Journal of Nuclear Medicine, published on August 26, 2019 as doi:10.2967/jnumed.119.229625

1	Comparative Prognost	ic and Diagnostic Value of Myocardial Blood Flow and Myocardial
2		Flow Reserve After Cardiac Transplant
3	Robert JH Miller MD,	^{1*} Osamu Manabe MD, PhD, ^{1,2*} Balaji Tamarappoo MD, ¹ Sean Hayes
4	MD, ¹ John D Friedma	n MD, ¹ Piotr J Slomka PhD, ¹ Jignesh Patel MD, ³ Jon A Kobashigawa
5		MD, ³ and Daniel S Berman MD ¹
6	*Drs. Manabe and Miller	contributed equally.
7	¹ Departments of Imaging	g and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
8	² Department of Nuclea	r Medicine, Hokkaido University of Graduate School of Medicine,
9	Sapporo, Japan	
10	³ Smidt Heart Institute, C	Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles,
11	CA	
12	Disclosures: The work w	as supported in part by the Dr. Miriam and Sheldon Adelson Medical
13	Research Foundation. Dr	. Miller receives funding support from the Arthur J E Child Fellowship
14	grant. Drs. Berman, and S	Slomka participate in software royalties for QPS software at Cedars-
15	Sinai Medical Center. No	other potential conflicts of interest relevant to this article exist.
16	Short title: PET MPI aft	er cardiac transplant
17	Word count: 4991 (inclu	iding text, references, figures, and tables)
18	Corresponding author:	Dr. Daniel S Berman MD, FACC
19	B	Cedars-Sinai Medical Center,
20		8700 Beverly Boulevard,
21		Los Angeles, CA 90048, USA.
22 23		Telephone: 1-216-444-6765 Fax: 1-310-423-0811
23 24		Email: <u>bermand@cshs.org</u>
25		__
26	First author:	Dr. Robert JH Miller MD – ORCID: 0000-0003-4676-2433
27		Current cardiac imaging fellow
28		Cedars-Sinai Medical Center,
29		8700 Beverly Boulevard,
30 31		Los Angeles, CA 90048, USA. Telephone: 1-310-423-8000
31 32		Email: robert.miller@cshs.org
33		

1 ABSTRACT (262/350 words)

2 Rationale

3	Cardiac allograft vasculopathy (CAV) is a major cause of graft failure after cardiac
4	transplantation. CAV is characterized by diffuse involvement of epicardial coronary arteries and
5	the microvasculature. Positron emission tomography (PET) allows quantification of absolute
6	myocardial blood flow (MBF) and myocardial flow reserve (MFR), which may be accurate
7	markers of CAV severity. We compared the diagnostic and prognostic utility of stress MBF and
8	MFR following cardiac transplantation.
9	Methods
10	This was a cohort study of consecutive cardiac transplant patients undergoing ⁸² Rb PET scans.
11	Semi-quantitative regional analysis and global measurement of stress MBF and MFR were
12	performed. Associations with all-cause mortality were assessed with multivariable Cox analysis.
13	The diagnostic accuracy for significant CAV (grade 2/3) and prognostic accuracy of stress MBF
14	and MFR, corrected and uncorrected for rate pressure product, were compared.
15	Results
16	A total of 99 patients, mean age 68.8 and 75.8% male, were followed for a median of 3.4 years,
17	during which 26 deaths occurred. Stress MBF and MFR had similar diagnostic accuracy for
18	significant CAV. However, uncorrected MFR had improved discrimination for all-cause mortality
19	compared to stress MBF (area under the curve 0.748 vs 0.639, $p=0.048$). Higher MFR (adjusted
20	hazard ratio (aHR) 0.30, p<0.001), but not stress MBF (aHR 1.14, p=0. 656), was associated
21	with reduced all-cause mortality. Preserved MFR (>2.0) identified relatively low-risk patients
22	(annual mortality 4.7%) while the presence of left ventricular ejection fraction <45% and
23	MFR<1.7 identified high-risk patients (annual mortality 51.6%).

1	Conclusion
2	Quantitative PET analysis, and particularly MFR, has diagnostic and prognostic utility. following
3	heart transplantation. Preserved MFR identifies low-risk patients while the presence of multiple
4	abnormal parameters identifies high-risk patients.
5	
6	Keywords
7	Heart transplantation, myocardial flow reserve, myocardial blood flow, positron emission
8	tomography
9	
10	Abbreviations
11	CAV: cardiac allograft vasculopathy
12	HR: hazard ratio
13	MBF: myocardial blood flow
14	MFR: myocardial flow reserve
15	PET: Positron emission tomography
16	⁸² Rb: Rubidium-82

1 INTRODUCTION

Heart transplantation is a definitive therapy for patients with end-stage heart failure. Due to advances in post-transplant patient care, median post-transplant survival is now over 13 years.(1) As long-term survival has increased, the prevalence of cardiac allograft vasculopathy (CAV), characterized by a diffuse arteriopathy involving the epicardial coronary arteries and microvasculature, has increased.(2) CAV accounts for over a third of deaths in patients who survive at least 5 years post-transplant and is the most common indication for re-transplantation in patients who survive one year.(3)

While invasive coronary angiography (ICA) and intravascular ultrasound (IVUS) have 9 been the gold-standard for diagnosing CAV, they are associated with inherent procedural risk.(4) 10 Non-invasive monitoring of CAV may provide valuable diagnostic information while avoiding 11 the risk of invasive studies.(2) Noninvasive imaging with stress echocardiography and single 12 photon emission computed tomography have poor sensitivity for diagnosis of CAV(5, 6). 13 However, positron emission tomography (PET) myocardial perfusion imaging (MPI) offers the 14 advantage of measurement of absolute myocardial blood flow (MBF) quantification and 15 calculation of myocardial flow reserve (MFR). Stress MBF and MFR provide physiologic 16 assessments of both epicardial coronary artery and coronary microvascular function.(7) Thus, 17 PET may provide a more comprehensive assessment for CAV compared to other non-invasive 18 modalities. In previous studies, both MBF and MFR have provided incremental diagnostic and 19 prognostic utility to semi-quantitative assessment of perfusion for the diagnosis of CAV 20 following cardiac transplant.(8-10). 21

While evidence regarding PET for CAV surveillance has grown, it has not been adopted
as standard clinical practice. Previous studies have used variable thresholds of MBF and MFR

for diagnosis of CAV. Additionally, there is absence of consensus on whether MFR or stress MBF should be used as the marker adverse cardiovascular outcomes. Our objectives were to compare the diagnostic value of MBF and MFR to detect CAV, to evaluate the prognostic utility of MBF and MFR for prediction of adverse outcomes and to evaluate the performance of previously described thresholds for ⁸²Rb PET MPI parameters in patients following cardiac

- 6 transplant.
- 7

1

2

3

4

5

8

9 MATERIALS AND METHODS

10 Study Population

In total, 105 consecutive patients who underwent pharmacological stress ⁸²Rb PET following cardiac transplantation between April 2010 and December 2015 were identified at a single center. Patients without dynamic data were excluded (n=6). In patients with multiple studies, the first study with dynamic data was included. This study was approved by the Institutional Review Board at Cedars-Sinai Medical Center (CR00013886) and written informed consent was obtained from all patients.

17Transplant demographics were obtained from medical records. History of acute cellular18rejection (ACR) was defined as biopsy showing cellular rejection $\geq 2R$ or a history of treated19ACR. History of antibody mediated rejection (AMR) was defined as a history of treated AMR.20ICA which most closely preceded PET was reviewed and graded for CAV according to the21International Society of Heart and Lung Transplantation (ISHLT) classification based on the22interpretation of the performing cardiologist, blinded to PET results.(*11*)

1 Image Acquisition and Reconstruction

Patients were imaged with a whole-body PET/CT scanner (Siemens Biograph-64 2 TruePoint PET/CT with the True V) (12). A 6-min list mode rest acquisition was performed 3 simultaneously with injection of 925-1850 MBq of ⁸²Rb. Regadenoson or adenosine stress 4 acquisitions were then performed with the same protocol.(13) The heart rate and blood pressure 5 were recorded before ⁸²Rb injection and at peak stress. The 6 minutes rest and stress data were 6 reconstructed into a dynamic imaging series consisting of 16 frames (12×10 s, 2×30 s, 1×60 7 s, and 1×120 s) using the vendor iterative method (Fourier rebinning + 2-dimensional 8 9 attenuation-weighted ordered-subsets expectation maximization) with 2 iterations, 8 subsets, and 8-mm gaussian postprocessing filter.(14). CT attenuation-correction scans were acquired both 10 before rest and after stress imaging. The CT attenuation map registration with the PET images 11 was verified visually by an experienced technologist. 12 Semi-quantitative assessments of perfusion were performed at stress and rest to derive the 13 14 summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS).(15) Patients were grouped according to abnormalities SRS (≥ 1 or 0), two criteria for SSS 15 $(SSS \ge 4 \text{ or } < 4 \text{ and } > 1 \text{ or } \le 1)$ and ischemia (SDS thresholds > 1). Left ventricular ejection fraction 16 17 (LVEF) was assessed at rest. For quantitative measurements, MBF was computed from the dynamic imaging series with dedicated software (QPET, Cedars-Sinai Medical Center, Los 18 Angeles, California).(14, 16) A standard 1-tissue-compartment model and ⁸²Rb extraction 19 20 fraction derived from the described Renkin-Crone function was used to estimate MBF from K1.(17) MFR was calculated as MBF at stress/MBF at rest. Corrected rest MBF was calculated 21 22 as MBF at rest × rate pressure product/10000 and corrected MFR as stress MBF/corrected MFR. 23 Rate pressure product was calculated as heart rate * systolic blood pressure.

1	Thresholds for quantitative PET analysis were based on previously published values
2	including: MFR < 2.0,(8) or <1.75 (9); stress MBF < 3.7 (8) or <1.7.(10) Additionally, we
3	investigated combinations of parameters previously described as having prognostic value :
4	SSS \geq 4, LVEF \leq 45, or MFR $<$ 1.75;(9) and MBF $<$ 1.7 with SSS $>$ 1 or LVEF \leq 45.(10)
5	Additionally, cut-offs were derived from the ROC curves generated in this study using the
6	Youden index.(18)
7	
8	Outcomes
9	The diagnostic outcome was the presence of CAV grade 2 or 3. The primary prognostic
10	outcome was all-cause mortality. Cardiovascular mortality, the secondary prognostic outcome,
11	was determined after review of all available clinical information based on standard
12	definitions.(19) No patients in our cohort underwent re-transplantation. Follow-up of all patients
13	was confirmed by trained research coordinators, including patients who transfer to alternate
14	transplant programs.
15	
16	Statistical Analyses
17	Continuous variables with normal distributions are presented as mean \pm standard
18	deviation (SD) and compared with a student's t-test. Continuous variables which were not
19	normally distributed are presented as median (interquartile range [IQR]) and compared using the
20	Mann-Whitney U test. Categorical variables are summarized as number (proportion) and
21	compared using a Fisher exact test.
22	The primary outcome was assessed using Kaplan-Meier survival curves and compared
23	using the log-rank test. Univariable and multivariable Cox proportional hazards analyses were

1 performed to identify associations with all-cause mortality and cardiovascular mortality.

Multivariable models included variables identified as significant on univariable analyses (P <
0.05).

Receiver operating characteristic (ROC) curves were generated for semi-quantitative 4 and quantitative PET parameters. Area under the curve (AUC) was compared using the method 5 6 established by Delong et al (20). Calibration of quantitative PET measurements was assessed using the Hosmer-Lemeshow goodness of fit test and was found to be adequate for each 7 combination of measurement and outcome (all p > 0.05). Event rates were extrapolated from 8 9 Cox-proportional hazards models. The proportional hazards assumption was assessed with Schoenfeld residuals for each model and found to be valid. We assessed for interactions between 10 each of the variables in the final model, with no significant interactions identified. All statistical 11 tests were two-sided, with *p*-value < 0.05 considered significant. Analysis was performed using 12 SAS (JMP ver. 13, SAS, Cary, NC, USA) and Stata version 13 (StataCorp, College Station, 13 14 Texas).

15

16 **RESULTS**

17 Follow-Up and All-Cause Mortality

In total, 99 patients were included with baseline characteristics outlined in Table 1. The mean age was 68.8 ± 10.0 years, and 75 (75.8%) patients were male. Median resting heart rate was 82 (IQR 73 – 90). During a median follow-up of 3.4 year (IQR 2.2–4.0), 26 patients died (26.3 %). Patients who died were older at the time of PET (mean age 74.0 vs. 66.7, p<0.001) and had lower mean LVEF (56.8vs. 65.4%, *p*<0.001).

23 Imaging characteristics are outlined in Table 2. There were no significant differences in

SSS, SRS and SDS between patients with and without all-cause mortality. However, stress MBF 1 (2.54 vs. 2.88 ml/min/g, p=0.024) and MFR (1.69 vs. 2.37, p<0.001) were lower in patients who 2 died during follow-up. 3

4

5

Diagnostic Utility of ⁸²Rb PET

Reference angiography occurred at a median of 1.0 (IQR 0.9 - 2.0) years prior to the 6 PET study. MBF, MFR, and corrected MFR demonstrated good discrimination of significant 7 CAV. There were no significant differences in the ability of stress MBF (AUC 0.713), MFR 8 9 (AUC 0.749), or corrected MFR (AUC 0.714) to identify patients with significant CAV (Figure 1). Optimal cut-offs in our population were: stress MBF <2.83 (sensitivity 73.1%, specificity 10 56.2%), uncorrected MFR < 2.22 (sensitivity 80.8%, specificity 61.6%), corrected MFR <2.19 11 (sensitivity 76.9%, specificity 65.8%). SSS alone (AUC 0.706) had similar differentiation 12 compared to stress MBF, uncorrected MFR, and corrected MFR. Addition of abnormal regional 13 perfusion to stress MBF, corrected MFR and uncorrected MFR did not result in a statistically 14 significant improvement in discrimination of patients with CAV compared to quantitative 15 markers alone (Supplemental Figure 1). 16

17

Prognostic Utility of ⁸²Rb PET 18

Kaplan-Meier survival curves for semi-quantitative regional analysis are shown in 19

20 Figure 2. SSS ≥ 4 (log-rank p=0.017) was associated with increased all-cause mortality.

Abnormal SRS or SDS were not associated with all-cause mortality. Kaplan-Meier survival 21

22 curves for quantitative PET variables are shown in Figure 3. Abnormal MFR (log-rank p < 0.001),

23 corrected MFR (log-rank $p \le 0.001$) and stress MBF (log-rank p = 0.002) were associated with 1 increased all-cause mortality.

2	In a univariable Cox-proportional hazards analysis (results in Table 3), stress MBF
3	(unadjusted HR 0.56, 95% CI 0.35 – 0.90, p =0.017), uncorrected MFR (unadjusted HR 0.34,
4	95% CI 0.19 – 0.62, p<0.001), and corrected MFR (unadjusted HR 0.44, 95% CI 0.26 – 0.74,
5	p=0.002) were associated with all-cause mortality. Higher SSS was also associated with
6	increased all-cause mortality (unadjusted HR 1.09, 95% CI 1.03 – 1.15, $p=0.002$) as were age
7	and lower LVEF. However, in a multivariable model, only age and MFR continued to be
8	associated with all-cause mortality (uncorrected: adjusted HR 0.30 , $p=0.017$; corrected: adjusted
9	HR 0.43, $p=0.025$). Addition of uncorrected MFR significantly improved death prediction when
10	added to age, LVEF, SRS, SSS, SDS, and stress MBF (chi-square 6.5, $p=0.011$), with less
11	improvement by adding corrected MFR (chi-square 5.4, $p=0.020$).
12	ROC curves for prediction of all-cause mortality shown in Figure 4. Uncorrected MFR
13	had improved discrimination for all-cause mortality compared to stress MBF (AUC 0.748 vs
14	0.639, p=0.048). However, there was no significant difference in mortality prediction between
15	MFR and corrected MFR. Prediction of all-cause mortality with SSS alone (AUC 0.593) was
16	significantly worse compared to MFR ($p=0.007$), and corrected MFR ($p=0.019$), but not stress
17	MBF ($p=0.435$). Addition of abnormal regional perfusion to MFR or stress MBF analyses did
18	not significantly improve the prognostic accuracy compared to quantitative markers alone
19	(Supplemental Figure 2).
20	

21 Cardiovascular Mortality

Cardiovascular mortality occurred in 16 (16.2%) patients. Univariable and multivariable
 Cox-proportional hazards analysis of the association with cardiovascular mortality are shown in

Supplemental Table 1. Stress MBF was associated with increased cardiovascular mortality in
univariable (unadjusted HR 0.37, *p*=0.002) but not multivariable analyses (adjusted HR 1.08, *p*=0.848). Uncorrected MFR was associated with increased cardiovascular mortality in
univariable (unadjusted HR 0.17, *p*<0.001) and multivariable analyses (adjusted HR 0.05, *p*=0.001). ROC curves for prediction of cardiovascular mortality are shown in Supplemental
Figure 3.

7

8 Comparison of Previously Described Thresholds

9 Table 4 summarizes the diagnostic and prognostic utility of previously described abnormal thresholds and their combinations. Uncorrected MFR was used since discrimination 10 was numerically superior to corrected MFR in our prior analyses. With respect to diagnosis of 11 CAV, stress MBF performed well among individual variables, but with restrictive thresholds. 12 Stress MBF <3.7 had the highest sensitivity but classified 79.8% of patients as abnormal, while 13 stress MBF <1.7 had the highest specificity with only 10.1% of patients classified as abnormal. 14 Highest overall accuracy was achieved with MFR <2.0 or the combined marker of the presence 15 of any of SSS₂₄, LVEF <=45% or MFR <1.75. Regarding prognosis, stress MBF <1.7 was the 16 17 single predictor which identified patients with the highest risk annualized mortality rate (35.8%). Patients with reduced stress MBF (<1.7) and either SSS>1 or LVEF \leq 45% had an annual 18 19 mortality rate of 60.7%. Patients with preserved MFR (≥ 2.0) were at the lowest risk (annual 20 mortality rate 4.7%).

21

22 DISCUSSION

23 PET-MPI with MBF quantification has been shown to improve diagnosis of CAV and

provide incremental prognostic value in patients following heart transplant. However, there is no
consensus on which marker, stress MBF or MFR, should be applied for either diagnostic or
prognostic purposes.(*21*) In this study we demonstrate that stress MBF, uncorrected MFR and
corrected MFR were equivalent in discriminating patients with significant CAV. For prognosis,
we found that reduced MFR offered superior discrimination for all-cause mortality compared to
stress MBF. Finally, we found that correcting for RPP did not improve prognostic or diagnostic
accuracy of MFR.

Our study adds to a growing body of literature describing the diagnostic utility of 8 quantitative PET analysis. Bravo et al. reported that in patients imaged by ¹³N-NH₃ PET MPI, 9 stress MBF and LVEF combined with regional perfusion improved detection of significant CAV 10 with an AUC of 0.88 compared to 0.82.(10) Konerman et al. reported that MFR or stress MBF 11 numerically, but not significantly, improved discrimination of CAV compared to regional 12 perfusion when assessed by ⁸²Rb PET.(8) Chih et al. found that stress MBF and MFR had similar 13 14 discrimination of CAV when defined angiographically or by IVUS.(22) In our population, stress MBF, uncorrected MFR and corrected MFR had comparable performance for diagnosis of 15 significant CAV. These results suggest that either stress MBF or MFR may improve diagnosis of 16 17 CAV, and that if differences in discrimination are present, they are likely not clinically significant. 18

Our study also confirmed the prognostic utility of PET-MPI in patients following heart transplant. McArdle et al. followed 140 cardiac transplant patients who underwent ⁸²Rb PET for a median 18.2 months follow-up during which 14 events occurred, including 9 deaths.(*9*) They demonstrated that MFR, but not stress MBF, was associated with increased adverse events, with MFR <1.5 conferring a 4-fold increase in risk. Konerman et al. reported similar associations with

a combined outcome of death (n=2), acute coronary syndrome (n=5), revascularization (n=8), or 1 heart failure (n=15). Both studies used uncorrected MFR. We expand on this evidence by 2 3 including a greater number of hard events and observed that only reduced MFR was associated with increased all-cause mortality in adjusted analyses. Additionally, the discriminatory value of 4 MFR was superior compared to stress MBF for identifying patients who died during follow-up. 5 6 Serial evaluation with PET has been shown to further refine prognostication.(23) Our findings provide evidence that quantitative PET blood flow analysis, particularly with MFR, has 7 significant prognostic utility following heart transplantation. 8 9 Lastly, we describe the performance of previously described abnormal thresholds in our cohort. While semiquantitative perfusion abnormalities were associated with increased all-cause 10 mortality, they did not significantly improve diagnosis of CAV or prognostication when added to 11 stress MBF or MFR. Further, we found that preserved MFR (defined as ≥ 2.0) identified a group 12 of patients with the lowest rate of all-cause mortality during follow-up. Combining reduced 13 LVEF with reduced MFR (or MBF) identified a group of patients with annual mortality over 14 50%. Additional patients at high mortality risk were identified by combining the presence of 15 severely reduced stress MBF with abnormal regional perfusion or reduced LVEF. As a point of 16 17 reference, the ISHLT guidelines suggest that patients with end-stage HF and estimated one-year mortality over 20% be considered for transplant listing. (24) Therefore, PET may have a role for 18 19 identifying patients who may benefit from re-transplantation before they develop significant HF

20 symptoms or recurrent hospitalizations. Physicians should integrate multiple parameters to

21 improve diagnostic sensitivity or risk-stratification based on individual clinical scenarios.

Our study has a few important limitations. This is a retrospective study of patients from a
single-center. Our sample size is small, but it is comparable to prior studies. The patients who

were referred for PET represented a high-risk cohort as evidenced by the high annual mortality 1 rates. PET perfusion studies were performed as part of routine clinical practice, therefore the 2 time interval between ICA and PET scan was not standardized and a delay over 2 years was 3 present in one quarter of patients. While this may have impacted the assessment of diagnostic 4 accuracy, most patients were more than 10 years post-transplant at which time CAV tends to 5 6 progress less rapidly.(2) We used a different software package compared to other published studies, which may explain some of the variation in findings. However, the correlation across 7 software packages is excellent,(25) Additionally, our results confirm that PET has diagnostic and 8 9 prognostic utility regardless of the software package used.

10

11 CONCLUSIONS

We confirmed the diagnostic and prognostic utility of PET flow quantitation in post-transplant patients. Stress MBF and MFR had similar diagnostic utility and correcting for RPP did not improve diagnostic or prognostic accuracy. However, we found that uncorrected MFR was superior to stress MBF for prognostication. Preserved MFR identifies low-risk patients while the presence of multiple abnormal parameters identifies patients at the highest risk.

17

18

19 KEY POINTS

20 Question

21 What are the diagnostic and prognostic utility of MBF and MFR in patients following cardiac

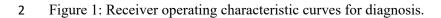
22 transplant?

23 Pertinent Findings

1	We specifically compared the performance of MFR with and without correction for rate pressure
2	product, showing that uncorrected values have numerically higher diagnostic and prognostic
3	utility. Additionally, we show that stress MBF and MFR have similar diagnostic utility, while
4	uncorrected MFR has superior prediction of all-cause mortality.
5	Implications for Patient Care
6	Physicians should integrate multiple parameters to improve diagnostic sensitivity or risk-
7	stratification based on individual clinical scenarios.
8	
9	

REFERENCES

2	(1)	Lund LH, Khush KK, Cherikh WS, et al. The Registry of the International Society for
3		Heart and Lung Transplantation: Thirty-fourth adult heart transplantation report-2017;
4		focus theme: allograft ischemic time. J Heart Lung Transplant. 2017;36:1037-46.
5	(2)	Pollack A, Nazif T, Mancini D, Weisz G. Detection and imaging of cardiac allograft
6		vasculopathy. JACC: Cardiovasc Imaging.2013;6:613-23.
7	(3)	Lund LH, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society
8		for Heart and Lung Transplantation: thirty-first official adult heart transplant report. J
9		Heart Lung Transplant. 2014;33:996-1008.
10	(4)	Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary
11		atherosclerosis. N Engl J Med. 2011;364:226-35.
12	(5)	Chirakarnjanakorn S, Starling RC, Popovic ZB, Griffin BP, Desai MY. Dobutamine stress
13		echocardiography during follow-up surveillance in heart transplant patients: Diagnostic
14		accuracy and predictors of outcomes. J Heart Lung Transplant. 2015;34:710-7.
15	(6)	Thompson D, Koster MJ, Wagner RH, Heroux A, Barron JT. Single photon emission
16		computed tomography myocardial perfusion imaging to detect cardiac allograft
17		vasculopathy. Eur Heart J Cardiovasc Imaging. 2012;13:271-5.
18	(7)	Bravo PE, Di Carli MF, Dorbala S. Role of PET to evaluate coronary microvascular


1		dysfunction in non-ischemic cardiomyopathies. Heart Failure Rev. 2017;22:455-64.
2	(8)	Konerman MC, Lazarus JJ, Weinberg RL, et al. Reduced myocardial flow reserve by
3		positron emission tomography predicts cardiovascular events after cardiac
4		transplantation. Circ Heart Fail. 2018;11:1-10.
5	(9)	Mc Ardle BA, Davies RA, Chen L, et al. Prognostic value of rubidium-82 positron
6		emission tomography in patients after heart transplant. Circ Cardiovasc Imaging.
7		2014;7:930-7.
8	(10)	Bravo PE, Bergmark BA, Vita T, et al. Diagnostic and prognostic value of myocardial
9		blood flow quantification as non-invasive indicator of cardiac allograft vasculopathy. Eur
10		Heart J. 2018;39:316-23.
11	(11)	Mehra MR, Crespo-Leiro MG, Dipchand A, et al. International Society for Heart and
12		Lung Transplantation working formulation of a standardized nomenclature for cardiac
13		allograft vasculopathy-2010. J Heart Lung Transplant. 2010;29:717-27.
14	(12)	Slomka PJ, Diaz-Zamudio M, Dey D, et al. Automatic registration of misaligned CT
15		attenuation correction maps in Rb-82 PET/CT improves detection of angiographically
16		significant coronary artery disease. J Nucl Cardiol. 2015;22:1285-95.
17	(13)	Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging
18		guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J

Nucl Cardiol. 2016;23:606-39.

2	(14)	Dekemp RA, Declerck J, Klein R, et al. Multisoftware reproducibility study of stress and
3		rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-
4		compartment model of 82Rb kinetics. J Nucl Med. 2013;54:571-7.
5	(15)	Chow BJ, Ananthasubramaniam K, dekemp RA, Dalipaj MM, Beanlands RS, Ruddy TD.
6		Comparison of treadmill exercise versus dipyridamole stress with myocardial perfusion
7		imaging using rubidium-82 positron emission tomography. J Am Coll Cardiol.
8		2005;45:1227-34.
9	(16)	Nakazato R, Berman DS, Dey D, et al. Automated quantitative Rb-82 3D PET/CT
10		myocardial perfusion imaging: normal limits and correlation with invasive coronary
11		angiography. J Nucl Cardiol. 2012;19:265-76.
12	(17)	Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification
13		of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol
14		Imaging. 2007;34:1765-74.
15	(18)	Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32-35.
16	(19)	Hicks KA, Mahaffey KW, Mehran R, et al. 2017 Cardiovascular and stroke endpoint
17		definitions for clinical trials. Circulation. 2018;137:961-972
18	(20)	DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more

1		correlated receiver operating characteristic curves: a nonparametric approach. <i>Biometrics</i> .
2		1988;44:837-45.
3	(21)	Miller RJH, Kobashigawa JA, Berman DS. Should positron emission tomography be the
4		standard of care for non-invasive surveillance following cardiac transplantation? J Nucl
5		Cardiol. 2018, in press.
6	(22)	Chih S, Chong AY, Erthal F, et al. PET Assessment of epicardial intimal disease and
7		microvascular dysfunction in cardiac allograft vasculopathy. J Am Coll Cardiol.
8		2018;71:1444-56.
9	(23)	Feher A, Srivastava A, Quail MA, et al. Serial assessment of coronary flow reserve by
10		Rubidium-82 positron emission tomography predicts mortality in heart transplant
11		recipients. JACC Cardiovasc Imaging. 2018, in press.
12	(24)	Mehra MR, Canter CE, Hannan MM, et al. The 2016 International Society for Heart
13		Lung Transplantation listing criteria for heart transplantation: A 10-year update. J Heart
14		Lung Transplant. 2016;35:1-23.
15	(25)	Nesterov SV, Deshayes E, Sciagrà R, et al. Quantification of myocardial blood flow in
16		absolute terms using (82)Rb PET imaging: the RUBY-10 Study. JACC Cardiovasc
17		Imaging. 2014;7:1119-27.

1 FIGURE LEGENDS

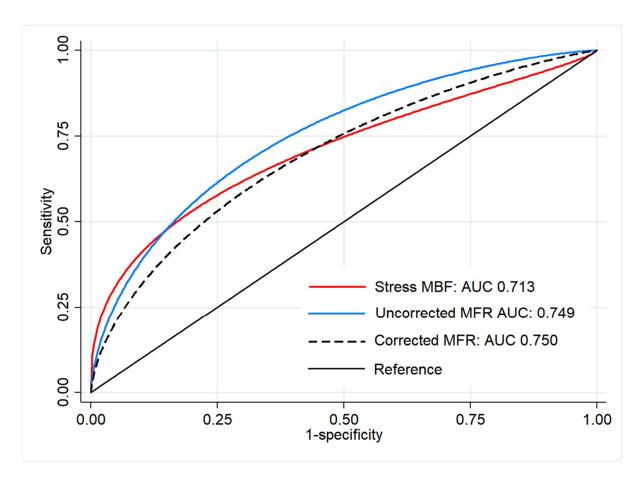
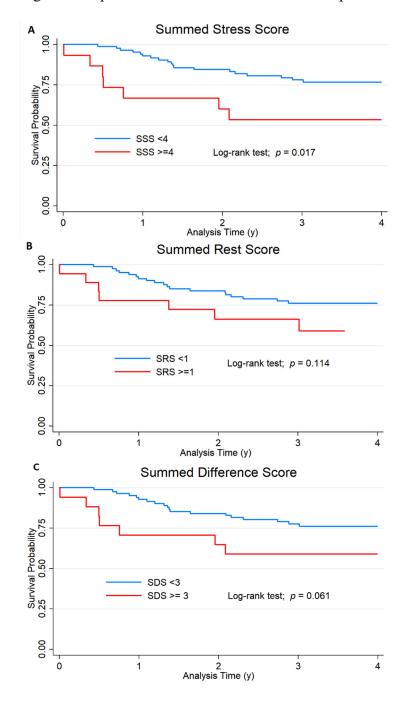
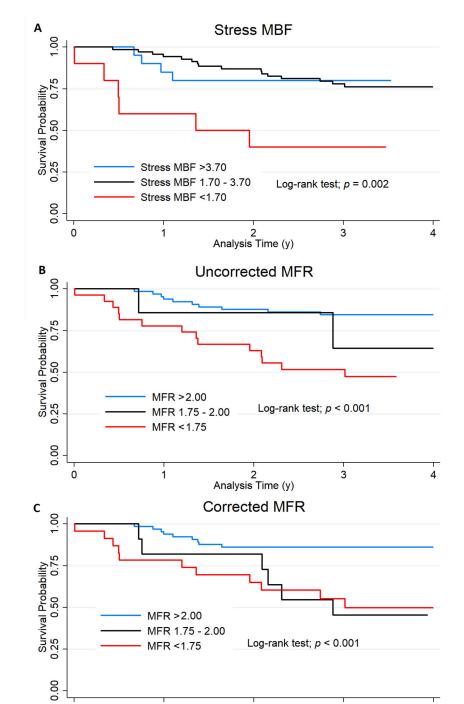
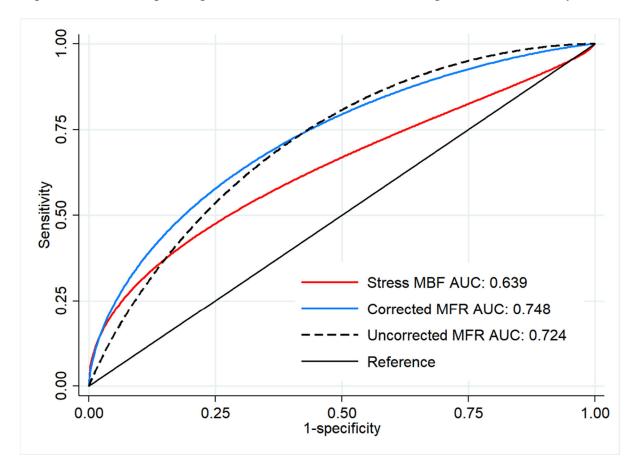




Figure 1: Receiver operating characteristic curves for diagnosing CAV ≥ grade 2. There was no difference
in the area under the curve (AUC) of uncorrected MFR compared to stress MBF (*p*=0.499) or corrected
MFR (*p*=0.310). AUC – area under the curve, MBF – myocardial blood flow, MFR – myocardial flow
reserve.

1 Figure 2. Kaplan-Meier survival curves for semi-quantitative analysis

Figure 2. Kaplan-Meier survival curves for all-cause mortality stratified by the presence of
abnormal regional perfusion. (A) summed stress score (SSS), (B) summed rest score (SRS), and
(C) summed difference score (SDS). Patients with SSS≥4 were more likely to experience all-cause
mortality during follow-up (log-rank *p*=0.017).



1 Figure 3. Kaplan-Meier survival curves for PET quantitative analysis

Figure 3: Kaplan-Meier survival curves for all-cause mortality stratified by quantitative positron
emission tomography (PET) results. of (A) myocardial blood flow (MBF) at stress, (B) myocardial
flow reserve (MFR), and (C) corrected MFR.

Analysis Time (y)

1 Figure 4: Receiver Operating Characteristic Curves for Predicting All-Cause Mortality.

3 Figure 4: Receiver operating characteristic curves for identifying all-cause mortality during

4 follow-up. Uncorrected myocardial flow reserve (MFR) had a significantly larger area under the

5 curve (AUC) compared to stress myocardial blood flow (MBF) (p=0.047). There was no

6 difference between MFR and corrected MFR (p=0.681).

	No death	Death	P-value
	(n=73)	(n=26)	
Age (years), mean ± SD	66.7 ± 10.5	74.0 ± 7.3	0.001
Male, n(%)	54(74.0)	21(80.8)	0.599
Age at transplant (years), mean \pm SD	54.3±11.1	61.9 ±6.5	0.001
Donor Age (years), mean ± SD	30.2±11.9	35.4±10.7	0.089
Time post-transplant (years), mean \pm SD	12.5±5.2	12.5±5.4	0.977
Body mass index (kg/m ²), mean \pm SD	26.5±5.6	25.8±5.0	0.560
Hypertension, n(%)	62(84.9)	19(73.1)	0.236
Diabetes, n(%)	31(42.5)	15(57.7)	0.252
Dyslipidemia, n(%)	53(72.6)	21(80.8)	0.600
Ex-smoker, n(%)	4(5.5)	2(7.7)	0.651
Renal failure, n(%)	7(9.6)	4(15.4)	0.472
CAV grade* (0/1/2/3)	46/17/5/3	13/6/2/4	0.489
CMV viremia, n(%)	10(13.7)	3(11.5)	1.000
History of ACR, n(%)	10(13.7)	5(19.2)	0.531
History of AMR, n(%)	4(5.5)	4(15.4)	0.154
Medication use, n(%)			
Aspirin	39(53.4)	16(61.5)	0.501
Beta-blockers	32(43.8)	9(34.6)	0.490
ACEi or ARB	36(49.3)	11(42.3)	0.649
Diuretics	16(21.9)	9(34.6)	0.292
Statins	58(79.5)	16(61.5)	0.113
Calcineurin inhibitor	63(86.3)	22(84.6)	1.000
mTOR inhibitor	32(43.8)	9(34.6)	0.490

1 Table 1: Baseline Population characteristics.

Table 1: Baseline population characteristics. ACEi; Angiotensin converting inhibitor, ACR; acute cellular
rejection, AMR; antibody mediated rejection, ARB; angiotensin receptor blocker, CAV; cardiac allograft
vasculopathy, CMV; cytomegalovirus, MI; myocardial infarction, *CAV grade No death (n = 71), Death
(n = 25).

1 Table 2: Imaging characteristics:

	No Death	Death	P-value
	(n=73)	(n=26)	
Resting heart rate	81.88 ± 12.5	81.5 ± 12.8	0.980
Rate pressure product (bpm*mmHg) mean \pm SD	10895 ± 2229	11122 ± 1627	0.635
Resting LVEF (%), mean ± SD	65.4 ± 9.7	56.8 ± 13.1	< 0.001
⁸² Rb semi-quantitative imaging, median(IQR)		<u> </u>	
Summed rest score	0(0-0)	0(0-1)	0.136
Summed stress score	0(0-2)	0(0-8)	0.102
Summed difference score	0(0-1)	0(0-4)	0.072
⁸² Rb quantitative imaging, median(IQR)			
Rest TPD	0(0-0.3)	0.2(0.0 - 1.5)	0.018
Stress TPD	1.1(0.0 - 4.4)	2.1(0.6 - 7.9)	0.111
Ischemic TPD	1.1(0.0 - 3.9)	1.9(0.5 - 5.8)	0.200
Rest MBF (mL/min/g)	1.29(1.06 - 1.44)	1.29(1.14 - 1.56)	0.216
Stress MBF (mL/min/g)	2.88(2.41 - 3.60)	2.54(1.71 - 3.24)	0.024
MFR	2.37(2.01 - 2.80)	1.69 (1.28 -	< 0.001
		2.19)	

2

3 Table 2: Imaging characteristics: MBF; myocardial blood flow, MFR; myocardial flow reserve, LVEF;

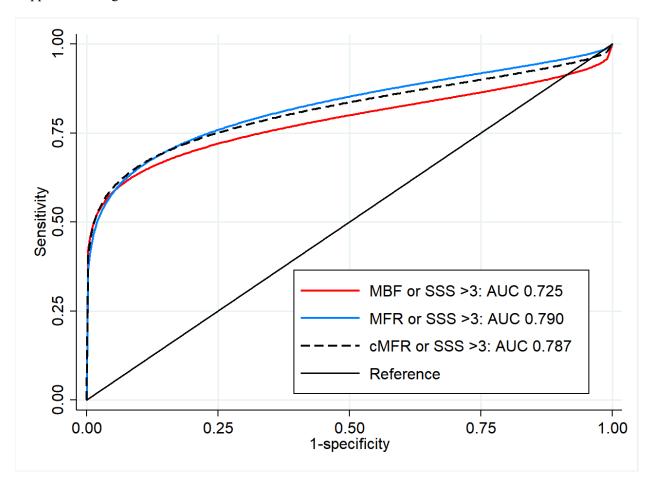
4 left ventricular ejection fraction, TPD; total perfusion deficit.

Variable	Unadjusted HR	P-value	Adjusted HR	<i>P</i> -value
	(95% CI)		(95% CI)	
Age	1.08(1.03 - 1.14)	< 0.001	1.10(1.04 - 1.17)	0.001
Male	1.37(0.52 - 3.65)	0.523	-	-
Body mass index	0.97(0.80 - 1.05)	0.442	-	-
LVEF	0.95(0.92 - 0.98)	0.001	0.98(0.94-1.02)	0.232
Cardiac risk factors	11			
Hypertension	0.54(0.23 - 1.28)	0.161	-	-
Diabetes	1.83(0.84 - 3.99)	0.129	-	-
Dyslipidemia	1.55(0.5811)	0.380	-	-
Renal failure	1.68(0.58 - 4.88)	0.339	-	-
CMV viremia	0.77(0.23-2.55)	0.666	-	-
ACR	1.43(0.54 - 3.79)	0.474	-	-
AMR	1.88(0.84 - 4.20)	0.124	-	-
PET parameters	11			
Summed rest score	1.15(1.01 - 1.31)	0.033	0.71(0.20 - 2.54)	0.602
Summed stress score	1.09(1.03 - 1.15)	0.002	1.02(0.29 - 3.54)	0.976
Summed difference score	1.15(1.06 - 1.26)	0.001	1.22(0.35 - 4.19)	0.754
Rest MBF	1.81(0.78 - 4.19)	0.166	-	-
Stress MBF	0.56(0.35 - 0.90)	0.017	1.14(0.64 - 2.05)	0.656
Uncorrected MFR*	0.34(0.19 - 0.62)	< 0.001	0.30(0.11 - 0.81)	0.017
Corrected MFR*	0.44(0.26 - 0.74)	0.002	0.43(0.20 - 0.90)	0.025

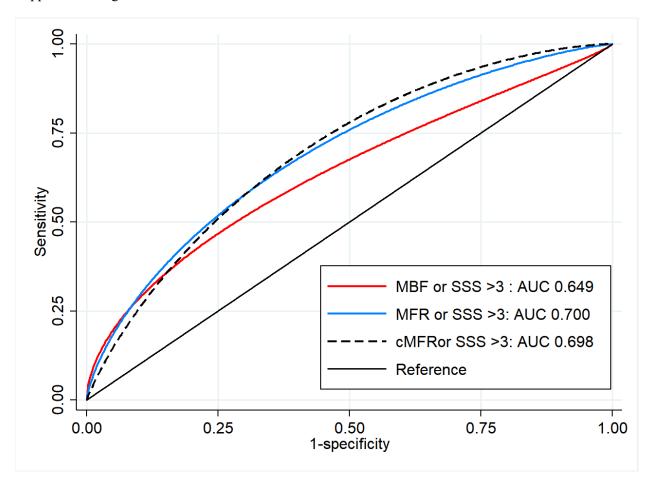
1 Table 3. Univariable and multivariable association with all-cause mortality

Table 3: Univariable and multivariable analysis of associations with all-cause mortality. *Multivariable
analysis performed separately with corrected and uncorrected myocardial flow reserve (MFR). ACR;
acute cellular rejection, AMR; antibody mediated rejection, CMV; cytomegalovirus, HR; hazard ratio,
LVEF; left ventricular ejection fraction, MBF; myocardial blood flow, MFR; myocardial flow reserve.

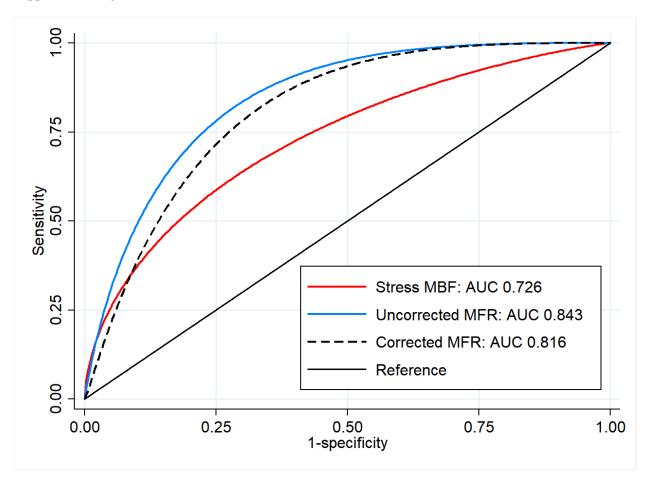
	Patients	Diagnosis of CAV grade 2/3		Annualized All-Cause Mortality Rate	
	Abnormal n(%)				
Cut-off		Sensitivity	Specificity	Abnormal	Normal
MFR < 2.0	34(34.3)	71.4%	71.8%	17.7%	4.7%
MFR <1.75	27(27.3)	57.1%	77.7%	19.6%	5.2%
Stress MBF <3.7	79(79.8)	92.9%	22.4%	9.0%	6.7%
Stress MBF <1.7	10(10.1)	42.9%	95.3%	35.8%	7.0%
SSS > 1	32 (32.2)	64.3%	72.9%	12.3%	7.0%
SSS > 3	15 (15.2)	64.3%	92.9%	18.7%	7.1%
$LVEF \le 45$	10(10.1)	42.9%	95.3%	25.0%	7.2%
MBF < 1.7 and $SSS > 1$ or	8(8.1)	42.9%	97.7%	60.7%	6.8%
$LVEF \le 45$					
SSS \geq 4, LVEF \leq 45 or	36(36.4)	71.4%	69.4%	15.4%	5.0%
MFR <1.75					
LVEF \leq 45% and	5(5.1)	35.7%	100.0%	51.6%	7.4%
MFR<1.75*					


1 Table 4: Diagnostic and Prognostic Accuracy of Established Cut-offs

2


Table 4: Diagnostic and Prognostic Values of Previously Reported Thresholds. Uncorrected MFR was
used because it was numerically superior in all models. CAV; cardiac allograft vasculopathy, LVEF; left
ventricular ejection fraction, MACE; major adverse cardiac event, MBF; myocardial blood flow, MFR;
myocardial flow reserve, SSS; summed stress score. *The same patients would be identified using

7 MBF<1.7 and LVEF<45%.


Supplemental Figure 1

Supplemental Figure 2

Supplemental Figure 3

Variable	Unadjusted HR	P-value	Adjusted HR	P-value
	(95% CI)		(95% CI)	
Age	1.07 (1.01 – 1.14)	0.030	1.13 (1.05 – 1.22)	0.001
Male	1.42 (0.40 - 4.98)	0.586	-	-
Body mass index	0.94 (0.85 - 1.05)	0.287	-	-
LVEF	0.93 (0.90 - 0.97)	< 0.001	0.95 (0.90 - 1.01)	0.079
Cardiac risk factors			1	
Hypertension	0.60 (0.19 - 1.86)	0.374	-	-
Diabetes	2.20 (0.80 - 6.05)	0.129	-	-
Dyslipidemia	0.81 (0.28 -2.33)	0.694	-	-
Renal failure	2.11 (0.60 - 7.42)	0.243	-	-
CMV viremia	0.85 (0.19 - 3.73)	0.826	-	-
ACR	1.99 (0.64 - 6.18)	0.233	-	-
AMR	2.32 (0.95 - 5.70)	0.066	-	-
PET parameters			11	
Summed rest score	1.16 (0.99 – 1.36)	0.059	-	-
Summed stress score	1.11 (1.05 – 1.18)	< 0.001	0.57 (0.42 - 0.79)	0.001
Summed difference score	1.22 (1.11 – 1.34)	< 0.001	2.26 (1.48 – 3.44)	< 0.001
Rest MBF	2.33 (0.88 - 6.19)	0.090	-	-
Stress MBF	0.37 (0.20 - 0.69)	0.002	1.08 (0.49 – 2.37)	0.848
Uncorrected MFR*	0.17 (0.08 - 0.36)	< 0.001	0.05 (0.01 - 0.30)	0.001
Corrected MFR*	0.25 (0.12 - 0.52)	< 0.001	0.22 (0.06 - 0.79)	0.020

Supplemental Table 1. Univariable and multivariable association with cardiovascular mortality

Supplemental Table 1: Univariable and multivariable analysis of associations with cardiovascular mortality. *Multivariable analysis performed separately with corrected and uncorrected myocardial flow reserve (MFR). ACR; acute cellular rejection, AMR; antibody mediated rejection, CMV; cytomegalovirus, HR; hazard ratio, LVEF; left ventricular ejection fraction, MBF; myocardial blood flow, MFR; myocardial flow reserve.