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ABSTRACT 
Parametric imaging has been shown to provide better quantitation physiologically compared with SUV imaging in 

PET. With the increased sensitivity from a recently developed total-body PET scanner, whole-bodyscans with higher 

temporal resolution become possible for dynamic analysis and parametric imaging. In this paper, we focus on deriving 

the parameter k1 using compartmental modeling, and on developing a method to acquire whole-body FDG-PET 

parametric images using only the first 90 seconds of the post-injection scan data with the total-body PET system. 

Dynamic projections were acquired with a time interval of 1 second for the first 30 seconds and 2 seconds for the 

following minute. Image-derived input functions were acquired from the reconstructed dynamic sequences in the 

ascending aorta. The one-tissue compartment model with the total of 4 parameters (k1, k2, blood fraction, delay time) 

was used. A maximum-likelihood based estimation method was developed with the 1-tissue compartment model 

solution. The accuracy of the acquired parameters was compared with the ones estimated using a 2-tissue irreversible 

model with 1-hour long data. 

All four parametric images were successfully calculated using data from two volunteers. By comparing the time-

activity-curves acquired from the volume of interests, it was shown that the parameters estimated using our method 

were able to predict the time-activity curves of the early dynamics of FDG in different organs. The time delay effects 

for different organs were also clearly visible in the reconstructed time delay image with delay variations as large as 40 

seconds. The estimated parameters using both 90 seconds data and 1-hour long data were in good agreement for k1 and 

blood fraction, while a large difference of k2 was found between the 90 seconds and 1-hour data, suggesting k2 can’t 

be reliably estimated from the 90 second scan. 

We have shown that with the use of total-body PET and the increased sensitivity, it is possible to estimate parametric 

images based on the very early dynamics following FDG injection. The estimated k1 could potentially be used clinically 

as an indicator for identifying abnormalities. 

Key words— Parametric imaging, early dynamic, total-body PET, compartment model 
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INTRODUCTION 
Conventional PET imaging makes widespread use of standard uptake values (SUV) for semi-quantitative analysis, 

especially in measurements of 18F-fluorodeoxyglucose (FDG) uptake in tumors (1). However, SUV depends on the 

time of measurement and many other factors (2,3), which makes reliable quantitation a challenging task. On the other 

hand, kinetic analysis in PET has more direct physiological meaning than the SUV, and can be a more robust approach 

for quantifying FDG uptake and utilization  (4,5).  

Compared with the volume-of-interest (VOI) based kinetic analysis (6,7), parametric imaging enables the acquisition 

of voxel-level dynamics of the tracer uptake by applying kinetic modeling for each individual voxel (8,9). Conventional 

graphical methods including Logan analysis (10) and Patlak analysis (11) have been utilized for parametric imaging 

because of their linear properties and simplicity in acquisition protocols. Improved lesion contrast and detectability 

have been demonstrated by many studies (12,13). With the assumption that the dynamic activity can be described using 

exponentials as impulse responses, the basis function approach provides a possible approach for non-linear model 

fitting (14,15). Recently, whole-body parametric imaging using the Patlak model has been proposed using a multi-pass 

acquisition protocol (16,17).  

Even with the many added benefits of kinetic modeling, parametric imaging techniques and dynamic protocols are 

not widely used in clinical studies, especially in oncology (17). In some studies, the requirement of invasive arterial 

blood sampling for the input function makes the scan protocol impractical. Even with the use of image-derived input 

functions (18,19) or population-based input functions (20,21), a minimal scan time of 30 minutes is often required to 

reveal dynamic information using Patlak analysis. Compared with state-of-art whole-body SUV scans which take 

around 20 minutes and some in less than 10 minutes, the increased scan time and more complex protocol have shown 

to be one of the major practical factors that hinder the clinical use of dynamic analysis with whole-body imaging. 

The study of early dynamics, such as first pass studies (22,23), on the other hand, could enable much shorter scan 

protocols and enable the estimation of k1, which represents the rate of FDG transport from the arterial plasma to the 

intracellular space with FDG studies. In some literature studies, FDG k1 was found to be an indicator for identifying 
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tumor subgroups (24), gene expressions (25), evaluation of chemotherapy response (26), and could be used for the 

assessment of tumor blood flow (22). FDG k1 was found to be a valuable parameter for applications other than 

oncology. In the work by Sarkar, et al (27), the authors found that the k1 value is helpful for quantifying liver 

inflammation in nonalcoholic fatty liver disease.  

With the recently developed total-body PET system, a dramatic improvement of sensitivity has made it possible to 

acquire PET images with reasonable image quality in scan times of 60 seconds or less (28,29). With this increase in 

sensitivity, parametric imaging with high temporal resolution becomes feasible, which in turn may allow accurate 

parametric imaging using only the early phases of the tracer dynamics. We have developed a method to acquire whole-

body parametric images using data acquired from the total-body PET system with a temporal resolution of 1-2 seconds. 

With the much improved temporal resolution, the delay time of the input function has been shown to be an important 

factor in VOI-based anslysis (30). In this paper, the delay time is  included as a voxel-specific parameter that is jointly 

estimated.   

MATERIALS AND METHODS  

Parametric image reconstruction 

For FDG, a 2-tissue compartment model with four rate constants (𝑘ଵ, 𝑘ଶ, 𝑘ଷ, and 𝑘ସ) is often used to model its tracer 

dynamics. In the 2-tissue compartment model, 𝑘ଵ and 𝑘ଶ describe the forward and backward transport of FDG from 

plasma to tissue. 𝑘ଷ and 𝑘ସ model the phosphorylation and de-phosphorylation process. The accuracy of the measured 

kinetic parameters in dynamic analysis can be estimated by calculating the sensitivity of the model with respect to each 

kinetic parameter (31). Zuo et al (32) suggested that 𝑘ଷ and 𝑘ସ cannot be accurately estimated using only the first few 

minutes of a scan due to low identifiability of these parameters at early times. Therefore, a one-tissue compartment 

model is used in this paper. The time-activity-curve (TAC) for a specific voxel can be expressed as: 

𝐶 ሺ𝑡ሻ = 𝑣௕𝐶௕ሺ𝑡ሻ + ሺ1 − 𝑣௕ሻ ቀ𝑘ଵexpሺ−𝑘ଶ𝑡ሻ⨂𝐶௣ሺ𝑡ሻቁ 
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Equation 1 

where 𝑣௕ is the blood fraction in the tissue, 𝐶௕ሺ𝑡ሻ is the TAC for the whole blood, 𝐶௣ሺ𝑡ሻ is the plasma input function, 𝐶 ሺ𝑡ሻ is the concentration of FDG in the tissue. ⨂ represents the convolution operation. In the above equation, the 

whole blood TAC is used for the blood fraction as the intravascular activity includes that from both plasma and blood 

cells.  

With higher temporal resolution and whole-body coverage, the delay time for different regions becomes an important 

factor. With the inclusion of time-delay, the measured TAC is: 

𝐶ሺ𝑡ሻ = 𝑣௕𝐶௕ሺ𝑡 − 𝑡ௗሻ + 𝜅ଵexpሺ−𝑘ଶ𝑡ሻ⨂𝐶௣ሺ𝑡 − 𝑡ௗሻ 
Equation 2 

where 𝑡ௗ  is the voxel-dependent delay time. For easier computation, the parameter 𝜅ଵ = ሺ1 − 𝑣௕ሻ𝑘ଵ  is used and 

estimated instead of 𝑘ଵ.  

Due to the very high temporal resolution used in this study, the TAC for an individual voxel is still expected to be 

noisy despite the much-increased sensitivity of the scanner. Therefore, it may be beneficial to develop a maximum-

likelihood estimation approach that specifically models the noise of the reconstructed dynamic image. Studies in the 

literature indicate that the voxel values in the image approximately follow a scaled Poisson distribution (33). With this 

assumption, the log-likelihood function can be derived as: 

𝐿ሺ𝜅ଵ, 𝑘ଶ, 𝑣௕ , 𝑡ௗሻ = ෍−𝐶ሺ𝑡ሻ + 𝑥௧ log൫𝐶ሺ𝑡ሻ൯ − logሺ𝑥௧!ሻ௧  

Equation 3 
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where 𝑥௧  are the reconstructed dynamic images and is treated as a known measurement in this case. The update 

equation for 𝜅ଵ, 𝑘ଶ, and 𝑣௕  can be derived by maximizing the likelihood in the above equation (see Supplemental 

Equation 1-5 for derivations): 

⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧𝒗𝑏𝑝+1 = 𝒗𝑏𝑝∑ 𝐶𝑏ሺ𝑡 − 𝒕𝑑ሻ𝑡 ෍𝐶𝑏ሺ𝑡 − 𝒕𝑑ሻ𝑪ሺ𝑡ሻ𝑪෡𝑝ሺ𝑡ሻ𝑡                                  
𝜿1𝑝+1 = 𝜿1𝑝∑ 𝑒−𝒌𝟐𝒑𝑡⨂𝐶𝑝ሺ𝑡 − 𝒕𝑑ሻ𝑡 ෍𝑒−𝒌𝟐𝒑𝑡⨂𝐶𝑝ሺ𝑡 − 𝒕𝑑ሻ𝑪ሺ𝑡ሻ𝑪෡𝑝ሺ𝑡ሻ𝑡      
𝒌2𝑝+1 = 𝒌2𝑝 ∑ 𝑡𝜿1𝑝 ቀexp൫−𝒌2𝑝𝑡൯ቁ⨂𝐶𝑝ሺ𝑡 − 𝒕𝒅ሻ𝑡∑ 𝑡𝜿1𝑝 ቀexp൫−𝒌2𝑝𝑡൯ቁ⨂𝐶𝑝ሺ𝑡 − 𝒕𝒅ሻ𝑪ሺ𝑡ሻ𝑪෡𝑝ሺ𝑡ሻ𝑡                  

Equation 4 

where p is the iteration number, and 𝐶መ௣ሺ𝑡ሻ = 𝑣௕௣𝐶௕ሺ𝑡 − 𝑡ௗሻ + 𝜅ଵ௣𝑒ି௞మ೛௧⨂𝐶௣ሺ𝑡 − 𝑡ௗሻ are the estimated dynamic images. 𝑪෡௣ is the matrix version of 𝐶መ௣, the same is true for other symbols as well. The multiplicative update equations imply 

positive constraint for 𝜅ଵ, 𝑘ଶ, and 𝑣௕, which is reasonable based on the model. The multiplicative factors for 𝜅ଵ and 𝑣௕ 

are similar to that from a conventional ML-EM image reconstruction approach, as is the reciprocal of 𝑘ଶ’s update 

factor. This similarity makes the implementation straightforward.  

A maximum-likelihood gradient-descent approach is used for the estimation of 𝑡ௗ (see Supplemental Equation 6 for 

derivations): 

𝑡ௗ௣ାଵ = 𝑡ௗ௣ + 𝑠 𝜕𝐿ሺ𝜅ଵ, 𝑘ଶ, 𝑣௕ , 𝑡ௗሻ𝜕𝑡ௗ  

Equation 5 

where డ௅ሺ఑భ,௞మ,௩್,௧೏ሻడ௧೏ = ∑ ቀ𝑣௕𝐶௕ᇱሺ𝑡 − 𝑡ௗሻ − 𝜅ଵexpሺ−𝑘ଶ𝑡ሻ⨂𝐶௣ᇱ ሺ𝑡 − 𝑡ௗሻቁ ቀ ௫೟𝑪෡೛ሺ௧ሻ − 1ቁ௧ , and 𝑠  is the step size of the 

update. Since the range of time delays are expected to be < 1 minute based on known circulation times, to ensure 
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convergence, the absolute update for the time delay was set to a fixed value for all voxels in this paper, i.e. 𝑠 =∆𝑡/ ቚడ௅ሺ఑భ,௞మ,௩್,௧೏ሻడ௧೏ ቚ. The value of the update value ∆𝑡 was set to be 2 seconds in the first few iterations and reduced to 

0.2 seconds in later iterations.  

In this study, the dynamic images were first reconstructed using 3 iterations with 20 subsets using time-of-flight 

information. The reconstruction voxel size was 4 mm x 4 mm x 2.89 mm, and attenuation, scatter, randoms, 

normalization corrections and point spread function modeling were also included during image reconstruction. A 3D 

Gaussian filter with full width at half maximum of 6 mm was used for noise suppression in the reconstructed dynamic 

image. An alternate update approach is used to estimate the four parameters. A total of 18 main iterations were used. 

Within each iteration, 𝜿ଵ  and 𝒗௕  were first updated with fixed 𝒌ଶ  and 𝒕ௗ  with nine sub-iterations,  𝒌ଶ  was updated 

with fixed 𝜿ଵ , 𝒗௕  and 𝒕ௗ  with 1 sub-iteration, followed by the update of 𝒕ௗ  with fixed 𝜿ଵ , 𝒗௕  and 𝒌𝟐 using 3 sub-

iterations. The same Gaussian smoothing filter was used after every 6 main iterations for the time-delay image and 𝜿ଵ  

for better control of noise. With the acquired 𝜿ଵ  and 𝒗௕  image, the k1 image was also generated and compared with 𝜿ଵ .   

To study the accuracy of the estimated parameters, the estimated parameters were compared with volume of interest 

(VOI)-based analysis. A total of 9 regions were selected (gray matter, white matter, lung, liver, kidney cortex, 

myocardium, spleen, arm, and thighs, see Fig. 1). A two-tissue irreversible model (2Ti) was also applied on 1-hour 

long data to compare the estimated k1 values. In the 2Ti model, the same delay time estimated using the 1-tissue model 

(1T) was used as the extended time is less likely to contain information regarding the time delay. 

Patient data and scan protocol 
Two healthy volunteers with an injected activity of ~220 MBq were scanned using the uEXPLORER PET scanner 

with approval of the Ethics Committee of Zhongshan Hospital and after giving informed consent. One volunteer was 

injected in the leg while the other was injected in the arm. The image data obtained during the first 90 seconds post-

injection were used in this study for 1-tissue compartment model analysis. 

To obtain an image-derived input function, VOIs over the ascending aorta and the left ventricle (Supplemental Fig. 

1) were manually drawn on the PET/CT image and the TACs were acquired. It has been suggested that the best location 
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for image derived input function is the ascending aorta (34), as it is less affected by respiratory and cardiac motion. 

The left ventricle is another widely used location due to the relatively large blood pool size (18). The diameter of the 

ascending aorta VOI was 16 mm and height was 40mm. The boundaries in the left ventricle were excluded in the left 

ventricle VOI to reduce the effect of respiratory motion, and the total volume was about the same as the ascending 

aorta VOI. Whole blood-plasma correction was applied on the TAC 𝐶௕ሺ𝑡ሻ to estimate the plasma input function 𝐶௣ሺ𝑡ሻ. 
The correction equations and values are based on the method and parameters published in the literature (equation 2 in 

(35), where the hematocrit is 0.42 and the equilibration time constant is 0.23 min-1).  

RESULTS 
Fig 2 shows the first 90 seconds of the image-derived plasma input function for volunteer 1 using the reconstructed 

dynamic images acquired using ascending aorta VOI and left ventricle VOI. Image voxel values were directly used 

without calibration of activity concentrations using a well counter. The calibration scale factor cancels out in the 

analysis and therefore is not needed. The TACs were almost identical except the 1 second delay time. With the added 

delay time modeling, the results are expected to be the same with the use of left ventricle as the input function. The 

TAC from the ascending aorta was used for the input function. 

Fig. 3 shows the acquired maximum intensity projection from the reconstructed 𝜅ଵ  and 𝑣௕  images. The reconstructed 

parametric images 𝑣௕ ,𝜅ଵ , 𝑘ଶ , and 𝑡ௗ  from volunteer 1 are shown in Fig. 4. The k1 image was also calculated using 𝑣௕  

and 𝜅ଵ . The SUV image acquired from the same time periods (0-90s) is also shown for comparison. 𝑣௕  represents the 

plasma volume fraction in the tissue, which is clearly visible in the blood pool of the heart and the in aorta. The visual 

difference between k1 and 𝜅ଵ  is in general small except for the myocardium region. High k1 values are observed in the 

spleen and kidneys. Moderate k1 values are observed in the liver and myocardium. High k1 was also observed in some 

blood vessels (mostly veins), likely the result of dispersion of the plasma input function in these vessels. The abnormal 

signal in the veins near the injection site suggested possible retrograde pooling in the veins. Very large 𝑘ଶ  values are 

also observed in some blood vessels for the same reason. Large delay times were observed in the liver (>10 seconds) 

and extremities (~30 seconds) when compared with the delay time in the lungs. The large delay time in the liver region 
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is likely caused by the dual blood supply from both the hepatic artery and the portal vein (36), and the algorithm 

approximated the portal vein input function with the arterial input function by means of a time delay. The time-delay 

image was also able to be used for the illustration of the circulatory system. In volunteer 1, FDG was first injected into 

a vein located on the leg and then traveled to the right ventricle of the heart. From there the tracer was moves into the 

lungs and back to the left ventricle of the heart, where the tracer was pumped via the arterial system to other organs. 

The measured delay times (relative to the ascending aorta), k1, and vb for different organs is given in Table 1.  

Using VOI analysis, the estimated k1, k2, and blood fraction vb using the 1T model with 90 seconds of data was 

compared with the same parameters calculated using the 2Ti model with 1-hour long data. Fig. 5 shows the 

relationships of the estimated values. It can be observed that for k1 and vb, both approaches yield similar results 

(coefficient of determination of linear fitting for k1 is 0.97, for blood fraction is 0.95). Some large differences were 

observed in k2, suggesting that k2 can’t be accurately estimated from the 90 seconds data. The estimated k1 using VOI-

based analysis was also compared with the k1 acquired from the parametric image and is given in Table 1. For most 

VOIs, the differences of k1 are small. Underestimation of k1 was observed in myocardium and kidney cortex VOIs, 

which is likely due to the application of the Gaussian filter, which introduced additional partial volume effects and 

affected the quantitative values within these relatively small structures.    

Fig. 6 shows the TACs for myocardium, brain, liver, and lung. The average parameters within the VOI were used to 

estimate the fitted curves. Due to the use of the ascending aorta as the input function, a positive delay time was observed 

in the liver and negative delay time in the myocardium and lung, with minimal delay time observed in the brain. The 

difference between the curves from averaged voxel-based parameters and from the VOI-based parameters was 

relatively small, indicating a small bias from the voxel-based analysis. Even though in general, the model used in this 

paper was able to predict the TAC from different organs, with the use of high temporal resolution, discrepancies can 

be observed in some organs such as the liver.  
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DISCUSSION  
The preliminary study shows that the k1 estimated using 90-second data in general agrees with that derived from a 

much longer scan (1 hour). The same agreement was not found for k2, indicating that the estimated k2 is less accurate 

in shorter scans. High k1 values were detected in some venous blood pools, such as the jugular veins, venous sinuses, 

and portal veins, while high blood fractions were observed in arterial blood pools such as the carotid arteries (Fig. 3). 

The high k1 values in some blood pools regions are likely caused by the dispersion effects modeled by the one tissue 

compartment model (37). This information may be used for providing further physiological insights and better kinetic 

modeling. For instance, the k1 in the venous blood pools of the brain may represent the combined effects of the glucose 

passing through the brain’s vasculature structure, and the small extraction of tracers within the brain. The k1 in the 

portal veins may also be used to develop a more accurate model for the liver. The modeling of the delay times in the 

kinetic model not only enabled better model fitting but also produced time-delay image which could be used for 

providing additional information, for example as a biomarker for assessing blood delivery and vessel occlusion.  

However, our method did not model the dispersion effects of the input function for different organs. Another 

limitation of the proposed approach is the use of a single model for the whole body. For instance, the dual blood 

supplies (portal veins and arteries) in the liver region (32) were not modeled. The use of a single input function resulted 

in some quantitative inaccuracy and further studies are required for more accurate parametric imaging. The image-

based input function in this study was also not validated using arterial blood samples, but the feasibility has already 

been proven in the literature (18). Due to the very concentrated and rapidly changing tracer distribution in the first few 

seconds following injection, scatter corrections may not be accurate enough. One possible example of this is the low 

delay times in the regions near the injection site in the time-delay image. Another example is the small increase in the 

liver TAC around 20 seconds after injection, which we believe was caused by the inaccurate scatter correction from 

the very high activity level during the injection.  

Two different injection sites were used in our study. Initially the leg was chosen as this enabled the injection site to 

be closer to the end of the gantry, thus requiring a shorter tube connecting the syringe and the needle; however, a major 

challenge for injection in the leg is the difficulty for the technologist to find the appropriate vein. Subsequent to the 
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first patient, we have chosen to perform all injections in the antecubital fossa, which follows conventional practice and 

has not led to significant difficulties (38).  

While our method was developed using FDG, the same methodology can be applied to other tracers as well. More 

benefit can be expected for radionuclides with much shorter half-life such as 15O or 82Rb. The acquired FDG k1 image 

can also be used to examine the relationship between blood flow and metabolism, which may help diagnosis in some 

pathophysiology such as hyperemic states of areas of brain tissue post stroke. For FDG scans, a practical 

implementation of the proposed approach can still be challenging, as traditionally FDG imaging mostly focuses on the 

later period when equilibrium is reached. The combination with a later time scans may be the solution; however, future 

studies are required to address the clinical or technical challenges for that protocol. 

 Future studies using patient data are required for a better understanding of the full potential of the clinical 

significance of the proposed method.  

CONCLUSIONS 

In this study, we demonstrated that with the use of a ultra-high sensitivity total-body PET scanner, it is possible to 

achieve whole-body parametric image reconstruction using only the early stage of the scan (within the first two minutes 

post-injection), making it much easier to incorporate into the daily clinical route. However, only fast parameters such 

as k1 can be estimated using this ultra-short scan duration. We have also shown that with the much-improved temporal 

resolution due to improved sensitivity, organ-dependent delay time becomes an important factor to consider in the 

analysis of whole-body early-stage dynamics. 
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KEY POINTS 

QUESTION: Can whole-body first-pass parametric imaging be achieved using an ultra-short scanning protocol?  

PERTINENT FINDINGS: We have demonstrated the possibility to generate whole-body parametric images such as 

k1 (a possible indicator for tumor identification), blood fraction, and time-delay images that illustrate the circulatory 

system, from dynamic scans as short as 90 seconds using the uEXPLORER scanner. 

IMPLICATIONS FOR PATIENT CARE: Produces added value (a potential biomarker for tumor identification and 

other disease identification) with minimal added scanner time. 
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Fig. 1 The volumes of interests used for the parameter estimation 
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Fig. 2 Image-derived input function for the first 90 seconds post-injection.  
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Fig. 3 Maximum intensity projection image of the reconstructed parametric images 𝒗௕  and 𝜿ଵ  acquired using the 

proposed approach. 
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Fig. 4. A coronal plane of the reconstructed k1, 𝜅ଵ , 𝑣௕ , and 𝑡ௗ  parametric images using the proposed method from 

volunteer 1, together with the SUV image 
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Fig. 5. The estimated k1, k2, and vb for 9 VOIs using 1-tissue model with 90 seconds data (y-axix) and 2-tissue 

irreversible model with 1 hour data (x-axis). 
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Fig. 6 The time-activity-curve (TAC) measured from the dynamic frames (blue dots) and the fitted curves using the 

proposed method, and a fitting based on the TAC from the VOI in four different organs: myocardium, brain, liver, 

and lung. For better illustration of the delay time, the corresponding blood fraction in the TAC was also plotted. 
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Table 1. Estimated k1 and delay time (relative to ascending aorta) in different organs 

Organs 
Gray 

matter 

White 

matter 
Myocardium Liver Kidney cortex Spleen Lung Arm Thigh 

k1 (min-1) VOI 

analysis 
0.08 0.05 0.56 0.39 0.75 0.92 0.02 0.02 0.06 

k1 (min-1)  

Parametric image 
0.09±0.02 0.06±0.01 0.45±0.10 0.33±0.04 0.54±0.08 0.73±0.13 0.02±0.02 0.02±0.01 0.06±0.03 

Cb VOI analysis 0.020 0.01 0.02 0.006 0.08 0.006 0.12 0.0004 0.0 

Cb Parametric 

image 
0.020±0.01 0.007±0.005 0.05±0.04 0.003±0.005 0.11±0.03 0.03±0.02 0.12±0.03 0.0009±0.001 0.004±0.01 

Time delay (s) 3.9 3.7 -1.2 13.1 4.7 3.1 -3.8 10.8 8.6 
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Supplement 1: Maximum likelihood estimation method: 

For a fixed voxel, the kinetic model is 

𝐶𝐶𝑡𝑡(𝜆𝜆) = 𝑣𝑣𝑏𝑏𝐶𝐶𝑏𝑏(𝑡𝑡 − 𝑡𝑡𝑑𝑑) + 𝜅𝜅1exp(−𝑘𝑘2𝑡𝑡)⨂𝐶𝐶𝑝𝑝(𝑡𝑡 − 𝑡𝑡𝑑𝑑) 

Supplemental Equation 1 

where 𝜆𝜆 represents the four parameters 𝑣𝑣𝑏𝑏 ,𝜅𝜅1, 𝑘𝑘2, and 𝑡𝑡𝑑𝑑. 

Assuming the voxel value of the reconstructed dynamic image 𝑥𝑥𝑡𝑡 is Poisson distributed, the loglikelihood is: 

𝐿𝐿(𝜆𝜆) = �−𝐶𝐶𝑡𝑡(𝜆𝜆) + 𝑥𝑥𝑡𝑡 log�𝐶𝐶𝑡𝑡(𝜆𝜆)� − log (𝑥𝑥𝑡𝑡!)
𝑡𝑡

 

 Supplemental Equation 2 

The derivative for the parameter 𝜆𝜆 is  

𝜕𝜕𝐿𝐿(𝜆𝜆)
𝜕𝜕𝜆𝜆

= �
𝜕𝜕𝐿𝐿(𝜆𝜆)
𝜕𝜕𝐶𝐶𝑡𝑡

𝜕𝜕𝐶𝐶𝑡𝑡
𝜕𝜕𝜆𝜆

𝑡𝑡

= �
𝜕𝜕𝐶𝐶𝑡𝑡
𝜕𝜕𝜆𝜆

�
𝑥𝑥𝑡𝑡

𝐶𝐶𝑡𝑡(𝜆𝜆) − 1�
𝑡𝑡

 

Supplemental Equation 3 

1 Update equation for 𝜅𝜅1 and 𝑣𝑣𝑏𝑏 

For 𝜅𝜅1 and 𝑣𝑣𝑏𝑏, the condition 𝜕𝜕𝐶𝐶𝑡𝑡
𝜕𝜕𝜆𝜆

> 0 is always true, and the conventional ML-EM approach can be directly applied in 

this case. The update equation for 𝜆𝜆 at voxel j is: 

𝜆𝜆𝑗𝑗𝑛𝑛+1 =
𝜆𝜆𝑗𝑗𝑛𝑛

∑
𝜕𝜕𝐶𝐶𝑗𝑗,𝑡𝑡
𝜕𝜕𝜆𝜆𝑗𝑗𝑡𝑡

�

𝜕𝜕𝐶𝐶𝑗𝑗,𝑡𝑡
𝜕𝜕𝜆𝜆𝑗𝑗

𝑥𝑥𝑗𝑗,𝑡𝑡

𝐶𝐶𝑗𝑗,𝑡𝑡�𝜆𝜆𝑗𝑗𝑛𝑛�𝑡𝑡

 



1 

 

Supplemental Equation 4 

Supplemental Equation 4 is used to derive the update formula for 𝜅𝜅1 and 𝑣𝑣𝑏𝑏. The above equation is very similar to 

the conventional ML-EM update for image reconstruction.  

2 Update equation for 𝑘𝑘2 

For 𝑘𝑘2, the condition 𝜕𝜕𝐶𝐶𝑡𝑡
𝜕𝜕𝜆𝜆

< 0 is always true, and the model requires k2 to be positive. While Equation A.5 can be 

directly applied, it can be seen that with an improper choice of 𝑠𝑠, k2 estimated using the above equation could be 

negative, which is undesirable. An easy approach for enforcing the positive constraint for k2 and to determine the best 

step size is to convert the additive update equation to a multiplicative update.  

Let 𝑠𝑠 =
𝜆𝜆𝑗𝑗
𝑛𝑛

−∑
𝜕𝜕𝐶𝐶𝑗𝑗,𝑡𝑡
𝜕𝜕𝜆𝜆𝑗𝑗

𝑖𝑖 ∗
𝑥𝑥𝑗𝑗,𝑡𝑡

𝐶𝐶𝑗𝑗,𝑡𝑡�𝜆𝜆𝑗𝑗
𝑛𝑛�

, it can be seen that as long as 𝜆𝜆𝑗𝑗𝑛𝑛 > 0, 𝜕𝜕𝐶𝐶𝑗𝑗,𝑡𝑡

𝜕𝜕𝜆𝜆𝑗𝑗
< 0, 𝑠𝑠 > 0 is true. The update equation becomes: 

𝜆𝜆𝑗𝑗𝑛𝑛+1 = 𝜆𝜆𝑗𝑗𝑛𝑛 +
𝜆𝜆𝑗𝑗𝑛𝑛

−∑
𝜕𝜕𝐶𝐶𝑗𝑗,𝑡𝑡
𝜕𝜕𝜆𝜆𝑗𝑗𝑖𝑖 ∗

𝑥𝑥𝑗𝑗,𝑡𝑡

𝐶𝐶𝑗𝑗,𝑡𝑡�𝜆𝜆𝑗𝑗𝑛𝑛�

�
𝜕𝜕𝐶𝐶𝑗𝑗,𝑡𝑡

𝜕𝜕𝜆𝜆𝑗𝑗
�

𝑥𝑥𝑗𝑗,𝑡𝑡

𝐶𝐶𝑗𝑗,𝑡𝑡�𝜆𝜆𝑗𝑗𝑛𝑛�
− 1�

𝑡𝑡

=
𝜆𝜆𝑗𝑗𝑛𝑛 ∑

𝜕𝜕𝐶𝐶𝑗𝑗,𝑡𝑡
𝜕𝜕𝜆𝜆𝑗𝑗𝑡𝑡

∑
𝜕𝜕𝐶𝐶𝑗𝑗,𝑡𝑡
𝜕𝜕𝜆𝜆𝑗𝑗𝑖𝑖 ∗

𝑥𝑥𝑗𝑗,𝑡𝑡

𝐶𝐶𝑗𝑗,𝑡𝑡�𝜆𝜆𝑗𝑗𝑛𝑛�

 

Supplemental Equation 5 

The conversion from an additive update formulation to multiplicative update formulation ensures the positive 

constraint. It can be observed that the multiplicative update factor for the above equation is the reciprocal of a typical 

ML-EM update approach. The similarity makes its implementation straightforward. 

3 Update equation for 𝑡𝑡𝑑𝑑 

For the parameter 𝑡𝑡𝑑𝑑, the condition that 𝜕𝜕𝐶𝐶𝑡𝑡
𝜕𝜕𝜆𝜆

> 0 no longer holds, and a gradient descent approach can be used for update: 

𝜆𝜆𝑗𝑗𝑛𝑛+1 = 𝜆𝜆𝑗𝑗𝑛𝑛 + 𝑠𝑠
𝜕𝜕𝐿𝐿(𝜆𝜆)
𝜕𝜕𝜆𝜆

= 𝜆𝜆𝑗𝑗𝑛𝑛 + 𝑠𝑠�
𝜕𝜕𝐶𝐶𝑗𝑗,𝑡𝑡

𝜕𝜕𝜆𝜆𝑗𝑗
�

𝑥𝑥𝑗𝑗,𝑡𝑡

𝐶𝐶𝑗𝑗,𝑡𝑡�𝜆𝜆𝑗𝑗𝑛𝑛�
− 1�

𝑡𝑡
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Supplemental Equation 6 

where 𝑠𝑠 is the step size and 𝑠𝑠>0.  

 

 

 

Supplement 2. Volumes of interests for input functions 

 

Supplemental Fig. 1 The VOIs for ascending aorta-based input function and left ventricle-based input function. 

Respiratory motion could be observed in the left ventricle region and therefore limiting the size of the VOI. The 

ascending aorta was less affected by respiratory motion. 

 

 




