.2)		0.0018
Total lesion glycolysis	s (g)	269.2 (58.5 - 892.4) 37.6 (11.1		0.0007
Spleen to liver SUVm	ean ratio	0.93 (0.81 - 1.04)	0.78 (0.71 – 0.84)	< 0.0001

SUPPLEMENTAL TABLE 2 Comparison of physical and laboratory data between the high BLR and low BLR group

Continuous variables are presented as median (interquartile range). BLR, bone marrow to liver ratio

	1						1				1	r	r		1					1	,	
	TLG	MTV	LBM	Neut	WBC	Ht	SUVmax	BW	Hgb	Height	RBC	Platelet	SUVmean	BLR	Cre	BUN	SLR	ТР	CRP	LDH	Alb	Age
TLG		0.983	-0.064	0.342	0.268	-0.146	0.612	-0.065	-0.197	-0.046	0.059	0.434	0.465	0.349	-0.066	-0.066	0.053	0.079	0.345	0.311	-0.189	-0.186
MTV	0.983		-0.059	0.34	0.263	-0.148	0.529	-0.075	-0.192	-0.033	0.05	0.424	0.33	0.336	-0.031	-0.085	0.068	0.083	0.388	0.332	-0.191	-0.191
LBM	-0.064	-0.059		0.177	0.132	0.252	-0.036	0.88	0.301	0.857	0.226	-0.203	-0.091	-0.106	0.464	0.23	-0.185	-0.145	0.005	-0.127	-0.044	-0.03
Neut	0.342	0.34	0.177		0.919	-0.031	0.276	0.161	-0.028	0.044	0.054	0.434	0.176	0.402	0.059	0.016	0.213	0.059	0.334	-0.068	-0.201	-0.137
WBC	0.268	0.263	0.132	0.919		0.025	0.266	0.158	0	-0.005	0.145	0.473	0.195	0.389	0.027	-0.013	0.205	0.168	0.332	-0.065	-0.097	-0.166
Ht	-0.146	-0.148	0.252	-0.031	0.025		-0.159	0.19	0.971	0.223	0.72	-0.218	-0.092	-0.142	0.068	-0.054	-0.221	0.211	-0.338	-0.103	0.5	-0.06
SUVmax	0.612	0.529	-0.036	0.276	0.266	-0.159		0.006	-0.195	-0.056	-0.015	0.332	0.775	0.263	-0.115	0.022	0.141	0.155	0.132	0.089	-0.121	-0.048
BW	-0.065	-0.075	0.88	0.161	0.158	0.19	0.006		0.223	0.603	0.219	-0.145	-0.053	-0.08	0.465	0.2	-0.211	-0.108	0.026	-0.121	-0.048	-0.073
Hgb	-0.197	-0.192	0.301	-0.028	0	0.971	-0.195	0.223		0.263	0.669	-0.256	-0.126	-0.216	0.065	-0.062	-0.284	0.17	-0.369	-0.174	0.474	-0.061
Height	-0.046	-0.033	0.857	0.044	-0.005	0.223	-0.056	0.603	0.263		0.18	-0.226	-0.076	-0.099	0.407	0.21	-0.105	-0.185	0.009	-0.082	-0.037	-0.016
RBC	0.059	0.05	0.226	0.054	0.145	0.72	-0.015	0.219	0.669	0.18		-0.025	0.015	0.206	-0.007	-0.156	0.002	0.32	-0.097	-0.049	0.306	-0.294
Platelet	0.434	0.424	-0.203	0.434	0.473	-0.218	0.332	-0.145	-0.256	-0.226	-0.025		0.27	0.268	-0.074	-0.049	0.295	0.28	0.338	0.193	-0.094	-0.136
SUVmean	0.465	0.33	-0.091	0.176	0.195	-0.092	0.775	-0.053	-0.126	-0.076	0.015	0.27		0.207	-0.15	0.021	0.035	0.072	0.001	0.063	-0.056	-0.017
BLR	0.349	0.336	-0.106	0.402	0.389	-0.142	0.263	-0.08	-0.216	-0.099	0.206	0.268	0.207		-0.203	-0.192	0.535	0.109	0.335	0.034	-0.196	-0.232
Cre	-0.066	-0.031	0.464	0.059	0.027	0.068	-0.115	0.465	0.065	0.407	-0.007	-0.074	-0.15	-0.203		0.51	-0.014	-0.093	0.092	0.168	-0.119	0.301
BUN	-0.066	-0.085	0.23	0.016	-0.013	-0.054	0.022	0.2	-0.062	0.21	-0.156	-0.049	0.021	-0.192	0.51		-0.116	-0.136	-0.105	0.197	-0.04	0.529
SLR	0.053	0.068	-0.185	0.213	0.205	-0.221	0.141	-0.211	-0.284	-0.105	0.002	0.295	0.035	0.535	-0.014	-0.116		0.213	0.354	0.135	-0.185	-0.045
ТР	0.079	0.083	-0.145	0.059	0.168	0.211	0.155	-0.108	0.17	-0.185	0.32	0.28	0.072	0.109	-0.093	-0.136	0.213		-0.064	0.024	0.381	-0.224
CRP	0.345	0.388	0.005	0.334	0.332	-0.338	0.132	0.026	-0.369	0.009	-0.097	0.338	0.001	0.335	0.092	-0.105	0.354	-0.064		0.127	-0.571	0.017
LDH	0.311	0.332	-0.127	-0.068	-0.065	-0.103	0.089	-0.121	-0.174	-0.082	-0.049	0.193	0.063	0.034	0.168	0.197	0.135	0.024	0.127		0.058	0.055
Alb	-0.189	-0.191	-0.044	-0.201	-0.097	0.5	-0.121	-0.048	0.474	-0.037	0.306	-0.094	-0.056	-0.196	-0.119	-0.04	-0.185	0.381	-0.571	0.058		-0.139
Age	-0.186	-0.191	-0.03	-0.137	-0.166	-0.06	-0.048	-0.073	-0.061	-0.016	-0.294	-0.136	-0.017	-0.232	0.301	0.529	-0.045	-0.224	0.017	0.055	-0.139	
Ŭ			100 C				100 C		100 C	and the second second												

1.0

SUPPLEMENTAL TABLE 3 Correlogram between imaging parameters, physical data, and laboratory data

Values indicate Spearman rank correlation coefficient.

TLG, total lesion glycolysis; MTV, metabolic tumor volume; LBM, lean body mass; Neut, neutrophil; WBC, white blood cell; Ht, hematocrit; BW, body weight; Hgb, hemoglobin; RBC, red blood cell; BLR, bone marrow to liver ratio; Cre, creatinine; BUN, blood urea nitrogen; SLR, spleen to liver ratio; TP, total protein; CRP, C-reactive protein; LDH, lactate dehydrogenase; Alb, albumin

-1.0