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Abstract

This work set out to develop a motion correction approach aided by conditional generative
adversarial network (cGAN) methodology that allows reliable, data-driven determination of
involuntary subject motion during dynamic 18F-FDG brain studies. Methods: Ten healthy
volunteers (5M/5F, 27 + 7 years, 70 + 10 kg) underwent a test-retest 18F-FDG PET/MRI
examination of the brain (N = 20). The imaging protocol consisted of a 60-min PET list-mode
acquisition contemporaneously acquired with MRI, including MR navigators and a 3D time-of-
flight MR-angiography sequence. Arterial blood samples were collected as a reference standard
representing the arterial input function (AIF). Training of the cGAN was performed using 70% of
the total data sets (N = 16, randomly chosen), which was corrected for motion using MR
navigators. The resulting cGAN mappings (between individual frames and the reference frame
(55-60min p.i.)) were then applied to the test data set (remaining 30%, N = 6), producing
artificially generated low-noise images from early high-noise PET frames. These low-noise images
were then co-registered to the reference frame, yielding 3D motion vectors. Performance of
cGAN-aided motion correction was assessed by comparing the image-derived input function
(IDIF) extracted from a cGAN-aided motion corrected dynamic sequence against the AIF based
on the areas-under-the-curves (AUCs). Moreover, clinical relevance was assessed through direct
comparison of the average cerebral metabolic rates of glucose (CMRGIc) values in grey matter
(GM) calculated using the AIF and the IDIF. Results: The absolute percentage-difference between
AUCs derived using the motion-corrected IDIF and the AIF was (1.2 + 0.9) %. The GM CMRGIc
values determined using these two input functions differed by less than 5% ((2.4 + 1.7) %).

Conclusion: A fully-automated data-driven motion compensation approach was established and
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tested for 18F-FDG PET brain imaging. cGAN-aided motion correction enables the translation of
non-invasive clinical absolute quantification from PET/MR to PET/CT by allowing the accurate

determination of motion vectors from the PET data itself.

Keywords: 18F-FDG brain, Deep learning, Head-motion correction, absolute quantification,

Patlak analysis.
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INTRODUCTION

The capability of obtaining fully-quantitative physiological measurements from the human body
is a fundamental strength of PET methodology (1,2). However, due to the requirement of an
arterial input function (AIF), the adoption of absolute quantification into clinical work has been
severely limited, and only semi-quantitative assessments of tracer uptake using standardized

uptake expressed as SUV are commonly performed.

In recent years, several methodologies have been proposed to extract an image-derived
input function (IDIF) directly from brain PET data in order to avoid arterial cannulation for
determination of an AIF (3—10). It was demonstrated that a brain IDIF can be calculated either by
using a combined protocol that integrates PET/CT with MR data (3,7,8), or by using a fully-
integrated PET/MR protocol (4,6,9,10). The calculation of an IDIF typically entails, in addition to
the definition of a suitable blood pool region and accounting for partial volume effects, also an
accurate correction for involuntary subject motion. A fully-integrated PET/MR system is ideally
suited to perform all these tasks due to its capability of providing detailed anatomical information
which also includes MR navigators that track motion. However, due to its high cost, the
proliferation of PET/MRI into the clinical realm has been severely limited. In contrast, PET/CT is
widespread and cost-effective, thus, motivating the transfer of IDIF methodology from PET/MR
to PET/CT. Using co-registered PET/CT and MR data, the definition of a suitable blood pool region,
as well as the geometric correction for partial volume effects can be easily accomplished.
Nonetheless, the accurate correction for subject motion remains a serious challenge in PET/CT

imaging.
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Assessment of currently available motion compensation techniques points towards three
general approaches: data-driven approaches (11-17), frame-based image-registration (FIR)
(18,19) and real-time hardware motion tracking (HMT) (20). Real-time hardware-based motion
tracking detects subject motion with excellent temporal resolution (20), but is typically not used
in clinical routine due to its complexity and the necessity to integrate external data (motion
tracking) with the imaging system (applying the motion vector to images). In contrast, data-
driven approaches do not require any external information (such as fiducials or laser positioning
system) and they are also less computationally demanding. However, the clinical adoption of
frame-based motion correction schemes has been slow due to poor performance when co-
registration is applied to frames that display a dissimilar tracer uptake pattern or noise
characteristics as well as the difficulty to correct for intra-frame motion in long-duration PET

frames (>5 min).

Here, we explored the utility of conditional Generative Adversarial Networks (cGAN) (21)
as a data-driven approach to facilitate motion correction for involuntary subject motion in
dynamic 18F-FDG PET studies of the brain. Thereby, we build on recent studies that have shown
the potential of cGAN methodology in converting low-count PET images to high-count images
(22). In general, the objective of cGAN processing is the mapping of a low-count tracer
distribution pattern to a high-count pattern based on a priori training data, where generic image
features - such as overall brain shape and contours — are likely to be correctly reproduced. Put
differently, the creation of high-count images enhances image features that are important for
the detection of motion artefacts and as a result might improve the performance of subsequently

applied conventional rigid body co-registration routines. It is important to note, however, that
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the so obtained images are devoid of unique characteristics that are specific for a particular
subject and cannot be considered as representing the true (subject-specific) high-count uptake

pattern beyond the enhancement of generic image features.

In light of the above, our ultimate objective was to determine the accuracy with which
involuntary subject motion occurring during the first part of a dynamic 18F-FDG PET/CT study can
be detected using conventional motion correction routines when images are first pre-processed
using cGAN methodology, given that early-frames are subject to both low-count statistics and
dynamically changing tracer uptake patterns. The cGAN preprocessed frames can be thought of
as PET navigators whose activity distribution are now temporally invariant, similar to that of the
MR navigators. Although our focus was geared towards the derivation of an IDIF, the developed
methodology appears to be broader in scope, potentially aiding in improved ability to detect both
inter- and intra-frame motion. Consequently, our study was guided by the overarching
hypothesis that cGAN pre-processing of images can be used to address low count limitations of
short time frame motion correction strategies and support an accurate data driven arterial IDIF

calculation.
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MATERIALS AND METHODS

Ten healthy volunteers (5M/5F, (27 + 7) years) were included in this study (10,11). The
study was approved by the Ethics Committee of the Medical University of Vienna and was
performed in accordance with the revised Declaration of Helsinki (1964). All volunteers were
deemed to be healthy based on their medical history, physical examinations and vital signs.

Written informed consent was obtained from all subjects prior to the examinations.

Study Design

We studied 10 subjects, each of whom received two PET/MR scans (mean time difference
= (17 £ 44) days) in a fully-integrated PET/MRI system (Biograph mMR, Siemens Healthineers,
Germany). To correct the PET study for involuntary subject motion, cGAN image pre-processing
was performed prior to image co-registration, enabling the accurate determination of motion
parameters in 3D space. These motion parameters were then used to extract the IDIF from the
motion-corrected dynamic PET sequence (Fig. 1). To assess the accuracy of the IDIF, arterial blood
samples were obtained from a radial artery. Finally, immediately following the PET/MRI
examination, a low-dose CT scan of the brain (120 kVp, 50 mAs) was acquired once using a PET/CT
system (Biograph TruePoint TrueView 64, Siemens Healthineers, USA) for the purpose of CT-

based attenuation correction.

Imaging Protocol

All examinations were conducted in the afternoon; subjects were asked to keep their eyes

open without performing any task. Prior to each scan, the glucose concentration (mmol/l) in



144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

blood was measured and a venous line was established for the injection of the 18F-FDG tracer.
In addition, an arterial line was established in the contralateral arm for manual arterial blood

sampling. To ensure a high signal-to-noise ratio in the MR images, a head and neck coil was used.

After positioning the brain in the center of the field-of-view (FOV), a 60-min PET list-mode (LM)
acquisition was initiated with the bolus injection of 18F-FDG ((352 +* 66) MBq).
Contemporaneously with the PET data acquisition, multiple MR sequences were acquired: a 3D
time-of-flight MR angiography (TOF-MRA) sequence (0.5 x 0.5 x 1 mm? voxel size, TE=3.6ms,
TR=21ms, 25°flip angle, 228 x 384 matrix, 220 slices) for the definition of the carotid vasculature
and a T1-w MRI sequence (1 x 1 x 1 mmsvoxel size, 256 x 256 matrix, 192 slices) for anatomical
localization. Sparsely sampled MR navigators (2D-EPI, 3.0 x 3.0 x 3.0 mm?3voxels, 64 x 64 matrix,
36 slices, TE=30 ms, TR=3000 ms) were interleaved at specific time intervals (0, 2.5, 5, 7.5, 10, 14,
17,21, 26, 33, 38,42, 44 and 50.5 min post injection (p.i.)) yielding for each time point a 3D image
volume (23) that allowed the determination of subject motion with 6 degrees of freedom
(translation in x,y,z direction and rotation with respect to the three Euler angles). These six
motion parameter defined a “motion vector”, which was used to ensure spatial correspondence

between early frames and late frames for cGAN training.

PET list-mode data was re-binned into a dynamic frame sequence (24 x55s,1x60s, 1 x
120s, 11 x 300 s) and was reconstructed (Siemens e7 tools) into a 344 x 344 x 127 matrix (voxel
size 2.08 x 2.08 x 2.03 mms) using the Ordinary Poisson Ordered Subset Expectation-

Maximization (OP-OSEM) 3D algorithm (3 iterations, 28 subsets, 2 mm Gaussian filter).
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Attenuation and scatter correction were performed using CT-based AC-maps corrected for

motion in each PET frame (see below).

Blood Sampling

Arterial blood samples were collected manually at different time points (24 x5s, 1x60s,
1x1205s,1x300s,1x600s,2x 1200 s post-injection) from the radial artery. Whole-blood
radioactivity concentrations were measured using a gamma counter (PerkinElmer, 2480
Automatic Gamma counter, Wizard23). To obtain the arterial input function (AIF), whole blood
samples were centrifuged to separate the plasma component, followed by the measurement of
radioactivity in the plasma. The measured whole blood and plasma tracer concentrations were

used to calculate the time-dependent plasma-to-whole blood ratios for each subject.

3D-Conditional Generative Adversarial Networks (3D-cGAN)

Generative Adversarial Networks (GANs) are generative algorithms, which belong to the
field of unsupervised learning (24). The architecture of a GAN consists of two convolutional
neural networks (CNNs) that together constitute an opponent-component system: a neural
network (termed the Generator G) that generates artificial data based on a training data set, and
a neural network (termed the Discriminator D) that classifies the artificially created data as being

either real (i.e. belonging to the training data set) or being artificially generated.

Conditional GANs (cGANs) are a supervised extension of the GAN framework (25). While GANs
typically perform a mapping operation from a random noise vector (z) to an output vector (y)

expressed as (G: z - y ), cGANs perform a mapping operation from an observed image (x) and a

10
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random noise vector (z) to an output image (y), expressed as (G: {x, z} = y). Here, the mapping
operation is the process of linking two image patterns together and is “learned” from a training
set that defines the true correspondence between pairs of input and output images (x-=>y). In
short, the training data set provides a general mapping of two images with different noise
characteristics (e.g., a low-count to a high-count image). It is a generic mapping operation that
accounts for broad features in the two images but does not account for subject-specific
attributes. Accordingly, such mapping is representative for the transformation of any 18F-FDG
uptake image obtained at a particular time (e.g. 2-3min p.i) to any FDG uptake image at a later

time (e.g. 55-60min p.i).

In this 3D-cGAN implementation, corresponding pairs of low-count (early) and high-count
(late) PET frame images were used to define the mapping operation (G) by minimizing a loss

function expressed as:

Arccan(G,D) = E,,[log D(x,y)] + E, [log (1 - D(x, G(x)))] Eqn.1

where G attempts to minimize the loss function (A/.;4y), While D strives to maximize it (i.e. G*
=arg minec max p A/.gan(G, D). To create artificially generated high-count images from low-count
(early) PET frames, we added an estimation error loss to the Discriminator feedback for the
effective training of the Generator (G) (23). The final loss function, G * is then expressed as:

G * = argming maxp Arcgan(G, D) + 2 A11(G) Eqn.2

where A/, (G) is an additional L1-norm based loss-function for the generator and A is a tunable

parameter, which is greater than zero (in our case 4 = 1, (24)). The U-net-like architecture (26)

11
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with skip connections was used as the Generator network (Supplemental Fig. 1), taking 3D sub-
volumes of the original early-frame PET image as input. The skip connections facilitate the
preservation of the local image information that is lost during the initial down-sampling process
and transfer this information to the later occurring up-sampling phase of the network. We used
a PatchGAN (Supplemental Fig. 2) as a Discriminator (22), which classifies each given patch as
either true or artificial. In addition, we added two more convolutional layers to the Discriminator
architecture. The advantage of this architecture is that the network preserves the high-frequency
structures of the high-count (late) PET frames using fewer parameters than would be required
using the full-size images. Training of the CNNs was performed using the standard method from

Goodfellow et al (24).

cGAN-aided Motion Correction

A random 70%-t0-30% data split of the full data was used for cGAN training (14 scans)
and testing (6 scans). Initially, all studies in the training set (14 measurements with 37 frames
each) were corrected for motion using motion vectors obtained from the contemporaneously
acquired MR navigators (23) (Fig. 1). Real-time data-augmentation (rotation, translation,
shearing, additive gaussian noise, brightness, contrast) was performed on the training datasets
resulting in 21,000 synthetic datasets. Subsequently, cGAN mapping was carried out between the
last high-count PET frame (reference frame #37 representing tracer accumulation at 55-60 min

p.i.) and all other PET frames, resulting in 36 mappings (x=>y) with variable quality (Fig. 2).

The obtained mappings were then applied to the test data sets to obtain artificially-generated

high-count images (using cGAN) that imitate the distribution of the reference frame from the

12
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original low-count images. Following the generation of the cGAN based high-count images for
the test datasets, motion correction was performed by considering the 55-60 min p.i. PET-frame
as the reference frame (Fref) and all other frames were subsequently registered to the Frer using
a standard multi-scale mutual information routine (Greedy module ITK 1.2.4, Insight
Segmentation and Registration Toolkit). For each frame of the dynamic sequence, this approach

resulted in a 6-parameter motion vector.

Standard PET Frame-based Motion Correction

To evaluate the added value of cGAN aided motion correction, this methodology was
compared to a standard PET frame-based motion correction. PET image frames were aligned
using the same multi-scale mutual information based coregistration routine as described above
(Greedy module ITK 1.2.4). This routine performs alignment between images starting at a coarse
scale which is then used to initialize registration at the next finer scale, a process repeated until
it reaches the finest possible scale. As for the early images (< 3 min p.i), the applied multi-scale
mutual information coregistration approach failed due to insufficient count statistics, we
summed the first 3 min of the dynamic sequence to create a reference frame with sufficient
statistics. Subsequently, all later frames (>3 min p.i.) were rigidly aligned to this summed frame.
It is important to point out that this approach (summing of early frames) is frequently
implemented in dynamic studies when low-count images are analyzed that do not contain
sufficient data that would allow extraction of an accurate motion vector. Because robustness of
this coregistration procedure can be improved by low-level smoothing (The ITK Software Guide,

Kitware inc.), our standard registration approach therefore consisted of applying a heuristically
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chosen 4 mm gaussian filter to the images prior to registration. However, in order to assess the
performance of cGAN methodology when processing the original (low-count) images, this

smoothing step was omitted when testing cGAN processed images.

PET Emission Data and Attenuation Map Alignment

To account for misalignment between the PET emission data and the attenuation map,
we used a dual-reconstruction approach. Specifically, PET attenuation correction was performed
based on an attenuation map derived from a CT image acquired immediately following the
PET/MR imaging protocol. This CT attenuation map was co-registered to the first MR sequence
of the study protocol (TOF-MRA sequence) and this static map was then used to perform
attenuation correction for the whole PET dynamic sequence. However, this approach does not
take into account PET inter-frame motion. Therefore, non-motion corrected PET frames were
initially used to derive a motion vector (using either MR navigators for the training data or cGAN-
processed images for the test data) and once the motion vector was determined, this information
was used to align the CT attenuation map to each PET dynamic frame. The motion-corrected CT

attenuation maps were subsequently used to re-reconstruct the whole dynamic PET sequence.

Characterization of cGAN Performance

In order to assess the degree to which cGAN image processing is able to enhance generic
features of brain tracer distribution (such as overall brain shape and contours) cGAN
performance of individual frames was assessed based on two measures: first, by the

improvement in mutual information (Ml) between the reference image and the cGAN generated

14
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high-count images relative to the original images, and, second, by the comparison of the absolute
percent difference with respect to the histogram area-under-the-curve (Histauc) between
histograms derived from cGAN generated and reference images. It isimportant to note that these
histograms include all image voxels in 3D space and are not affected by subject motion.
Moreover, the Ml and Histauc are complimentary; Ml is sensitive to the similarity in image
patterns expressed in the two images, while Histauc provides information with respect to scale-

relationship between voxel intensities in the two images (27,28).

Generation of Simulated Test Data Sets

Given the low number of the original test data sets (6 scans), additional test data sets
were generated based on the original six test data sets. These simulated data sets were used to
further investigate the potential of the cGAN method to address the problem of inter-frame

motion.

Excessive inter-frame motion was simulated by adding to each dynamic frame (except the
reference frame) an arbitrary translation (0, 1 or 2 voxels in each direction) and rotation (0, 0.5
or 1 degree for each Euler angle) vector (SimplelTK 1.2.4, Supplemental Fig. 3). Ten repetitions
were performed for each dataset with different motion vectors added, resulting in a total of 60
synthetically created test data sets, each consisting of 37 dynamic frames. These data sets were
then either pre-processed using cGAN methodology, or were directly co-registered to the
reference frame (standard PET-frame based motion correction) using the normalized mutual

information alignment routine as described above.
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Moreover, in order to assess the potential of cGAN methodology to aid in the detection
of intra-frame motion in routine clinical static studies, we partitioned the list mode data of the
reference frames (#37 from 55 — 60min p.i) into a series of short sub-frames (10 sub-frames of
30s and 20 sub-frames of 15s). cGAN was used to produce artificially generated high-count
images from these sub-frames. This procedure was applied for each measurement of the test
data set (6 scans). Improvement in image quality was assessed based on the increase in Ml
following cGAN processing. In addition, to further demonstrate the ability of cGAN processing in
accurately accounting for intra-frame motion, we selected a representative reference frame,
which we partitioned into 15s sub-frames and introduced random motion (translation 3-5 mm,
rotation < 1 degrees) to the sub-frames. Following motion correction either with (cGAN-aided)
or without cGAN pre-processing, the coregistered sub-frames were summed and the resulting

images were visually compared for image quality.

cGAN-based IDIF

To assess the clinical performance of the cGAN method for motion compensation of dynamic PET
frames, we extracted the IDIF from the test data set (both original and simulated) and compared
the IDIF with the AIF. For this, we replaced the MRI navigator-based motion correction in our
previously developed IDIF pipeline with the developed cGAN-aided motion correction. This
analysis pipeline was described in detail in (9,10). In brief, it entails automated segmentation of
the petrous region of the internal carotid arteries (ICA) from the corresponding TOF-MRA images
followed by an automatic multi-scale intermodal NMI co-registration (Greedy ITK 1.2.4) of the

TOF-MRA volume and the reference frame (frame #37) for each study. The arterial blood pool
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region was defined based on the MR angiography image; clearly identifying the ICA region. This
region was subsequently transferred into PET space where it was used to extract the time-activity
curve. cGAN-aided motion vectors were applied during the extraction of the time-activity curve
in order to adjust the blood pool region for the computed displacements. Finally, an iterative
regional partial volume correction procedure was applied in each PET frame to recover the true

activity in the internal carotid arteries (10).

Post-processing of IDIF

The motion- and partial volume-corrected IDIF was interpolated with a step length of 1
using a “Piecewise Cubic Hermite Interpolating Polynomial” to match the blood sampling times.
All corrections were applied to the IDIF with the AIF being considered as the reference (3,9). First,
count rates from sampled arterial blood were scaled using the cross-calibration factor between
the PET/MR and the on-site gamma counter in order to express the AIF in the same units as the
PET data (Bg/mL). Second, a plasma IDIF was derived based on the individual plasma-to-blood
ratios obtained from sampled arterial blood of the study subjects. Third, the delay between the
AIF and the IDIF was corrected by shifting the IDIF curve to match the sampling times of the AIF.
Finally, due to the difference in sampling location (ICA for IDIF and radial arteries for AlF), a mono-
exponential dispersion function with a tau value of 5 s (29) was convolved with the IDIF to mimic

the dispersion effects.

17



326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

Quantification of CMRGlc

Calculation of cerebral metabolic rate of glucose (CMRGIc) for the test data sets was
performed using a voxel-wise Patlak graphical analysis (lumped constant, LC = 0.65 (30)) using
either the AIF or the IDIF. Analyses were performed using in-house developed Matlab tools
(Matlab R2018a, MathWorks, USA) that generate parametric images representing CMRGlIc
(umol/100g/min). In particular, a linear function was fitted to the Patlak-transformed data,
including data from 25 min p.i. until the end of the scan (8 data points). The resulting slope was
then multiplied with the subject’s plasma glucose level (umol/L) and divided by the LC. By
applying a grey matter (GM) mask derived from individually co-registered T1-w MR images, the
average CMRGlIc value in the GM was determined using either the AIF (CMRGlcair) or the IDIF

(CM RG|C|D|F).

Assessment of cGAN Performance for Motion Compensation

The quality of cGAN-aided motion correction of the dynamic frame sequence was
assessed in relation to the sampled AIF. Specifically, IDIFs were determined from the test data
sets (both original and simulated) using cGAN-aided motion vectors and compared to the AlFs by
utilizing the area under the curve (AUC). Differences in GM CMRGIc values derived from the IDIF

and AIF were assessed using the absolute percent difference (| %A|) between CMRGIc values:

CMRGIlcipip—CMRGlcarF
CMRGlcprr

|%A| = x 100 Eqn.3

CcGAN performance was assessed separately for the original data set (N = 6) and the simulated

data set (N = 60).
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RESULTS

Fig. 2 visualizes the results of cGAN processing of the dynamic frame sequence from ~100s
(1.7min) p.i. until the penultimate frame in the study (#36). The data indicates a visually excellent
quality of the artificially generated images for frames of 60s duration, as early as 2min p.i. of the
tracer. In contrast, the quality of cGAN images appears suboptimal for very short frames (5s) prior

to 2min p.i.

Quantitative assessment of cGAN performance based on mutual information (Ml) is
depicted in Fig. 3. A substantial increase in Ml of the individual frames after the application of
CGANs, in frames as early as 1min p.i. is clearly noted. Fig. 4 indicates a substantial decrease in
the |%| between histogram AUCs characterizing cGAN-processed images and those
characterizing the original images during the very early phase of the study (60s — 120s). During
that time, cGAN processed images derived from the very short frames (5s) decreased the
difference in histogram AUC by ~80% relative to histogram AUCs obtained from the original
images. Subsequent improvements were minor (<5%) for longer and later frames with better

count statistics.

Supplemental Fig. 4 demonstrates that cGAN-based IDIFs were closer to the reference
standard in comparison to the IDIFs obtained without cGAN processing and using only standard
frame-based motion correction (motion profile of the represented subjects in Supplemental Fig.
5). For the original data set (N = 6), the |%A| between AUCs derived using the motion-corrected
IDIF and the AIF was (1.2 + 0.9)%. The GM CMRGIc values determined using these two input

functions differed by less than 5% ((2.4 + 1.7)% (Fig. 5). The quantitative difference in AUC and
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GM CMRGIc values between AIF and IDIF (before and after cGAN preprocessing) for individual
datasets (N=6) with their respective augmentations (10 iterations) is depicted in Table. 1. For the
simulated data sets (N = 6 x 10 iterations), the mean difference in AUC values between those
obtained using the AIF and the IDIF using cGAN preprocessing was 0.9 + 0.7%, whereas the
difference in AUC values between AIF and the IDIF without cGAN preprocessing was 2.9 + 3.1%.
Moreover, IDIFs extracted from cGAN-preprocessed motion compensated data resulted in
CMRGIc values closer to those obtained using the AIF, with an absolute difference of 2.2 + 1.8%
as compared to CMRGIc values determined without cGAN preprocessing of 3.9 + 3.5%. The
improved performance of cGAN aided as compared to non-cGAN aided motion correction can be
also inferred from the smaller variance of both AUC and GM CMRGIc values in case of cGAN

preprocessing.

Fig. 6 shows representative images that were obtained by partitioning the reference
image (55-60 min p.i.) into 15s subframes and the image quality of these sub-frames following
CcGAN processing. For the (10 x 30s) subframe data set, the Ml improved by 135% (from 0.030 +
0.003 to 0.070 + 0.001), whereas improvement was even greater for the (20 x 15s) data set
(improvement of 290%; from 0.002 + 0.003 to 0.0700 + 0.0001). Moreover, Fig. 7 demonstrates
the improvement in image quality of the reference image when 15s sub-frames with artificially
introduced random motion underwent standard frame-based motion correction and cGAN
preprocessing prior to rigid body motion correction as compared to non-motion corrected
summed sub-frames. As expected, motion correction improves image sharpness and one can
appreciate a slight improvement of images processed using cGAN methodology as compared to

those processed with standard frame-based motion correction.
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DISCUSSION

We present a fully-automated motion correction approach for dynamic 18F-FDG PET
studies of the brain that utilizes cGAN pre-processing of low-count images in order to improve
the estimation of motion vectors derived using conventional rigid body coregistration algorithms
(Fig. 2). Our results suggest that cGAN methodology allows the creation of artificially generated
high-count 18F-FDG brain images from early low-count images that closely resemble the 18F-
FDG uptake pattern at late (¥60min p.i.) scan times. The creation of artificially-generated, high-
count images allows then the reliable determination of a motion vector directly from the data,
which was verified by the comparison of an IDIF with arterial blood samples. Thus, cGAN-aided
motion correction is likely to have a substantial impact on the quality of dynamic low-count 18F-
FDG PET brain studies and as a result might contribute to the expansion of absolute brain
quantification into clinical routine. Especially in the context of clinical PET/CT imaging, cGAN pre-
processing of low-count image frames could play an important role in improving the performance
of established motion correction approaches. The developed cGAN methodology also shows
promise in addressing the problem of intra-frame motion in long duration (5 - 20 min) PET scans,
by allowing the partitioning of a frame into sub-frames which, following cGAN pre-processing,

can be accurately corrected for motion.

To prevent motion when imaging the brain, subjects are usually instructed to remain
motionless and their head is immobilized using bands that affix the skull to the head rest (31).
This approach works reasonably well when imaging cooperative subjects, but frequently fails in
the clinical population due to the subjects being either uncomfortable or claustrophobic within

the PET gantry (31). As a result, motion artefacts are frequently encountered in both static and
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dynamic PET imaging. The problem with motion artefacts is even more severe when an IDIF is
extracted from the dynamic PET sequence, given that the magnitude of random displacements
and the system resolution are typically larger than the small size of the arteries. Accordingly,
accurate motion correction is an important prerequisite for absolute quantification in PET

imaging (17).

It has been well recognized that the original low-count/high-noise images are poorly
suited for alignment due to the poor definition of image landmarks that could guide the
registration procedure. As such, low-count images require some form of pre-processing in order
to achieve a satisfactory performance of the subsequently applied coregistration routines (32).
This pre-processing step could include various forms of smoothing or morphological operations,
but could also consist of more sophisticated forms of processing, such as the here presented
cGAN methodology. From a conceptual point of view, cGAN pre-processing might be superior to
the previously applied methods, as cGAN processing is based on an automated (i.e. operator-
independent) mapping of low-count images to their true high-count match. Stated differently,
the calculated mapping is specific to the noise characteristics of the original low-count images
and the resulting artificially generated images represent the most likely prediction of the final
(high-count) tracer distribution one could expect based on the training data. Overall, our data
clearly highlights the strengths of cGAN processing, such as the autonomous optimized
smoothing and “smart” inpainting, which substantially enhance the information content of low-
count images so that co-registration algorithms are provided with sufficient information to

accurately estimate the motion parameters.
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In practical terms, the functionality of cGANSs consists in the ability to correctly predict the
local distribution of measured data based on a statistically insufficient sample. More specifically,
the cGAN algorithm extracts the most likely relationships between low-count images (where the
underlying distribution is ambiguous) and high-count images (where the underlying distribution
is well defined) from the training data set and applies the extracted relationships to new images.
As a result, cGAN methodology is able to accurately predict generic image features (such as brain
contours) from low-count images. The improved definition of brain contours then allows
improved performance of conventional mutual information coregistration routines that strongly

depend on well-defined imaging features.

Images with dissimilar uptake pattern are typically encountered in dynamic studies when
the tracer uptake pattern changes as a function of time during the frame sequence. Our results
showed that structural information inherent to very early low-count images (< 2 min p.i.) is
insufficient to generate an acceptable mapping with the reference frame, thus, precluding the
generation of a high-count image that could guide the derivation of an accurate motion vector.
Conversely, 18F-FDG brain uptake at times >2min p.i. appears to be sufficient for adequate cGAN
mapping if the frames are not too short (>30s). However, we acknowledge that the relevance of
CcGAN processing is strongly diminished in the case of high-count/low noise images that are
already characterized by well-defined features. Finally, despite the fact that histograms derived
from cGAN-processed images have a similar overall shape with respect to the reference images
(Supplemental Fig. 6), they tend to overrepresent high intensities and should not be used in lieu

of the original low-count images for clinical diagnosis.
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Data from our previous studies suggests that motion magnitude increases with time and
for very early time points (<2 min) the motion magnitude tends to be negligible (i.e. translation
all axes < 1 mm, rotation < 1 degrees in all axes) (9,10). Moreover, even in the case of subject
movement in this very early phase of the study, the error accrued in the integral under the blood
time-activity curve remains negligible. We demonstrated this accuracy in our own test data set,
showing a mean value of <1.5% for the absolute difference between the IDIF and the sampled
arterial blood curve, which translated to an average difference of <3% for the calculated glucose

metabolic rate in gray matter (Fig. 5).

An exciting application of cGAN-aided motion correction is the possibility to address intra-
frame motion in static clinical PET scans. Clinical 18F-FDG brain scans are usually performed at
times >45min with a typical duration of 10 — 20min. Such relatively long frames are sometimes
subject to considerable patient motion artefacts, which impair image resolution and reduced
image contrast important for differential diagnosis. Our data suggests that due to the high tracer
uptake in brain tissue at these late time points, these long frames can be partitioned into sub-
frames as short as 15s which can be then processed with cGAN methodology to yield images of
sufficient quality for accurate co-registration (Fig. 6). Thus, one can envision a reconstruction
protocol in which listmode data is sequentially divided into smaller and smaller sub-frames that
are individually corrected for motion by taking advantage of enhanced image features generated
by cGAN pre-processing, resulting in an overall improvement in image quality. We would like to
point out that the short sub-frames (15s) are only necessary in order to determine the exact time

of displacement. Because realistic patient motion occurs in the form of a few distinct shifts in
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head position interspersed within a longer time-frame, most motion vector parameters derived

from the set of all short sub-frames will be negligible.

In this context, the question arises whether mappings are specific to one particular
imaging system or whether it could be also applied to 18F-FDG data obtained from other imaging
systems. Our very preliminary data suggests that mappings might be transferrable to other
imaging systems based on the application of our mappings to a dynamic 18F-FDG study (12 x 60
s,4x120s,5x300s) acquired using an external PET/CT system from a different vendor. The only
requirement is that mappings should match their respective PET mid-times. Supplemental Fig. 7
suggests that mappings might possibly be independent from the imaging system, however this

issue mandates further investigations that were not the focus of this work.

One of the main drawbacks of the study is the low number of test datasets. Although
synthetic data with variable motion parameters were generated, they were still generated from
the test datasets. Moreover, there are several other limitations that need to be considered when
applying cGAN methodology in clinical applications. First, current implementations of cGAN
processing are highly computationally intensive. The time to generate one (source-to-target)
mapping pairis 17 h on a dedicated NVIDIA DGX Workstation with 1x32GB Tesla V100 Volta GPU
for a frame size of 344 x 344 x 127 voxels. However, once a mapping specific for a particular tracer
is established via the training process, the time to apply this mapping to a low-count image of
any individual subject is only 1 min. Another potential source of error might be intra-frame
motion in the reference frame. In this study, we did not correct for such motion artefacts, since

neither visual inspection of image quality nor close monitoring of the subjects during the last
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frame did indicate noticeable subject motion. Finally, our cGAN implementation requires a
training set that consists of image pairs that are devoid of motion artefacts. Since our data was
acquired on a fully-integrated PET/MR system, simultaneously acquired MR navigators were used
to correct the training set for motion. When translating these findings to other sites, the use of
cycle-GANs (33), which produce generic mappings from spatially non-corresponding data may be

a potential solution that voids the requirement of motion-corrected image pairs.
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CONCLUSION

We present a data-driven motion correction approach for dynamic 18F-FDG brain studies
that is based on cGAN methodology. The method allows the derivation of an accurate motion
vector for low-count frames as early as 2min p.i., thus, facilitating the derivation of an IDIF void
of motion artefacts. The developed methodology has the potential to improve the accuracy of
non-invasive absolute quantification in the context of clinical PET and PET/CT studies. In addition,
cGAN methodology might also facilitate correction for intra-frame motion, thus improving image

quality of clinical scans with long duration.

Dissemination. To invite swift adoption of this novel approach by the research and clinical
community, software codes developed for cGAN processing are free and available online:

https://github.com/LalithShiyam/QIMP-tools/tree/master/PANDA. This repository contains all

software code that has been used to carry out analyses in our work.
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Key Points

QUESTION: To explore conditional Generative Adversarial Networks (cGANs) as an image-based

approach to perform motion correction in 18F-FDG dynamic PET brain studies.

PERTINENT FINDINGS: The proposed motion correction approach allows accurate non-invasive
determination of an IDIF. The developed non-invasive method yields CMRGIc values that are

within 5% of those determined using arterial sampling.

IMPLICATIONS FOR PATIENT CARE: cGAN-aided motion correction of 18F-FDG dynamic PET brain
studies depends only on the acquired emission data and can be applied retrospectively without
additional information. As such, it can be easily implemented in clinical routine and has the
potential to facilitate non-invasive absolute quantification in the context of clinical 18F-FDG

PET/CT patient studies.
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634

635  Figure 1. Schematic representation of cGAN methodology for motion correction of dynamic PET

636  frames: [1] Motion vectors from the MR navigators are applied to align the PET data. [2] All

637  training data (N = 14) is used to calculate mappings (M, i = 1, 36) between each individual frame
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(F-1 to F-36) and the reference frame (F-37). [3] These mappings are subsequently used to derive
a motion vector based on co-registration of cGAN-produced artificially generated images and the
reference image (test-data). [4] Application of the motion vector to either re-bin frames so that
they all correspond spatially or apply the motion vector to the location of region from where a

time-activity curve is extracted.

33



644

Mid-scan time

Scan duration

Original frame

cGAN navigator

Mid-scan time
Scan duration

Original frame

cGAN navigator

645

646
647
648 and 5 min).

649

650

651

1.7 min

5s

1.8 min

o0
o0

1.9 min

e

&
7

2 min

5s

@l

2.5 min

1 min

e

4 min

2 min

@l

7.5 min

5 min

12.5 min

5 min

17.5 min
5 min

22.5 min
5 min

OO
OO
QO

@O

27.5 min

5 min

32.5 min

5 min

37.5 min

5 min

42.5 min

5 min

RO

47.5 min

5 min

@O

52.5 min

5 min

©

as early as 2min after injection (arrow, top row).

(Bottom) Corresponding, artificially-generate, high-count PET images.

Figure 2. Results of cGAN processing for a representative subject. (Top) Original PET frames at

different mid-scan times (1.7 min to 52.5 min) with various frame durations (5 s, 1 min, 2 min,

cGAN

processing is able to produce a tracer distribution pattern that is similar to the reference frame
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Figure 3. Comparison of mutual information index (Ml) between the original (green) and cGAN
processed (red) dynamic frames with the reference frame as a (log) function of scan time. Note
that neither dynamic sequence is motion corrected. Values represent the average and the std.
dev. (shown as shaded area) of the test data set (N = 6). cGAN processing increases mutual

information of 18F-FDG brain images with respect to the reference frame close to the mutual

information of late frames (dotted line).
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Figure 4. The |%A| of the AUC between the reference image histogram and image histograms
derived from cGAN processed images (red) and original images (green) as a function of scan time.
Note, images were not motion corrected since histograms are independent from motion. The %
difference is substantially decreased for low-count (short) frames between 1 min and 2 min p.i.,

suggesting that an accurate motion vector can be determined even for early frames.
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668  Figure 5. The |%A| between AUC and GM CMRGlIc values (N = 6) obtained using the cGAN-based
669 IDIF and AIF. All differences were within 5% of the AIF standard. AUC: Area-under-the-curve of

670  the input function; GM: gray matter; CMRGlIc: cerebral metabolic rate of glucose.
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Figure 6. Performance of cGAN processing when applied to a subset of frames that were
partitioned into frames of either 15s duration (upper panel) or 30s duration (lower panel) from
an original 300s static 18F-FDG frame at 55 min p.i. (panel on right). The image quality of the
processed sub-frames for both subsets is substantially improved when compared to the un-

processed sub-frames, and resembles closely the original 300s frame that includes all data.
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Figure 7. Summed images corresponding to 55-60 min p.i, following intra-frame motion

correction using motion vectors obtained from 15s subframes. Left column: summed images
without correction for intraframe motion (No-MoCo) . Middle column: summed images following

standard frame-based motion correction without cGAN preprocessing (SFB-MoCo). Right

39



684  column: summed images using cGAN aided motion correction (cGAN-MoCo). The red arrows

685 indicate the areas of improvement.
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Tables

Table 1. The |%A| between AUC or GM CMRGlc values (N = 6 x 10 synthetic datasets) using the

IDIF (motion corrected with cGAN and without cGAN processing) and values obtained using

arterial blood sampling. AUC: Area-under-the-curve of the input function; GM: gray matter;

CMRGIc: cerebral metabolic rate of glucose.

Patient ID AUC AUC GM CMRGIc | GM CMRGIc
Original PET | cGAN processed | Original PET | cGAN processed
frames frames (%) frames frames
(mean £ sd) % (mean £ sd) % (mean £ sd) % (mean £ sd) %

P-01 (1.4 +0.8) (0.8 +0.3) (3.8 +2.3) (3.9+0.4)

P-02 (2.0+1.4) (0.4+0.3) (2.7 £ 2.5) (1.3+£1.0)

P-03 (8.3+1.7) (1.7 £0.4) (10.1+2.6) (0.9+0.6)

P-04 (4.3+£2.9) (0.8+0.7) (3.1+2.3) (0.9+£0.8)

P-05 (1.1+0.6) (0.2+0.2) (1.9+0.6) (1.0+0.3)

P-06 (1.310.6) (0.5 % 0.4) (4.910.9) (1.9 0.6)
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Graphical Abstract
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SUPPLEMENTARY FIGURES

U-net architecture with skip-connections
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Supplementary Figure 1. Schematic representation of the 3D U-net generator architecture. The
blue cubes correspond to a progressive down-sampling path, while the orange cubes correspond
to the step-wise up-sampling path. The skip-connections are represented by dotted arrows and

enable the preservation of high-frequency information.



3D Patches

Artificial late-PET frames Discriminator

Single patch
Real/Artificial
..... » R - RRERY ‘
Patch generator 64 x 64 x 64

128 x 128 x 64

Downsampling

@ Final decision: Real/Artificial
64 x 64 x 64

Supplementary Figure 2. Schematic representation of the patchGAN discriminator architecture.
The inputs to the discriminator were patches of size 64 x 64 x 64 of the generator's output. The
architecture consisted of 5 convolutional layers. The first down-sample layer produced 64 feature
maps; this number was doubled at each subsequent down-sampling step. After the last layer, a

convolution was applied to map to a 1-dimensional output, followed by a sigmoid activation to

I” full-dose PET image or an “artificial”

determine whether the input is a “rea image.
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Supplementary Figure 3. Distribution of the motion parameters (rotation and translation), which
were used to create synthetically generated data sets that included additional motion. The
rotational parameters varied between 0 to 1 degree in all 3 orientations, and the translational

parameters varied between 0 mm to 5 mm in x-, y- and z-directions.
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Supplementary Figure 4. Representative input functions derived from two test subjects (#1 and
#2) demonstrating the ability of cGAN processing to yield an accurate IDIF. Substantial motion
artefacts were present in the early stages of the study (0 — 15min p.i., black time-activity curve)
as determined by comparison with the reference standard of arterial blood sampling (orange
time-activity curve). Application of frame-based motion correction results in an improved, but
still suboptimal time-activity curves (green). cGAN-aided motion correction allows the non-

invasive extraction of an IDIF (blue) that closely reproduces arterial blood samples.
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Supplementary Figure 5. 3D motion profile (3 translation and 3 rotation parameters) of
representative subjects #1 and #2 from whom a non-invasive IDIF was derived (see also Suppl Fig

4).
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Supplementary Figure 6. Comparison of the reference image histograms (blue) with the

histogram of the low-count original image prior to cGAN (orange) and post cGAN (yellow)

processing. It can be seen that in the cGAN processed histogram the frequency of high intensities

in the image is overestimated (7.5 min p.i and 22.5 min p.i).
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Supplementary Figure 7. The mappings (M-n) trained using 18F-FDG dynamic datasets from the
Siemens Biograph mMR was applied to the dynamic datasets (2 scans) obtained from an external
PET/CT system. Frames 1, 2 and 3 correspond to the following PET mid-times (2, 7, 35 min p.i).
Although cGAN mappings were trained using data from the on-site PET/MR system, they were
able to produce reasonable results with data obtained from an external PET/CT system,

supporting the claim that cGAN mappings might be useable across imaging systems.





