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ABSTRACT 

Accurate delineation of the intraprostatic gross tumour volume (GTV) is a prerequisite for 

treatment approaches in patients with primary prostate cancer (PCa). Prostate-specific 

membrane antigen positron emission tomography (PSMA-PET) may outperform MRI in GTV 

detection. However, visual GTV delineation underlies interobserver heterogeneity and is time 

consuming. The aim of this study was to develop a convolutional neural network (CNN) for 

automated segmentation of intraprostatic tumour (GTV-CNN) in PSMA-PET. 

Methods: The CNN (3D U-Net) was trained on 68Ga-PSMA-PET images of 152 patients from 

two different institutions and the training labels were generated manually using a validated 

technique. The CNN was tested on two independent internal (cohort 1: 68Ga-PSMA-PET, n=18 

and cohort 2: 18F-PSMA-PET, n=19) and one external (cohort 3: 68Ga-PSMA-PET, n=20) test-

datasets. Accordance between manual contours and GTV-CNN was assessed with Dice-

Sørensen coefficient (DSC). Sensitivity and specificity were calculated for the two internal test-

datasets (cohort 1: n=18, cohort 2: n=11) by using whole-mount histology. 

Results: Median DSCs for cohorts 1-3 were 0.84 (range: 0.32-0.95), 0.81 (range: 0.28-0.93) 

and 0.83 (range: 0.32-0.93), respectively. Sensitivities and specificities for GTV-CNN were 

comparable with manual expert contours: 0.98 and 0.76 (cohort 1) and 1 and 0.57 (cohort 2), 

respectively. Computation time was around 6 seconds for a standard dataset. 

Conclusion: The application of a CNN for automated contouring of intraprostatic GTV in 68Ga-

PSMA- and 18F-PSMA-PET images resulted in a high concordance with expert contours and in 

high sensitivities and specificities in comparison with histology reference. This robust, accurate 

and fast technique may be implemented for treatment concepts in primary PCa. The trained 

model and the study’s source code are available in an open source repository. 
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INTRODUCTION 

In patients with newly diagnosed PCa, accurate contouring of the intraprostatic gross tumour 

volume (GTV) is mandatory for successful fusion-biopsy guidance (1). Additionally, focal therapy 

approaches such as focal dose escalation in radiotherapy (2) rely on an accurate definition of 

the intraprostatic GTV. 

 Prostate-specific membrane antigen positron emission tomography (PSMA-PET) has 

recently been established for initial staging in primary PCa patients (3). It is also increasingly 

used in order to improve intraprostatic lesion detection (4-6), focal therapy guidance (7) and non-

invasive PCa characterization (8).  Most of the studies evaluated 68Ga-PSMA-11 as 

radiopharmaceutical. However, 18F-PSMA-1007 is increasingly used and Kuten et al. reported 

that 18F-PSMA-1007 may detect additional low-grade lesions (9). In a recent work manual and 

semi-automatic contouring approaches for 68Ga-PSMA-PET images were validated (10). 

Although good results (sensitivity and specificity >80%) were obtained for most of the contouring 

approaches, some methodologies showed a rather poor performance (sensitivity and specificity 

<70%). This is in line with a dice-index (DSC) varying between 0.56-0.8 for the manual contours, 

which indicates that PSMA-PET based GTV-definition underlies a substantial interobserver 

variability. Actually, no validated contouring technique for 18F-PSMA-PET was proposed. 

 The implementation of an automatic segmentation algorithm may enhance intraprostatic 

GTV-delineation in PSMA-PET images by extending the two main limits of conventional 

contouring approaches: interobserver heterogeneity and expenditure of time. Recently, 

convolutional neural networks (CNNs) based algorithms achieved remarkable results handling 

this task. In a work by Zhao et al. the pelvic PCa tumour burden in 68Ga-PSMA-PET images 

was detected by a CNN with 99% precision (11). Although several works already reported the 

excellent performance of CNNs in prostatic gland delineation on CT images (12) the usage of 

CNNs for intraprostatic GTV contouring in PSMA-PET was not examined yet. The aim of this 
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work is to examine the capabilities of CNNs for intraprostatic GTV contouring in 68Ga- and 18F-

PSMA-PET.  

MATERIALS AND METHODS 

Patients 

 Data from 209 patients with primary PCa from three different centres (Table 1) were 

included. Inclusion criteria were histologically proven adenocarcinoma of the prostate and no 

treatment prior to PSMA-PET. The institutional review boards approved this retrospective study 

and the requirement to obtain written consent was waived.  

PET/CT Imaging  

 A detailed description of the radiolabelling protocol of 68Ga-PSMA-11 and 18F-PSMA-1007 

from centre 1-3 can be found in previous studies (6,13-15). One hour (68Ga-PSMA-11) and two 

hours (18F-PSMA-1007) after intravenous tracer injection, all patients underwent whole body 

PET scan. In centre 1, protocols were acquired on three cross-calibrated Philips scanners: 

GEMINI TF TOF64, GEMINI TF16 Big Bore and Vereos. All scanners resulted in a PET image 

with a voxel size of 2x2x2mm. Centre 2 used an uMI 780 PET/CT scanner (United Imaging 

Healthcare) with a voxel size of 2.3x2.3x2.7mm. Resampling was performed to obtain a PET 

image voxel size of 2x2x2mm (tri-linear interpolation in plastimatch v1.8.0) before training of the 

CNN. Expert contours of intraprostatic GTV and prostate contours were resampled with nearest 

neighbor interpolation (plastimatch v1.8.0). Centre 3 acquired all studies acquired using a 

Biograph mCT 128 Flow scanner (Siemens). PET images had a voxel size of 4.1x4.1x5mm. 

Testing was performed with the original data and with three different resampling methods to 

obtain a PET image voxel size of 2x2x2mm. 

Histopathology and PET/CT Co-registration 
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 For 29 patients from centre 1 (cohort 1: n=18 and cohort 2: n=11) the 3D distribution of the 

intraprostatic GTV was obtained by histology information from prostatectomy specimen. The 

resected specimen underwent an ex-vivo CT scan in customized localizer and whole-mount step 

sections were cut every 4mm using a cutting device. Staining with hematoxylin and eosin was 

performed and PCa tissue in histology was delineated. Histology slices were registered on ex-

vivo CT images and PCa contours were transferred onto the CT images. The contours were 

interpolated to create a model of the 3D distribution of PCa in histology (GTV-Histo). Ex-vivo CT 

(including GTV-Histo) was manually registered to in-vivo CT. First, the prostate was delineated 

in both. Subsequently, ex-vivo CT was oriented in the space of the in-vivo CT and the axes 

between the apex and the prostatic base in both CTs guided further registration. Rotation was 

applied for final alignment. The delineations of the prostatic glands in both CTs and intraprostatic 

markers (e.g. calcifications) served as reference points for anisotropic scaling of the ex-vivo 

prostate. All co-registration steps were performed by CZ using MITK (Version 2014.10.00). 

 

Contouring of PSMA PET/CT  

 All GTVs on PET were delineated by two readers (GTV-Exp) from centre 1 in consensus as 

proposed previously (10): GTVs were delineated manually in every single slice using inverted 

grey color scale for display, windowed with SUVmin-max: 0-5. In the first step two readers with 

medium level of experience (ASB or NB, experience approx. 1.5 years) delineated the GTVs 

under the consideration of the respective PET/CT report. Subsequently, CZ (experience 6 years) 

reviewed all GTVs independently. In case of discrepancies each individual case was discussed 

and corrected in order to reach a consensus contour. Additionally, for the patients with 

histopathology reference in cohorts 1 and 2, threshold-based contouring with 30% of 

intraprostatic SUVmax was applied (GTV-30%) as proposed previously (16). GTV-30% volumes 

were created semi-automatically in Eclipse (v15.6). Manual contouring of the prostatic gland on 
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CT scans was considered as the gold-standard and was done by CZ using the ESTRO-ACROP 

guidelines (17). All manual delineations were created in 3D Slicer (Version 4.10.0). 

Preprocessing 

 The data (nearly raw raster data format, nrrd) was cropped to a size of 64x64x64 voxels 

and normalized with 𝑥௜′ ൌ
௫೔ି௫

ఙ
, where 𝑥௜  is the PET data of patient 𝑖, 𝑥 the arithmetic mean and 𝜎 

the standard deviation within all cropped datasets. The volume of 64x64x64 voxels proved to be 

large enough to encompass the prostate and its surrounding tissue for all patients and small 

enough to enable a computation of the whole volume on the GPU. 

 Due renal excretion it is not always possible to accurately differentiate between prostatic 

tissue and bladder signal in 68Ga-PSMA-PET. Consequently, only delineations inside the 

prostatic gland contour were used for computations. 

 To investigate the impact of a voxel size different from the training voxel size and the usage 

of different interpolation algorithms we used the PETs from centre 3 in four different ways. First, 

the original data was fed to our network. In a second setting, the PETs were resampled to a 

resolution of 2x2x2 mm with three different methods (SimpleITK v1.2.4): B-spline interpolation 

order 3, tri-linear interpolation and Gaussian interpolation. Prostate contours and ground truth 

GTVs were resampled with nearest neighbor interpolation.  

Convolutional neural network 

 The current work was based on a 3D variant of the U-Net architecture (18). It consists of 3 

down sampling steps with max-pooling, 3 up sampling steps with transposed convolution layers 

(kernel size:2x2x2, stride:2, padding:1) and skip connections by concatenation. The 18 

convolution blocks consist of 3x3x3 convolutions with stride and padding of 1, followed by Batch 

Normalization and Rectified Linear Unit activation, except for the last convolution where 1x1x1 

convolution without padding, Batch Normalization and Sigmoid activation function were used. An 
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argmax function over the final feature map formed the predicted GTV. The network weights were 

optimized using adaptive moment estimation (19). 

     Training. The 152 patients of the training cohort were further split into training (n=142) and 

evaluation cohort (n=10). The evaluation cohort was used for optimizing the CNN’s hyper-

parameters during the training process. As input the CNN received a concatenation of the 

patients’ PET and prostate contour. Hyper-parameter optimization was done using a grid search 

considering: optimizer, learning rate, number of epochs, data augmentation with x-axes flipping 

and scaling in x-/y-/z-direction. The best performing setting was achieved with adaptive 

moment estimation 𝛽ଵ ൌ 0.9 ∧ 𝛽ଶ ൌ 0.999, a learning rate of 0.0001 and training for 1019 

epochs (an epoch means iterating over all training samples once) with a dice loss: 

𝑑𝑖𝑐𝑒𝑙𝑜𝑠𝑠ሺ𝑋,𝑌ሻ ൌ 1െ
ଶ∑ ௪೗

|ಽ|
೗సభ ∑ ௬೗೙೙ ௫೗೙

∑ ௪೗
|ಽ|
೗సభ ∑ ௬೗೙೙ ା௫೗೙

 for |𝐿| number of labels, N image elements 𝑥଴,...,ே ∈

𝑋,𝑦଴,...,ே ∈ 𝑌and without weighting the label classes 𝑤௟ ൌ 1. Grid search was performed without 

or with data augmentation by (i) flipping the x-axis by 50% chance, (ii) by scaling the data in all 

directions or (iii) by doing both. For each iteration the original data was pseudo-randomly and 

independently scaled in x/y/z-direction for ±10 voxels and then cropped as described before. 

Data augmentation achieved worse or equal results than the settings without augmentation. 

Consequently no data augmentation was used for further analyses. In Figure 1 visualizations of 

the training and evaluation curves are presented.  

     Evaluation.  We assessed the agreement between GTV-Exp and GTV-CNN at voxel level 

using the DSC. Additionally, we considered the Hausdorff distance (HD) and the average 

symmetric surface distance (ASSD). The sensitivity and specificity for all GTVs based on the 

histology standard of reference data was calculated as performed previously (20). The prostate 

in each CT slice (PSMA-PET/CT scans) was divided into four equal segments and the analysis 
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was performed visually using the GTVs obtained. A median of 52 segments (range: 20-64) were 

analysed per patient. 

     Implementation. The network was implemented with pytorch 1.3.1 and torchvision 0.4.2. 

Gradients for backpropagation were calculated with the pytorch autograd library which keeps 

track of all operations and builds a computational tree.  Please see the provided code: 

https://gitlab.com/dejankostyszyn/prostate-gtv-segmentation. 

Statistical Analysis 

 The statistical analysis was performed with MedPy’s package ‘Metric Measures’ v0.4.0 and 

GraphPad Prism v8.1.0 (GraphPad Software). Pairwise comparisons were performed with the 

Wilcoxon matched-pairs signed rank or Friedman test. Non-pairwise testing was performed with 

Mann-Whitney test or Chi-square test. The tests were chosen due to non-normal distribution 

(Shapiro-Wilk test) of the data. Finally, we searched for clinical factors that might impact the 

CNN performance by influencing the SUV distribution (PSA and Gleason score) or by 

neighborhood to the bladder (localization): a binary logistic regression analysis was performed to 

assess the impact of clinical parameter on DSC between GTV-Exp and GTV-CNN. The 

confidence alpha was set to 5%. 

 

RESULTS 

Test Results 68Ga-PSMA-11 PET  

 On the internal datasets (cohort 1) the network yielded median DSC, HD and ASSD of 0.84 

(range: 0.32-0.94), 4mm (range: 1.41-10) and 0.61mm (range: 0.24-1.46), respectively 

(supplementary Table 1). Considering histology reference (Figure 2) median sensitivity and 

specificity of 0.98 (range: 0.38-1) and 0.76 (range: 0.13-1) were observed. The achieved 
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sensitivity and specificity was comparable to GTV-Exp and GTV-30% (Figure 3). The median 

volumes of the GTVs were: 10.7ml (range: 0.7-101) for GTV-CNN, 11.8ml (range: 0.8-75) for 

GTV-Exp, 8ml (range: 2.2-41) for GTV-30% and 10.4ml (range: 1.6-103) GTV-histo. No 

significant differences between absolute volume of GTV-CNN and the three other volumes were 

observed (p>0.05). The GTV-CNN encompassed in median 26.6% of the prostatic gland. 

 Patients in the external test cohort (cohort 3) had statistically significant differences 

between Gleason scores but not between PSA values and cT stage (Table 1). Comparison 

between GTV-CNN and GTV-Exp was performed firstly on non-resampled and secondly on 

resampled PET images (supplementary Table 1). Friedman test revealed statistically significant 

(p<0.01) differences in DSC, HD and ASSD among the pre-processing procedures and no pre-

processing. Post-hoc analyses revealed no statistically significant differences between the three 

interpolation approaches (p>0.05). As datasets with tri-linear interpolation from centre 2 were 

used in the training cohort, we conducted an additional experiment by training the CNN solely on 

patients from centre 1 (without interpolation), to exclude a bias. Testing was performed on 

patients from centre 3 using all three interpolation methods and achieved comparable results to 

the results shown in supplementary Table 1. 

 In regression analysis with pooled cohorts 1 and 3 no clinical parameter had an impact on 

DSC between GTV-Exp and GTV-CNN (supplementary Table 2). 

Test Results 18F-PSMA-1007 PET  

 Median DSC, HD and ASSD for cohort 2 were 0.81 (range: 0.28-0.93), 5mm (range: 1.41-

8.49) and 0.51mm (range: 0.26-1.57), respectively (supplementary Table 1). Sensitivity and 

specificity were 1 (range: 0.86-1) and 0.57 (range: 0.12-1). GTV-CNN had a significant higher 

sensitivity than GTV-30% (p=0.01) but not than GTV-Exp (p=0.48). No statistically significant 

differences in specificity (p>0.05) were observed between the three GTVs. Median volume was 

3.5ml (range: 0.3-24.4) for GTV-histo, 8.5ml (range: 1.9-38) for GTV-CNN, 3ml (range: 0.6-21.5) 
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for GTV-30% and 7.2ml (range: 1.2-36) for GTV-Exp. GTV-CNN was statistically significant 

larger (p>0.05) than all other volumes (p<0.05) and encompassed in median 32% of the 

prostate. 

Computation Time 

 For internal test cohorts the segmentation of the GTV of one patient took in median 6 and 

6.28 seconds, respectively, including loading and storing the data (supplementary Table 1). This 

process took 23.3-27.8 seconds for cohort 3. A single forward pass through the CNN took less 

than a second (approx. 3 µs) for all cohorts.  

DISCUSSION 

 Implementation of automatic GTV-segmentation approaches based on CNN algorithms 

have already been introduced for several other tumours (21). Although several studies achieved 

promising results by using CNNs for auto segmentation of the prostatic gland there is limited 

evidence on the segmentation of the intraprostatic GTV (22). To the best of our knowledge this 

is the first study analyzing CNNs for intraprostatic GTV delineation based on PET images. We 

chose PSMA-PET images since several studies reported that PSMA-PET outperforms mpMRI in 

tumour detection (4-6). Consequently, the use of PSMA-PET for initial staging (3) and 

intraprostatic GTV detection and contouring (23) has been established and several studies 

suggested its implementation for treatment individualization in primary PCa (24-27). However, all 

previous studies used manually or semi-automatically created contours for intraprostatic GTV 

contouring which may be impeded by low sensitivity/specificity and interobserver heterogeneity 

(10). Furthermore, manual contouring of intraprostatic GTV is time consuming. Obviously, a fast, 

robust and accurate workflow for intraprostatic GTV contouring is a prerequisite for a broader 

deployment of PSMA-PET-based procedures. In this work we proved that CNNs have the ability 

to delineate the intraprostatic GTV on PSMA-PET with accuracy comparable to human experts 
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within seconds. Thus, it is likely that PSMA-PET/CT in combination with CNN-based intra- and 

extraprostatic (11) tumour detection and segmentation may provide a “one-stop shop” tool for 

tailoring individualized treatment approaches.  

 The CNN performance for 68Ga-PSMA-PET was tested on two independent datasets and 

high DSC values (>0.8) between GTV-Exp and GTV-CNN were observed. Bravaccini et al. 

reported that the PSMA expression correlates with the Gleason score (28). As the two test 

cohorts had statistically significant differences in Gleason score in biopsy probes our results 

show that the CNN performance is independent of the Gleason score and suggest that the CNN 

identified patterns that are independent from absolute accumulation values. Nevertheless, 

pattern recognition in PSMA-PET images through CNNs may enable non-invasive tumor 

characterization (e.g. the Gleason score) in the future. In rare cases a high HD was observed 

despite a high DSC. This was the case when the main parts of CNN and expert GTVs 

overlapped, but small regions with a high distance to the main tumour, were diagnosed as 

malignant by the CNN, but not by the human experts. For example, in two patients of cohort 1 

the CNN detected small (<5mm in histology) lesions which were missed by GTV-PET. This 

explains the slightly higher sensitivity of the CNN in cohort 1 although the absolute GTV volumes 

were comparable. Since HD is sensitive to outliers, we used ASSD as additional metric and 

achieved comparable results. In comparison with histology reference GTV-CNN achieved high 

sensitivity and good specificity in 68Ga-PSMA-PET images, which was comparable to manually 

delineated expert contours and threshold-based contours. Additionally, the absolute volume of 

GTV-CNN was very similar to the histology reference volume suggesting an adequate coverage 

of the intraprostatic tumour. Since GTV-CNN encompassed in median 26.6% of the prostatic 

gland, it is very likely that focal therapy approaches guided by CNN are feasible in most of the 

patients. 68Ga-PSMA-PET images of the external test cohort were tested with and without 

previous resampling. Statistically significant differences were observed with better results for the 

resampled datasets. Hence, when using datasets from different institutions a resampling of the 
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images to the same voxel size of the training data set should be performed. Although tri-linear 

interpolation showed a slightly better performance, there was no statistically significant 

difference between the results of the three methods. Therefore no specific interpolation method 

can be recommended. Noteworthy, in some patients with 68Ga-PSMA-PET discrepant results 

between CNN and the other contours were observed. Moreover, PET signal from the adjacent 

bladder may mislead the CNN in contouring of PCa lesions in the prostatic base. Since no 

clinical parameters like Gleason Score or tumor localization had an impact on the concordance 

between GTV-Exp and GTV-CNN, a visual control of the CNN segmentations has to be 

performed in every patient.  

 The CNN provided also a high concordance with expert contours (DSC>0.8) in contouring 

of 18F-PSMA-PET images. Taking into account the differences in physical properties and in bio 

distribution between both tracers this result is surprising and should be interpreted with caution 

since no validated approach for contouring was applied. However, considering histology as 

standard of reference an excellent sensitivity was observed which was comparable to manual 

contours and better than threshold-based contours. The specificity of GTV-CNN was low which 

is mainly explained by a significant overestimation of the tumour volume. Thus, the CNN may 

also be used for GTV contouring in 18F-PSMA-PET images, especially in situations when a 

complete coverage of the intraprostatic GTV is demanded and a high coverage of non-tumour 

bearing prostatic tissue is negligible. Surely, further studies implementing 18F-PSMA-PET 

images and validated expert contours for training and testing are necessary to confirm this 

observation.  

 A limitation of our study is the relatively low number of patients used for testing which is 

explainable by the elaborate co-registration protocol. We assume that the observed results are 

robust since we used different, independent datasets for evaluation and received comparable 

results. Another point that supports the robustness is that we did not notice any overfitting in the 
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training process (Figure 1) which chance was further reduced by hyper parameter optimization in 

combination with splitting the training data internally. Considering the high value of the two 

independent datasets used for testing the CNN, no additional approaches for validation were 

performed (e.g. k-fold cross-validation). Another issue is the uncertainty in correlation of PSMA-

PET images and histopathology slices. Thus, it could not be excluded that low coverage of PCa 

in histology by the PET-derived GTVs is a consequence of mismatch in coregistration or 

incomplete histopathological coverage. However, as the calculation of sensitivities/specificities 

was not performed on a voxel-level but on a less stringent slice by slice level, we consider the 

potential resulting bias negligible. In our study the prostatic gland on CT scans was delineated 

manually. Following projects should integrate already existing approaches (12) for automatic 

prostate segmentation with our approach for automatic GTV-delineation, enabling a fully-

automated workflow.  

CONCLUSION 

 Our study presents a CNN for automated contouring of intraprostatic GTV in 68Ga- and 

18F-PSMA-PET. Likewise, CNN-based GTV delineation is a promising and fast alternative to 

visual and threshold-based PET image interpretation. The link to the code and trained model of 

the CNN may be used for focal therapy or targeted-biopsy concepts in primary PCa by providing 

a GTV-proposal before visual image interpretation. We strongly emphasize that our tool is not 

clinically validated and not certified, thus a visual control of the CNN contours by experienced 

experts is obligatory. Furthermore, the CNN may be used as an alternative approach for GTV 

segmentation in ongoing radiomics and/or deep learning research in the field where certification 

is not mandatory. 
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KEY POINTS 

QUESTION: How is the performance of a trained convolutional neuronal network (CNN) for 

automatic segmentation of intraprostatic tumor volume in PSMA-PET images of primary prostate 

cancer patients? 

PERTINENT FINDINGS: In this multicentre study including 209 patients, the CNN provided 

comparable results with human expert and threshold-based delineations under consideration of 

coregistered whole-mount sections as the standard of reference.  

IMPLICATIONS FOR PATIENT CARE: The CNN provided a fast and robust auto-segmentation 

of the intraprostatic tumor and may enhance individualized therapeutic approaches for primary 

prostate cancer patients like focal therapy or targeted biopsy. 
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FIGURE 1. Visualization of the training and evaluation curves. Training and evaluation results as 

dice loss and Dice-Sørensen coefficient (DSC) in A as well as Hausdorff distance (HD) and 

average symmetric surface distance (ASSD) in B. 
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FIGURE 2. Histology reference projected on 68Ga-PSMA-11 (upper row) and 18F-PSMA-1007 

(lower row). A and C: Hematoxilin and eosin whole-mount prostate slide with marked PCa 

lesion. B and D: Axial slide PET-scan (image windowing: SUVmin-max=0-5). Blue contour: 

prostate. Green contour: histology reference. Green contour: GTV-Exp. Yellow contour: GTV-

CNN. 
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FIGURE 3. Specificity and sensitivity of GTV-CNN, GTV-Exp and GTV-30% based on 

comparison with histology reference. Upper row: cohort 1 (68Ga-PSMA-11 PET). Lower row: 

cohort 2 (18F-PSMA-1007 PET). Box plots are presented. Pairwise comparison was performed 

with Wilcoxon signed-rank test. Abbrevations: n.s.: not significant, *: p=0.05-0.01, CNN: 

convolutional neural network. 
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Table 1. Patient characteristics  
 
 
 

Centre 1 
Freiburg 

Centre 2 
Nanjing 

Centre 3 
Hannover 

Median Age in years (range)  70 (48-88)  69 (55-84)  71.5 (59-84) 

Median PSA in ng/ml (range)  13.1 (4.4-218)  13.3 (4.04-110)  12.8 (1.91-108.10) 

Gleason Score, n and %         

6  5 (3.4)  4 (8.9)  0 

7a  44 (30.1)  12 (26.7)  3 (15) 

7b  43 (29.9)  12 (26.7)  3 (15) 

8  24 (16.7)  10 (22.2)  6 (30) 

9  19 (13.2)  7 (15.5)  8 (40) 

unknown  9 (6.3)  0  0 

cT stage, n and %         

2  89 (61.8)  14 (30.8)  6 (30) 

3  55 (38.2)  31 (69.2)  14 (70) 

n patients with 68Ga-PSMA-PET/CT, total  125  45   20 

       n patients training cohort   97  45   

       n patients validation cohort   10    

       n patients testing cohort   18     20 

       n patients with histology reference  18      

n patients with 18F-PSMA-PET/CT, total  19      

       n patients testing cohort  19      

       n patients with histology reference  11     

 
 
The CNN was trained on 142 patients with 68Ga-PSMA-11 PET/CT from centres 1 and 2. From 

centre 1, 10 patients with 68Ga-PSMA-11 PET/CT were pseudo-randomly selected for 

validation. Finally, internal testing was performed on 18 and 19 patients with 68Ga-PSMA-11 

PET/CT (cohort 1) or 18F-PSMA-1007 (cohort 2) PET/CT, respectively. All patients with 

histological samples were in the testing cohorts. External validation was performed in 20 patients 

with 68Ga-PSMA-11 PET/CT (cohort 3) from centre 3. Datasets from centre 2 (n=42) were only 

used for training and from centre 3 (n=20) only for testing. Differences in clinical parameters of 

the two test cohorts with 68Ga-PSMA-11 PET/CT were analyzed. No differences in PSA and cT 

stage were observed (p>0.05). Patients from centre 3 had statistically significant (p=0.035) 

higher Gleason scores. 
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Supplementary Table 1. Testing of the CNN performance 

  DSC HD (mm) ASSD (mm) 
Computation time 

(sec) 
  Median Min Max Median Min Max Median Min Max Median Min Max 
Internal testing 68Ga-PSMA-11 0.84 0.32 0.95 4.03 1.42 10.0 0.61 0.28 1.97 6.28 5.47 7.66 
Internal testin 18F-PSMA-1007 0.81 0.28 0.93 5.0 1.41 8.49 0.5 0.26 1.82 6.00 3.53 9.2 
External testing 68Ga-PSMA-11                   

No resampling 0.78 0.11 0.89 12.57 1.43 32.9 0.62 0.27 4.03 1.93 0.27 2.02 
B-spline interpolation 0.82 0.39 0.92 5.83 2.45 22.36 0.55 0.32 2.1 27.79 10.54 30.91 
Tri-linear interpolation 0.83 0.32 0.93 4.12 2.01 22.36 0.46 0.28 1.61 23.32 10.55 26.37 
Gaussian interpolation 0.81 0.04 0.94 7.35 2.24 20.05 0.55 0.19 3.72 25.13 10.49 28.3 

 

Abbreviations: Dice-Sørensen coefficient (DSC), Hausdorff distance (HD) and average 
symmetric surface distance (ASSD). 
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Supplementary table 2. Impact of different clinical parameters on DSC  
(cut-off: median value of pooled cohorts). 

  
95% CI 

 
   
Parameter HR lower upper p value 
initial PSA (20 ng/ml vs. >20 ng/ml) 1.286 0.343 4.816 0.709 
Gleason score (6 + 7a vs. ≥7b) 3.733 0.78 17.88 0.099 
cT stage (2 vs. 3) 2.489 0.616 10.056 0.201 
Localization (lower half vs. upper half vs. both halves) 1.429 0.622 3.284 0.401 

 

Testing cohorts 1 and 3 were pooled. The best performing resampling step (tri-linear 
interpolation) in terms of DSC in cohort 3 was used for analyses. The median DSC was used 
as cut-off point. 

 




