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ABSTRACT 

The aims were to decrease 177Lu-SPECT (single-photon emission computed tomography) 

acquisition time by reducing the number of projections and to circumvent image degradation by 

adding deep learning–generated synthesized projections. 

Method: We constructed a deep convolutional U-structured network for generating synthetic 

intermediate projections (CUSIP). The number of SPECT investigations was 352 for training, 37 

for validation, and 15 for testing. The input was every fourth projection of 120 acquired SPECT 

projections, i.e., 30 projections. The output was 30 synthetic intermediate projections (SIPs) per 

CUSIP. SPECT images were reconstructed with 120 or 30 projections, or 120 projections where 

90 SIPs were generated from the 30 projections (30-120SIP); using 3 CUSIPs. The reconstructions 

were performed with two ordered subset expectation maximization (OSEM) algorithms: 

attenuation-corrected (AC)-OSEM, and attenuation, scatter, and collimator response–corrected 

(ASCC)-OSEM. Image quality of SIPs and SPECT images were quantitatively evaluated with root 

mean square error, peak signal-to-noise-ratio (PSNR), and structural similarity (SSIM) index 

metrics. From a Jaszczak SPECT Phantom, the recovery and signal-to-noise ratio (SNR) were 

determined. In addition, an experienced observer qualitatively assessed the SPECT image quality 

of the test set. Kidney activity concentrations, as determined from the different SPECT images, 

were compared. 

Results: The generated SIPs had a mean SSIM value of 0.926 (0.061). For AC-OSEM, the 

reconstruction with 30-120SIP had higher SSIM (0.993 vs. 0.989; p<0.001) and PSNR (49.5 vs. 

47.2; p<0.001) values than the reconstruction with 30 projections. ASCC-OSEM had higher SSIM 

and PSNR values than AC-OSEM (p<0.001). There was a minor loss in recovery for the 30-120SIP 

set, but SNR was clearly improved compared to the 30-projection set. The observer assessed 27/30 
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of the images reconstructed with 30 projections as having unacceptable noise levels, whereas 

corresponding values were 2/60 for the 30-120SIP and 120 projection sets. Image quality did not 

differ significantly between the 30-120SIP and 120 projection reconstructions. The kidney activity 

concentration was similar between the different projection sets, excepting a minor reduction of 

2.5% for the ASCC-OSEM 30-120SIP. 

Conclusion: Adopting synthetic intermediate projections for sparsely acquired projections 

considerably recovers image quality and could allow reduced SPECT acquisition time in clinical 

dosimetry protocols. 
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INTRODUCTION  

Encouraging treatment effects have been reported for 177Lu-pharmaceuticals in somatostatin 

receptor–positive neuroendocrine tumors and metastatic prostate cancer (1,2). 177Lu-DOTATATE 

was recently approved for treatment of neuroendocrine tumors with a standard protocol allowing a 

maximum of four treatments with 7.4 GBq. The protocol does not require dosimetry. Nevertheless, 

a recent prospective dosimetry study demonstrated that an increased number of treatments can be 

given based on total absorbed kidney dose (3), thereby avoiding undertreatment. In addition, dose-

response relationships have been reported for the dose-limiting organs kidneys and bone marrow, 

indicating the potential for dosimetry as one important factor in the individualized treatment 

protocol (4,5). 

Recent dosimetry protocols use single-photon emission computed tomography (SPECT) and 

computed tomography (CT) images or a combination of planar images and SPECT/CT (4). In the 

latter, the kinetics are determined from the planar images and the activity concentration from the 

SPECT. In a simulation study, the relative uncertainty for kidney absorbed doses was 32% for 

planar dosimetry and 15% for the planar/SPECT/CT method, which further decreased to 6% for 

purely SPECT/CT-based dosimetry (6). This pattern indicates a clear advantage for SPECT/CT-

based dosimetry, but this imaging format is time consuming, and whole-body SPECT/CT with 

appropriate counting statistics is challenging to obtain. 

The SPECT/CT reconstruction methods have gone from a filtered back-projection approach 

to the iterative ordered subset expectation maximization (OSEM) algorithm (7). Today’s analytical 

OSEM reconstruction algorithms, e.g., Evolution, xSPECT, and Flash3D, offer the potential to 

correct for attenuation, scatter, and collimator-detector resolution, with improved image quality 

and accuracy in activity quantification (8). Further improvements might be achieved by Monte 
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Carlo (MC)-based OSEM reconstruction methods (9-11). According to the EANM/MIRD 

guideline for quantitative 177Lu SPECT dosimetry, the number of projections should be 60 to 120 

(12), which was used in recent publications of clinical 177Lu dosimetry (Table 1). An Uppsala group 

reported the most time-consuming protocols, using 60 or 120 projections with acquisition times of 

30 minutes and employing attenuated corrected (AC)-OSEM (3,13,14). With this protocol, four 

data points at 1, 24, 96, and 168 h.p.i. are collected, enabling accurate 177Lu kinetics. However, at 

many centers, the available camera time is limited, and acquisition times are shorter (15-22). A 

short acquisition time may become problematic when measuring at later time points, due to 

increased image noise (17,23). With the introduction of 177Lu-PSMA for metastatic prostate cancer, 

SPECT/CT dosimetry requires 2-3 bed positions to cover the critical organs: salivary gland, bone 

marrow, kidneys, and targets in the pelvis region (21,24). Such protocols require restricted 

acquisition times per bed position for patient comfort and may still need more camera time. In these 

later studies, attenuation, scatter, and collimator-detector response corrected (ASCC)-OSEM 

reconstructions are often used for good image quality. 

The aim of this study was to reduce the SPECT acquisition time by reducing the number of 

projections, and compensate the image quality degradation by including synthetic intermediate 

projections (SIPs) in the reconstruction. We created three convolutional neural networks and 

trained them to generate 3×30 SIPs from 30 acquired projections. For evaluation, we analyzed the 

image quality of phantom and patient SPECT images as well as estimating kidney activity 

concentration for SPECT images reconstructed with the SIPs. Two SPECT/CT reconstruction 

methods were tested: AC-OSEM and ASCC-OSEM, using MC methodology for the latter. 
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MATERIALS AND METHODS 

Subjects and Image Acquisition 

In the study, 304 177Lu-DOTATATE and 100 111In-octreotide SPECT image data were 

retrospectively selected from the examination years 2007–2018. The retrospective use of the image 

data and waiver of consent were approved by the Regional Ethical Review Board in Gothenburg. 

The gamma cameras used for the examinations during this period were Millennium VG Hawkeye, 

Infinia Hawkeye 4, and Discovery 670 (General Electric Medical Systems, Milwaukee, WI, USA), 

all with a crystal thickness of 5/8” and equipped with a medium-energy parallel-hole collimator. 

For 177Lu-DOTATATE examinations, we used a 20% energy window over the 208 keV photon 

peak, and for 111In-octreotide examinations, a 20% energy window over the 245 keV photon peak 

was used. The clinical SPECT images were acquired 1–3 days post injection with 110–220 MBq 

111In-octreotide or 3–7.4 GBq 177Lu-DOTATATE, with a 30-s frame time duration for 120 

projections. The matrix size was 128×128 with a pixel size of 4.42 mm and a slice thickness of 

4.42 mm. The CT images used in the SPECT/CT reconstructions, described below, were acquired 

using a 140-kV tube voltage, 2.5 mAs, and a rotation speed of 2.6 rpm. The matrix size was 

512×512 with a pixel size of 0.98 mm and a slice thickness of 5 mm. 

 

The Convolutional Neural Network 

We constructed a deep convolutional U-net–shaped neural network for generation of synthetic 

intermediated projections (CUSIP) from a sparse set of projections, either 30 or 60 projections (25). 

Below we describe the method for 30 projections; the methodology is similar for 60 projections. 

The data for 60 projections was only evaluated with the phantom measurements, while the 30 

projections was evaluated more extensively, as described below. 
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The CUSIP had a 3D U-net structure and was implemented in Microsoft’s Cognitive Toolkit 2.6. 

The U-net structure consisted of encoder and decoder units with skip connections between the 

corresponding layers (Fig. 1). The input image consisted of 30 projections (projections 1, 5, 9…, 

117) with a matrix size of 128×128, that was concatenated to generate a cubic matrix of 

(128×128×128). In this preprocessing step the voxel values were normalized to be within the range 

0 to 2. The input image was convolved and down-sampled in the encoder part, which consisted of 

a series of convolutional layers with 3×3×3 kernels followed by a rectified linear unit (ReLU) 

activation function. Down-sampling was performed with max pooling layers with stride 2. After 

each down-sampling step, the feature channels were doubled.  

As with the encoder, the decoder consisted of a series of convolution layers followed by a 

ReLU activation function. For up-sampling, the decoder unit used transposed convolutional layers 

with stride 1 followed by a ReLU activation function. The number of feature channels was halved 

after each up-sampling step.  

Three different CUSIPs were trained to yield the following three SIP sets: a) projections 2, 

6, 10…118; b) projections 3, 7, 11…119; and c) projections 4, 8, 12…120. These projection sets 

were cropped from the 128×128×128 matrix output images. 

 

Training and Optimization 

The three CUSIPs were trained by minimizing the mean square error loss function (L2-loss) 

between the difference in the network-generated SIP and the input projections. The Adam 

optimizer with a momentum of 0.05 and a linearly decreasing learning rate from 0.000012 to 

0.000008 was used to minimize the loss function. Each CUSIP was trained using 352 input images 

(352×30 projections) and validated using 37 input images (37×30 projections). The training used 
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177Lu and 111In images, while validation only used 177Lu images. The network was trained for 200 

epochs with a mini-batch of one input image. To evaluate the network, we used a test set of 

SPECT/CT raw data from 15 patients treated with 177Lu-DOTATATE together with SPECT/CT 

raw data from a phantom study (see below). 

 

SPECT reconstructions 

SPECT images for quality evaluation were reconstructed for three sets of projections: a) the 120 

acquired projections (120), b) 30 projections using every fourth projection of the 120 (30), and c) 

120 projections derived from 90 (3×30) SIPs generated from the 30 projections using the three 

CUSIPs (30-120IP). The SPECT/CT reconstructions were performed using two OSEM 

reconstruction algorithms with 6 subsets and 10 iterations. 

The first was an AC-OSEM with Gaussian postfiltering (SD of 4 mm). In the second 

algorithm, the Sahlgrenska Academy Reconstruction code (SAREC) was used for attenuation, 

scatter, and ASCC-OSEM reconstruction (9). SAREC relies on MC simulations. The forward 

projections included simulation of photon attenuation, scattering, and collimator resolution with 

septal penetration. The scattering in the collimator is approximated with an experimentally 

determined photon-scattering kernel. The back projections include collimator resolution with septal 

penetration. In contrast to the AC-OSEM, no postfiltering was applied because the back-projector 

reduces noise. 
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Phantom Measurements 

The Jaszczak SPECT Phantom with sphere inserts, with a 25:1 sphere-to-background activity 

concentration ratio, was used for image quality assessment. The phantom and the performed 

measurements are further described in the supplemental file. 

 

Quantitative Image Quality Evaluation of Patient Images 

We used the peak SNR (PSNR; Eq 1, Supplemental data), root mean square error (RMSE; Eq. 2, 

Supplemental data), and structural similarity (SSIM) index metrics (Eq 3, Supplemental data) to 

evaluate the image quality of the SIPs and the reconstructed SPECT images for the test set of 15 

patients (26). These measures give an estimate of image quality compared to a reference image, in 

this case a reconstruction of all acquired 120 projections. We also performed this analysis on 

ASCC-OSEM 30 images that was postfiltered with a Gaussian filter, SD of 4 mm, (ASCC-OSEM 

30GF). 

 

Visual Evaluation of Image Quality  

An experienced nuclear medicine physician (16 working years) visually evaluated the 

reconstructed SPECT/CT images of the test set, consisting of 177Lu-DOTATATE SPECT images 

from 15 patients. The physician scored the image quality for each patient examination by ranking 

the six reconstructed images, i.e., AC-OSEM 30, AC-OSEM 30-120SIP, AC-OSEM 120, ASCC-

OSEM 30, ASCC-OSEM 30-120SIP, and ASCC-OSEM 120. Categorial values from 1 to 6 were 

used as score values. The lowest score of 1 was given to the image with the poorest quality and a 

score of 6 to the image with the highest quality. For each patient, each of the 6 scores had to be 
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assigned to one of the 6 reconstructions, i.e. no double entries were possible. In addition, the 

observer noted whether the noise level was acceptable. 

 

Activity Concentration in the Kidneys 

In the test set with 15 patients, the kidney activity concentrations were determined by applying a 

VOI over the right and left kidneys in the reconstructed SPECT images. The VOIs were manually 

segmented in the CT images. The VOIs position in the SPECT image were manually adjusted for 

minimizing the effect of misposition caused by organ/patient movements between CT and SPECT 

acquisitions. The same VOI was used for all reconstructions of the same kidney and patient. 

Activity concentrations determined by using 30 or 30-120SIP projections were compared to 

activity concentrations determined by using the original 120 projections.  

 

Statistics 

For the quantitative evaluation of SPECT image quality, we analyzed the data using the paired 

Student’s t-test. The scoring of the visual image quality was evaluated with the nonparametric 

Friedman’s test, corrected for multiple testing by Tukey’s honestly significant difference 

procedure. The difference between methods was evaluated using the paired Student’s t-test for the 

AC-OSEM and ASCC-OSEM methods, respectively. The statistical tests were performed in 

MATLAB (MathWorks, Torrance, California, USA). A p-value less than 0.05 was considered to 

indicate statistical significance. 
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RESULTS 

Each of the three CUSIPs was trained to 200 epochs for which loss of convergence was obtained, 

i.e. the validation loss function had reached its minimum. Visual inspection of the synthetic 

projections revealed a slightly smoother appearance compared to acquired projections (Fig. 2). The 

mean pixel difference between the acquired and synthetic projections was close to zero (-0.046), 

and both negative and positive differences were observed. The mean RMSE was 2.95 (Table 1). 

The PSNR was equal to 39.3 dB, and the SSIM was 0.926, indicating high structural similarity 

between the acquired projections and the SIPs; the SSIM for the aquired projections between the 

15 patients was 0.846 (0.014). 

 

The reconstructed SPECT images of the Jaszczak phantom demonstrated decreased 

noise with the 30-120SIP projection set compared to the 30 projection set (Fig. 3). For the AC-

OSEM reconstructions, the SNR was clearly improved for the 30-120SIP compared to the 30 and 

120 projection sets (Fig. 4). The image quality was higher for ASCC-OSEM reconstructions 

compared to AC-OSEM reconstruction (Figs. 3 and 4). For all projection sets, the recovery and 

SNR for ASCC-OSEM reconstruction were higher than AC-OSEM reconstruction. For ASCC-

OSEM, the SNR was twofold higher for 120 compared to 30 projections. By CUSIP interpolation 

from the 30 projections to the 30-120SIP set, the SNR was in parity with ASCC-OSEM 120. In 

figure 4 we added data for 60 projections and data from a CUSIP that generates 60-120SIP. In the 

figure it is indicated that increasing number of SIPs increase SNR and slightly decrease recovery. 

 

Figure 5 demonstrates the obtained SPECT image quality with ASCC-OSEM using 

the 30, 30-120SIP, and 120 projection sets. A higher noise level was observed in the reconstruction 
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with 30 projections. With an increased number of projections, with either the 30-120SIP or the 120 

projection set, the noise level was decreased, and a smoother activity distribution was observed. 

The image difference demonstrates a higher deviation in pixel values between the 30 and 120 

projection sets as compared to the pixel values between the 30-120SIP and 120 projection sets. The 

RMSE, PSNR and SSIM was statistically significantly improved between the 30 and 30-120SIP 

sets, both for the AC-OSEM (p<0.001) and ASCC-OSEM (p<0.001) reconstructions (Table 2). In 

contrast, the RMSE and PSNR had a tendency to get worse for the postfiltered ASCC-OSEM, 

though not statistically significant. The SSIM was high (0.993 – 0.996) for all ASCC-OSEM 

reconstructions. The SSIM for the SPECT images between the 15 patients was 0.962 (0.0190). 

Different selection of the 30 projection in 30-120SIP revealed non-statistical different PSNR, 

RSME and SSIM (data not shown), indicating that the method is robust. 

 

When ranked by an experienced nuclear medicine physician, the ASCC-OSEM drew 

the highest scores, in which all projection sets had higher scores than the highest score for the AC-

OSEM reconstructions (Fig. 6). However, when using only 30 projections, the observer judged 

almost all SPECT images to have unacceptable noise levels, at 13/15 for AC-OSEM and 14/15 for 

ASCC-OSEM. By using 30-120SIP or 120 projections, almost all reconstructed SPECT images 

had acceptable noise levels; at 1/15 for AC-OSEM 120 and 1/15 for ASCC-OSEM 30-120SIP had 

an unacceptable level.  

 

For ASCC-OSEM, the increased scores for the 30-120SIP and 120 projections were 

statistically significant. The reconstruction with 30-120SIP (mean score=5.2) was in parity with 

120 projections (mean score=5.8), with no statistically significant difference. 
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The determination of the kidney activity concentration showed small variations 

among the different reconstruction methods (Fig. 7). The ASCC-OSEM 30-120SIP underestimated 

the activity concentration slightly (3% for left kidney and 2.5% for right kidney) compared to the 

ASCC-OSEM 120. No other statistical differences were observed.  
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DISCUSSION 

The use of artificial intelligence and especially the field of deep learning are expanding. For gamma 

camera imaging, the number of publications is still limited, while positron emission tomography 

(PET) findings are more widely described. One of the most frequently reported topics is the 

generation of synthetic attenuation maps for attenuation corrections of PET images (27). We 

adopted a similar convolutional neural network as in these studies, i.e., a U-net structure where the 

input images of the sparse intermediate projections are down-sampled and up-sampled for 

obtaining the SIP. The generated SIPs had a reduced noise level compared to the original data and 

a high structural similarity with the original projections, as measured by SSIM. Inserting these SIPs 

into the reconstruction revealed improved image quality compared to reconstructions of the sparse 

projection datasets, and the noise level especially was substantially reduced. As a comparison, we 

also applied filtering of the SPECT images generated with 30 projections, which resulted in 

smoother images but no gain in RMSE or PSNR, as also was the case with the addition of SIPs. 

The advantage with SIPs, in comparison with postfiltering, is that counts are added into the 

reconstruction. Thereby, the use of SIPs might be an alternative way of filtering SPECT images, 

which have to be studied further. 

We added 111In-octreotide SPECT images for increasing the training set by 25%. Similar 

cameras and collimators were used in these investigations. The slightly higher emitted photon 

energy from 111In (245 vs. 208 keV) causes a slightly poorer resolution and might therefore have 

contributed to reduced recovery for OSEM reconstruction with SIPs compared to the full set of 

projections. However, the addition of 111In images reduced the loss in both training and validation, 

indication a beneficial value of increasing the training set with 111In images. This subject will be 

further explored in upcoming studies which also will be focused on improving 111In imaging with 

CUSIP. 
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The gamma cameras had a crystal thickness of 5/8” and used body contour orbits. These 

camera specific parameters might also influence the CUSIPs performance when applied on 

projections from other cameras. In this study we don’t have data for such extended analysis. As 

with all AI-development the limited amount of data is problematic. Nevertheless, with research 

sites having others cameras we intend to study this issue further. 

In this study, we used two reconstruction protocols: a low-resolution OSEM protocol with 

AC-OSEM and a high-resolution OSEM protocol with ASCC-OSEM. With the use of AC-OSEM 

for 177Lu-DOTATATE, a dose-response relationship for pancreatic tumors has been described, as 

well as dosimetry for various organs, e.g., the kidneys (13,14,28). Our results demonstrate that it 

should be feasible to reduce the number of projections and add SIPs and obtain SPECT image 

quality similar to that with the full set of projections. There was a slight decrease in recovery in the 

phantom measurements, which could explain the slightly decreased kidney activity concentration 

estimate. This decrease is probably the result of the inherent poor resolution in AC-OSEM 

reconstruction rather than of the minor resolution loss when applying 30-120SIP. When we applied 

the high-resolution method, ASCC-OSEM, we saw a similar increase in image quality, but with a 

more pronounced loss in recovery. The kidney activity concentration decreased by about 2% 

compared to the full set of projections. Despite the higher resolution of ASCC-OSEM, however, 

the typical resolution recovery for a kidney is about 85%, indicating that a similar degree of 

adjustment needs to be performed in OSEM reconstruction with a 120 or 30-120SIP projection set 

(29). 

For both reconstruction methods, the variation in kidney activity concentration estimates 

decreased for OSEM 30-120SIPs compared to the 30 projection set. The observer also noted that 

reconstruction with 30 projections was too noisy for clinical interpretation. With a high noise level 
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in the image, reporting response or regrowth of small disseminate tumors would be challenging. 

Nevertheless, the overall score for ASCC-OSEM 30 was higher than the AC-OSEM 30-120SIP 

and AC-OSEM 120 reconstructions, which were judged to have acceptable noise levels. This 

contradiction is probably due to the used scoring system that forced the observer to use all scores 

for a patient. This might result in an inaccuracy of incorporating the negatively influences of high 

noise level in the overall score, and thereby indicating a better image quality for ASCC-OSEM 30 

than AC-OSEM 120. 

For the ASCC-OSEM, we used MC-based reconstruction. The benefit with this approach is 

that attenuation, scatter, and collimator-detector response are corrected simultaneously in the 

forward projection, which seems to generate images that might be slightly improved or in parity 

with the compensation methods applied by different vendors (9-11). Despite the possible 

improvements that can be obtained with MC-based reconstruction, results similar to those 

presented here for 30-120SIP will most probably hold true for all other OSEM methodologies with 

robust attenuation, scatter, and collimator-detector response correction. 

 

CONCLUSION 

In the present study, we demonstrated that SPECT image quality, as measured by RMSE, PSNR, 

SNR, and SSIM, can be improved by adding SIPs to sparsely sampled projections. The visual 

inspection revealed that SPECT images generated with sparsely collected projections had 

unacceptable image quality, whereas the SPECT/CT reconstruction with the 30-120SIP set had an 

image quality similar to that of the full set of projections. This similarity enables the use of synthetic 

projections for acquisition time reduction in clinical protocols, which is beneficial for patient 

comfort and minimizes the risk of patient movement under image acquisition. Additionally, it 

enhances the possibility of adding acquisition time points or increasing the number of bed positions 
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with each time point in full clinical schedules, which can be important for improved accuracy of 

the pharmacokinetics in the dosimetry protocol. 
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KEY POINTS 

Question: Can SPECT acquisition be decreased without image degradation by adding deep 

learning–generated synthetic intermediate projections? 

Pertinent Findings: The results of this cohort study of 15 patients treated with 177Lu-DOTATATE 

show that the SPECT acquisition time can be reduced by a factor of 4 while still yielding image 

quality similar to that for a full set of 120 projections. 

Implications for Patient Care: Reducing SPECT acquisition time will improve patient comfort 

during investigation, reduce risk for image artefacts from patient movement, and offer the 

opportunity to increase the number of measurement time points after injection of 177Lu-

radiopharmaceuticals for improved pharmacokinetic description and patient dosimetry. 
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Table 1. Clinical SPECT acquiring protocols for 177Lu dosimetry.  

Study Treatment Acquisition 

time (min) 

Number of 

projections 

Frame 

time (s) 

Bed Measuring 

times (h.p.i.) 

Marin et al. (17) 177Lu-DOTATATE 21.3–42.7 64 40–80 1 4, 24, 144–192 

Sandström et al. (13) 177Lu-DOTATATE 30 60 60 1 1, 24, 96, 168 

Sandström et al. (14) 177Lu-DOTATATE 30 120 30 1 1, 24, 96, 168 

Hagmarker et al. (5) 177Lu-DOTATATE 30 120 30 1 24 

Santoro et al. (15) 177Lu-DOTATATE 22.5 60 45 1 4, 24, 72, 192 

Garkavij et al. (16) 177Lu-DOTATATE 22.5 60 45 1 24/96 

Delker at al. (18) 177Lu-PSMA-617 21.3 128 20 1 24, 48, 72 

Kabasakal et al. (24) 177Lu-PSMA 20/bed 96 25 2 24 

Hou et al. (19) 177Lu-DOTATATE 12–16 96 15–20 1 4, 24, 72 

Chichepotiche et al. (20) 177Lu-DOTATATE 15 60 30 1 20, 25, 168 

Beauregard et al. (23) 177Lu-DOTATATE 8–12 96 10–15 1 4, 24, 96 

Violet et al. (21) 177Lu-PSMA-617 (8–12)/bed 96 10–15 2-3 4, 24, 96 

Hippeläinen et al. (22) 177Lu-DOTATATE 10.7 64 20 1 24, 48, 168 
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Table 2. The image quality metrics RMSE, PSNR, and SSIM for the synthetic intermediate 

projections (SIPs) and SPECT images in the test group of patients. 

Images RMSE PSNR SSIM 

SIPs 2.95 (0.77)  39.2 (3.8) 0.926 (0.061) 

AC-OSEM 30 0.147 (0.060)  47.2 (3.5) 0.989 (0.008) 

AC-OSEM 30-120SIP 0.109 (0.044)***   49.5 (3.3)***   0.993 (0.005)*** 

ASCC-OSEM 30 0.259 (0.101)  49.0 (3.5) 0.993 (0.005) 

ASCC-OSEM 30GF 0.273 (0.162) 48.3 (2.5) 0.995 (0.004)** 

ASCC-OSEM 30-120SIP 0.195 (0.091)***   50.8 (3.2)***   0.996 (0.003)*** 

** P<0.01, *** P<0.001 
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Figure 1. Schematic illustration of CUSIP; the convolutional U-net–shaped neural network for 

generation of synthetic intermediate projections. Numbers indicate image size and number of 

features at each layer. 
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Figure 2. Comparison of acquired projection with the corresponding synthetic intermediate 

projection in four of the patients in the test group (Nos. 1–4). The difference images display the 

pixel value dissimilarities between the acquired and synthetic projections. Blue indicates positive 

pixel values, white indicates no differences, and red indicates negative values. Unit of colorbar is 

counts. 
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Figure 3. SPECT/CT reconstructions of the Jaszczak phantom with six hot spheres having 25 

times higher 177Lu activity concentration compared to background. The AC-OSEM and ASCC-

OSEM reconstructed with 30, 30-120SIP, and 120 projections. Unit of color bar is arbitrary voxel 

values. 
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Figure 4. The recovery and signal-to-noise ratio (SNR) for 177Lu determined in the various hot 

spheres in the Jaszczak phantom for (A, C) the AC-OSEM SPECT/CT reconstruction and (B, D) 

the ASCC-OSEM SPECT/CT reconstruction with 30 (yellow line), 60 (orange line), 120 (blue 

line), 60-120SIP (gray line), and 30-120SIP (green line) projections. 
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Figure 5. Comparison of ASCC-OSEM reconstruction with 30, 30-120SIP, and 120 projections in 

four (Nos. 1–4) of the 15 patients in the test set. The difference images display the pixel value 

dissimilarities between the ASCC-OSEM 30 versus ASCC-OSEM 120 and ASCC-OSEM 30-

120SIP versus ASCC-OSEM 120. The blue indicates positive pixel values, white indicates no 

differences, and red indicates negative values. Unit of colorbar is arbitrary voxel values. 
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Figure 6. The evaluation scores for the SPECT/CT reconstructions with AC-OSEM and ASCC-

OSEM. Mean scores and standard deviations shown at the top of the bars. The stars indicate 

statistical significance of the scores between the projection sets within the AC-OSEM and ASCC-

OSEM reconstructions, respectively; * 0.01≤p<0.05, ** 0.001≤p<0.01, ***p<0.001. 
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Figure 7. The relative kidney activity concentration for the AC-OSEM and ASCC-OSEM 

reconstructions with 30 and 30-120SIP projections vs. the reconstruction with 120 projections. The 

relative activity concentration was determined in the left (A) and right kidneys (B). 

 

 

 

 

 

 



Supplemental data-set for: 

 

Deep learning generation of synthetic intermediate projections improves 
177Lu SPECT images reconstructed with sparsely acquired projections 
 

Phantom measurements 

The Jaszczak SPECT Phantom was used for image quality assessment. The phantom is cylindrical 

and includes six hollow spheres, with inner diameters of 10, 12, 16, 20, 25, and 31 mm, 

respectively. The phantom and the spheres were filled with an aqueous solution containing 177Lu-

DOTATATE. The ratio between the activity concentration in the spheres and the background 

compartment of the phantom was approximately 25. In the reconstructed images, the signal-to-

noise ratios (SNRs) were calculated as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑁𝑁𝑠𝑠−𝑁𝑁𝐵𝐵
𝜎𝜎𝐵𝐵

      (1) 

where NS is the mean counts in a volume of interest (VOIS) equal to the inner diameter of the sphere 

of interest. NB and σB is the mean and standard deviation of the counts in 20 VOIS, equal the size 

of VOIS; placed far away from the hot spheres in the Jaszczak phantom. The recovery coefficient 

was calculated as the measured activity within the sphere in the SPECT image compared to true 

activity. 

 

Quantitative image quality evaluation of patient images 

The image quality of the synthetic intermediate projections (SIPs) and the reconstructed SPECT 

images for the test set of 15 patients were evaluated by the peak signal-to-noise ratio (PSNR; Eq 

1), root mean square error (RMSE; Eq. 2) and structural similarity index metrics (SSIM; Eq 3). 



These measures are estimate of image quality compared to the reference image. For the SIPs the 

reference images are the acquired projections. The reference SPECT image is the reconstruction of 

all 120 acquired projections. 

 

The PSNR is derived from the mean square error and specifies the ratio of the maximal pixel 

intensity to the power of distortion compare the refence image (RI): 

 PSNR = 20 𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑀𝑀𝑀𝑀𝑀𝑀
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

�     (1) 
where MAX is maximum voxel value in the image.  

 

RMSE is square root of the quadratic mean of differences between image (IM) and RI: 

RMSE = � 1
nml

∑ ∑ ∑ (𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) − 𝑅𝑅𝑅𝑅(𝑥𝑥,𝑦𝑦, 𝑧𝑧))2𝑙𝑙
𝑧𝑧

𝑚𝑚
𝑦𝑦

𝑛𝑛
𝑥𝑥    (2) 

n, m and l are the number of voxels in each direction of the SPECT image. 𝐼𝐼𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and 

𝑅𝑅𝑅𝑅(𝑥𝑥,𝑦𝑦, 𝑧𝑧) refer to the x, y and z coordinates in the SPECT images. For projection images IM and 

RI are changed to represent 2D images;  𝐼𝐼𝐼𝐼(𝑥𝑥,𝑦𝑦) and 𝑅𝑅𝑅𝑅(𝑥𝑥, 𝑦𝑦).  

 

SSIM is a perception-based measure that considers image degradation as perceived change in 

structural information (1). The values of SSIM range from 0 to 1 where a higher value indicates 

higher similarity between the images. SSIM where calculated by 3×3×3 kernel size as follows: 

SSIM (IM, RI)  = (2µ𝐼𝐼𝐼𝐼µ𝑅𝑅𝑅𝑅+𝑐𝑐1)(2𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼+𝑐𝑐2)
(µ𝐼𝐼𝐼𝐼
2 +µ𝑅𝑅𝑅𝑅

2 +𝑐𝑐1)(𝜎𝜎𝐼𝐼𝐼𝐼
2 +𝜎𝜎𝑅𝑅𝑅𝑅

2 +𝑐𝑐2)
   (3) 

where µ𝐼𝐼𝐼𝐼 is the average of IM, µ𝑅𝑅𝑅𝑅 is the average of RI, 𝜎𝜎𝐼𝐼𝐼𝐼2  is variance of IM, 𝜎𝜎𝑅𝑅𝑅𝑅2  is the variance 

of RI, 𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is covariance of IM and RI. Two variables 𝑐𝑐1  and 𝑐𝑐2  are used to stabilize the division 

with a weak denominator defined as: 

𝑐𝑐1 = (𝐾𝐾1𝐿𝐿)2 ,  𝑐𝑐2 = (𝐾𝐾2𝐿𝐿)2   



where L is the dynamic range of the voxel-values, 𝐾𝐾1 and 𝐾𝐾2 set by default to 0.01 and 0.03 

respectively. 
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