A novel 18F-labeled PSMA ligand for PET/CT imaging of prostate cancer patients: First-in-man observational study and clinical experience with 18F-JK-PSMA-7 during the first year of application

Brief title: 18F-JK-PSMA-7 in prostate cancer patients

Felix Dietlein1,2, Melanie Hohberg1, Carsten Kobe1, Boris D. Zlatopolskiy3, Philipp Krapf1, Heike Endepols1,3, Philipp Täger1, Jochen Hammes1, Axel Heidenreich5, Bernd Neumaier3,4*, Alexander Drzezga1* and Markus Dietlein1* §

1 Department of Nuclear Medicine, University Hospital of Cologne, Germany
2 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
3 Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital of Cologne, Germany
4 Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Germany
5 Department of Urology, University Hospital of Cologne, Germany

* B.N. and A.D. and M.D. contributed equally to this work.

§ Corresponding author: Markus Dietlein, Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany. Email: markus.dietlein@uk-koeln.de, Tel.: +49 221 478 5024, Fax: +49 221 478 89085

Running title: 18F-JK-PSMA-7 for PET/CT

Manuscript category: Original research article

Keywords: prostate cancer, PET imaging, PSMA tracer, 18F-JK-PSMA-7

Word count: abstract: 276; main text: 5,061
ABSTRACT

In preclinical trials, the recently developed tracer 18F-JK-PSMA-7 (2-MeO-18F-DCFPyL) has been demonstrated to show favorable properties regarding clinical performance and radiochemical accessibility. The aim of this study was to evaluate the clinical utility of 18F-JK-PSMA-7 for PET/CT imaging of patients with prostate cancer.

Methods: In an Institutional Review Board-approved pilot study, initial clinical utility of PET/CT imaging with 18F-JK-PSMA-7 was directly compared to 68Ga-PSMA-11 PET/CT in a group of 10 patients with prostate cancer. The two PSMA-tracers were administered in each patient less than 3 weeks apart. Next, we analyzed the data of 75 consecutive patients who had undergone clinical 18F-JK-PSMA-7 PET/CT imaging for tumor localization of biochemical recurrence (BCR).

Results: The pilot study in 10 patients who were examined with both PSMA-tracers demonstrated that 18F-JK-PSMA-7 was at least equivalent to 68Ga-PSMA-11. Using 18F-JK-PSMA-7, all unequivocally 68Ga-PSMA-11 positive lesions could be also detected by PET/CT and in 4 patients additional suspicious PSMA-positive lesions were identified (one patient changed from PSMA-negative to PSMA-positive). In patients with BCR (after prostatectomy or radiotherapy), the capacity of 18F-JK-PSMA-7 PET/CT to detect any PSMA-positive lesions was 84.8%. The PSA-stratified detection rate of 18F-JK-PSMA-7 after prostatectomy varied between 54.5% (6/11 patients; PSA < 0.5µg/l), 87.5% (14/16 patients; PSA 0.5-2 µg/l) and 90.9% (20/22 patients; PSA > 2µg/l).

Conclusion: The tracer 18F-JK-PSMA-7 was found to be safe and clinically useful. We demonstrated that 18F-JK-PSMA-7 was not inferior, when directly compared with 68Ga-PSMA-11 in a pilot study but indeed identified additional PSMA-avid suspicious lesions in oligo-metastasized patients with BCR. In a subsequent analysis of a clinical cohort of BCR patients, 18F-JK-PSMA-7 was useful in tumor localization. 18F-JK-PSMA-7 is recommended for future prospective trials.
INTRODUCTION

When a patient experiences a new increase of PSA levels after surgery or radiation therapy of prostate cancer, commonly referred to as a biochemical recurrence (BCR), sensitive imaging modalities are needed to decide on metastasis-directed therapy (MTD) options (1,2). Over the past years, radio-labeled PSMA specific PET tracers have been increasingly used to localize prostate cancer (3-9). The rationale behind these tracers is the fact that tumor cells display an ~8-12-fold increased expression of folate hydrolase 1, better known as prostate-specific membrane antigen (PSMA) on their surface, compared with noncancerous prostate tissue (10-11). An additional advantage of PSMA specific PET tracers is that they are not negatively effected by therapies targeting the signaling of the androgen receptor in castration-resistant prostate cancer (12).

Most PET tracers currently established for cancer detection are labeled with 18F, due to their ideal decay properties regarding half-life, availability at a cyclotron, and its high image resolution, due to its low β+-emission energy (13,14). However, regarding PSMA-ligands, 68Ga-labeled compounds were the first widely used in clinical studies (15). Advantages are that no access to a cyclotron is required and that 68Ga-labeled tracers can be easily obtained without complex radiosynthetic chemistry, since the 68Ga label can be introduced by simple complex formation with an appropriate chelator (16). In 2011, Chen and colleagues reported on the 18F-labeled PSMA specific tracer 18F-DCFPyL, by using a multistep synthesis protocol, which involved the radiofluorination of a prosthetic group (17). Clinical studies revealed that 18F-DCFPyL displayed at least non-inferior sensitivity in detecting relapsed tumors in prostate cancer patients, compared with 68Ga-PSMA-11 (6,7,18,19). In some patients, these tracers even exhibited increased sensitivity, possibly due to the increased resolution of the 18F-label for small anatomic structures such as small iliac lymph nodes.

When 18F-labeled PSMA ligands were introduced into the clinical setting, the synthesis of 18F-labeled PSMA was far more difficult than the preparation of their 68Ga-labeled counterparts in routine clinical practice (17,20). Indeed, if the synthesis reaction of 18F-DCFPyL is not performed under optimal conditions, an unstable isomer is formed, which leads to rapid defluorination of the 18F-labeld PSMA specific product (21,22).

Recently, our group introduced the novel PSMA specific derivative 2-MeO-18F-DCFPyL (18F-JK-PSMA-7), a new compound for PSMA specific PET imaging. This compound had been selected from a group of several candidates due to its favorable imaging properties (23). The abbreviation JK (J = Jülich; K = Köln) refers to the Forschungszentrum Jülich and the University Hospital of Cologne which were involved in the development of this novel tracer. In addition, we recently reported on a “minimalist” approach for the synthesis of 18F-JK-PSMA-7. This enabled to implement a robust and high yielding synthesis process with minor variations in release specifications ideally suited for high-throughput productions in a clinical setting. (23).

Here, we present the first application of 18F-JK-PSMA-7 in a pilot study, demonstrating its non-inferiority as compared to the benchmark tracer 68Ga-PSMA-11. Furthermore, we report the results of the first routine clinical application of this tracer in a cohort of 75 prostate cancer patients with biochemical recurrence (BCR).
MATERIALS AND METHODS

Study design and patient selection criteria

In brief, our study followed a two-step approach. In the first step, we offered 10 patients, who had undergone 68Ga-PSMA-11 imaging, an additional 18F-JK-PSMA-7 PET/CT scan. Nine of these 10 patients had recently experienced a biochemical recurrence (BCR) of their disease, and one patient with known oligometastatic status showed a raised PSA-level. The 68Ga-PSMA-11 scans were interpreted as negative or inconclusive in 5 patients, only one solitary PSMA-lesion has been detected in the other 5 patients. To improve the certainty of the assumed tumor localization or to exclude any additional PSMA-positive metastases, we performed a second PET/CT scan with 18F-JK-PSMA-7 within 3 weeks of the first 68Ga-PSMA-11 scan. The rationale for this was our previous experience indicating potentially superior detection rate of 18F-labeled PSMA specific PET-tracers (7,18). We did not observe any adverse side-effects in any of those 10 patients during the entire examination procedure (up to 3 hours after injection of 18F-JK-PSMA-7). Furthermore, in telephone counseling on therapeutic options some weeks later, none of the patients reported any new side-effects.

In the second step, we used the novel 18F-JK-PSMA-7 tracer to examine a cohort of 75 prostate cancer patients with BCR, who were referred to our institute for PET/CT imaging between March 2017 and December 2017 with the following history:

- 49 patients presented with BCR after surgery; 47 of these patients revealed a PSA level of ≥ 0.2 µg/l after nadir.
- 26 patients presented with BCR after radiotherapy (external beam radiation therapy, brachytherapy, seed implantation); 17 of these patients revealed a PSA level of ≥ 2 µg/l above the PSA nadir; 9 patients had an increase of the PSA level of < 2 µg/l and did not fulfill the Phoenix criteria defining the BCR, but nevertheless were referred to restaging due to continuously rising PSA values without any signs of intraprostatic inflammation.

The institutional review board approved this retrospective study and all subjects signed a written informed consent. All procedures were performed in compliance with the regulations of the responsible local authorities (District Administration of Cologne, Germany).

Imaging

Patients fasted for approximately 4 hours before the PET/CT to allow administration of contrast agent when neither CT scans nor MRI scans had been performed previously and to exclude any interference with the novel 18F-JK-PSMA-7. Data on 18F-DCFPyL had previously shown that fasting did not influence PSMA accumulation in metastases (24), but we had no data on the influence of fasting on 18F-JK-PSMA-7 uptake. In our pilot study a mean dosage of 141 ± 30 MBq 68Ga-PSMA-11 and a mean dosage of 358 ± 15 MBq 18F-JK-PSMA-7 were injected. Following previously published protocols, 68Ga-PSMA-11 PET scans were acquired one hour after injection (3-5). In patients with PSA below 2.0µg/L, a second scan of the pelvis and the lower abdomen was carried out 3 hours after injection, to guarantee maximal sensitivity of the 68Ga-PSMA-11 tracer (25-28). In parallel to previous studies using 18F-DCFPyL (6,7), 18F-JK-PSMA-7 PET scans were acquired two hours after
tracer injection. In the pilot study, we additionally generated a series of PET-data between 10 and 230 minutes after injection in 9 of our 10 patients, to define the scans with the best visualization of the PSMA-positive tissue (29). All images were acquired on a Biograph mCT 128 Flow PET/CT scanner (Siemens Healthineers, Erlangen, Germany). The same filters and acquisition times (15 minutes from the top of the skull to mid-thigh) were used for 68Ga-PSMA-11 one hour after the injection and for 18F-JK-PSMA-7. The second 68Ga-PSMA-11 PET scan had a flow motion bed speed of 0.7 mm/sec instead of 1.5 mm/sec to compensate for the decay of 68Ga-PSMA-11. Non-contrast-enhanced (low-dose) CT scans were conducted in parallel to PET imaging. Images were reconstructed using an ultra-high definition algorithm (13).

All PET scans were analyzed by a team of at least two specialists in nuclear medicine and one radiologist. A scan was scored as positive, if focal tracer accumulation was detected in the prostate fossa, in a lymph node or at a distant site. A focal tracer accumulation was interpreted as suspicious lymph node if it showed a morphological correlate on the corresponding CT scan consistent with a regional lymph node, even when the diameter was < 8 mm. The PET/CT reading was performed according to the published criteria for harmonization of the PSMA-PET/CT interpretation (30,31).

Tracer preparation

All tracer were produced in accordance with applicable good manufacturing practice (GMP) using a two-step synthesis protocol. Additionally extensive quality control measures, including radiochemical purity, endotoxin testing, pH-value, and the determination of residual content of solvents like acetonitrile, acetone, tertiary butanol, and tetra-ethyl-ammonium-hydrogen-carbonate [TEAHC] were carried out.

In brief, 18F-JK-PSMA-7 was prepared using a two-step reaction: In a first step, the radiolabeled active ester was produced by the nucleophile reaction of 18F with 2-methoxy-N,N,N-trimethyl-5-((2,3,5,6-tetrafluoro-phenoxy) carbonyl) pyridine-2-aminium-trifluoromethanesulphonate (TFP-OMe-OFT) to generate the ester 2,3,5,6-tetrafluorophenyl-6-([18F]fluoro)-4-methoxy-nicotinate ([18F]FPy-OMe-TFP). In the second step, 4.6 ± 0.1 mg ((S)-5-amino-1-carboxypentyl)-carbamoyl)-L-glutamic-acid (LYS-GLU) was added to [18F]FPy-OMe-TFP and subsequently incubated at 45°C for 6 minutes. Then, the final product 18F-JK-PSMA-7 was purified by SPE (OASIS HLB) and formulated in saline. This reaction provided 18F-JK-PSMA-7 in high radiochemical yield up to 40% and a high radiochemical purity (> 95%). The specific concentration of F-PSMA-7 was ≤ 10 µg/ml. The upper limit of the injected volume was 10 ml; the activity of 18F-JK-PSMA-7 was ≥ 30 MBq/ml. Each week, we produced two batches of 18F-JK-PSMA-7. The detailed procedure for the radiosynthesis using the “minimalist light” protocol is described elsewhere (23). The activity produced and the radiochemical purity were analyzed for the 74 consecutive batches of 18F-JK-PSMA-7 synthesized within the first year of clinical application.

Synthesis of 68Ga-PSMA-11 was performed as described previously (32,33).
RESULTS

Robustness and reliability of 18F-JK-PSMA-7 production

We analyzed the quality of 74 consecutive synthesis batches of 18F-JK-PSMA-7 over the course of 12 months. We found a high radiochemical activity per synthesis (mean activity: $6,660 \text{ MBq} \pm 2,869 \text{ MBq}$; interquartile range 2,712 MBq) and a high radiochemical purity (mean purity: $98.6\% \pm 1.6\%$; interquartile range 2.4%). In the course of this study, only 2 out of 74 syntheses (2.7%) failed to reach a radiochemical purity of more than 95%.

Direct comparison between the biodistribution patterns of 18F-JK-PSMA-7 and 68Ga-PSMA-11

We next assessed the validity of the novel tracer 18F-JK-PSMA-7. For this purpose, we offered 10 patients who had just undergone PET/CT imaging with 68Ga-PSMA-11 an additional PET/CT scan with 18F-JK-PSMA-7. We performed the second PET/CT scan within less than 3 weeks and found that all unequivocally 68Ga-PSMA-11-positive lesions could be validated using 18F-JK-PSMA-7. Moreover, 4 patients displayed at least one additional suspicious PSMA-positive lesion on the 18F-JK-PSMA-7 scan, which had been missed by 68Ga-PSMA-11 (Figs. 1-4). Intriguingly, in 3 of these 4 patients the additional PSMA-positive lesions were located in loco-regional lymph nodes (iliac lymph nodes: patients no. 2 and no. 4; retroperitoneal lymph nodes: patient no. 7). In one patient (patient no. 1), a PSMA-positive bone lesion was revealed by 18F-JK-PSMA-7, which was known from the 18F-DCFPyL PET/CT scan 2 years before.

The follow-up data of the 10 patients are summarized in table 1. First, we report the details of the 4 patients with the different PET-findings. In one of these patients (patient no. 4) the first PET/CT scan with 68Ga-PSMA-11 PET/CT was interpreted as completely negative. The PSMA-positive left iliac lymph node, which was detected by 18F-JK-PSMA-7, was a plausible explanation for the BCR in patient no. 4 with a PSA-level of 1.1 ng/ml and was finally confirmed by the tumor growth visible in an externally performed 68Ga-PSMA-11 PET/CT 8 months later. The salvage lymphadenectomy initially undertaken could not verify the PET finding. The PSMA-positive lymph nodes found additionally by the 18F-JK-PSMA-7 scan in two other patients (patient no. 2 and patient no. 7) were localized in the same lymph node area, in which the 68Ga-PSMA-11 PET/CT had already depicted one PSMA-positive lymph node. Both patients received radiotherapy of the PSMA-positive lymph node area and the PSA-level dropped after the irradiation.

Second, we observed concordant findings using both PSMA-tracers in 6 patients: concordantly positive in 2 patients (patients no. 5 and no. 11) and concordantly negative in 4 patients (patients no. 3, no. 7, no. 9 and no. 10). Both PSMA-positive patients showed PSMA-positive tissue within the prostate fossa and received salvage radiotherapy. One out of the 4 PSMA-negative patients was subjected to salvage radiotherapy of the prostate fossa.

Benchmarking the detection rate of 18F-JK-PSMA-7 across 75 prostate cancer patients with BCR
Closing the pilot study, we examined 162 prostate cancer patients with 18F-JK-PSMA-7 (349±53 MBq) within a year of the clinical application of 18F-JK-PSMA-7. Focusing on the localization of BCR as the main indication for PET/CT, we studied the detection rate of 18F-JK-PSMA-7 (347±56 MBq) in 75 patients, aged 69.2±8.1 years, with increasing PSA levels after initial curative treatment, for which it was unclear whether they carried PSMA-positive lesions or not (Table 2). These patients did not receive androgen deprivation therapy. We analyzed the detection rate separately for patients after prostatectomy ± salvage radiotherapy versus patients after radiotherapy alone.

Overall, 49 patients in our study cohort had recently experienced a biochemical recurrence (BCR) after prostatectomy ± salvage radiotherapy. In 40 of these prostatectomy patients, we detected 18F-JK-PSMA-7-positive lesions, resulting in a detection rate of 81.6%. The PSA-stratified detection rate of 18F-JK-PSMA-7 varied between 54.5% (6/11 patients; PSA < 0.5µg/l), 87.5% (14/16 patients; PSA 0.5-2 µg/l) and 90.9% (20/22 patients; PSA > 2µg/l).

Our cohort contained a further group of 26 patients, who presented with a PSA increase after radiotherapy. The detection rate of the 18F-JK-PSMA-7 tracer was 94.1% (16/17) in patients with a BCR according to the Phoenix criteria (PSA levels ≥ 2.0µg/l above the nadir). Some patients were referred to PSMA PET/CT when the PSA increase was repeatedly confirmed but lay below 2.0µg/l and the Phoenix criteria defining the BCR had not yet been reached. In this constellation, the 18F-JK-PSMA-7 PET scan detected PSMA-positive tissue in 33.3% of patients (3/9).

Tumor relapse patterns substantially differed between BCR patients after surgery and radiotherapy. While 19 of the 49 prostatectomy patients (38.8%) displayed PSMA-positivity exclusively in lymph nodes, this pattern was rarely observed in the patients with a PSA increase after radiotherapy (3/26, 11.5%). Several of the radiotherapy patients, however, displayed PSMA-positive tissue exclusively within the prostate (8/26, 30.8%).

Verification

After the introduction of 18F-JK-PSMA-7 into our clinical care procedures, the collection of data on verification became part of our quality assurance program. After an interval of 6 – 18 months we read all the written reports, which were sent to our institute. Additionally, we checked all our electronic patient files.

The PSMA-positive lesions in the 59 patients, who underwent PET/CT for BCR, were confirmed by histology in 6 patients, by follow-up in 17 patients and by morphological imaging in 20 patients. Further information was missing in 16 patients. The histological verification resulted from salvage-lymphadenectomies with PSMA-positive lymph node metastases. The verification by follow-up was based on a decrease in PSA level after radiotherapy (n=9) or the progression of the PSMA-positive lesion after watchful waiting (n=7) or the regression of the PSMA-positive lesion after starting ADT (n=1). One of these patients with progressive PSMA-positive nodal disease on a second PET had shown a positive 18F-JK-PSMA-7 PET/CT, but then negative histology (0/14 lymph nodes) after S-LAD. We therefore did not interpret this 18F-JK-PSMA-7 PET/CT as false-positive. The
verification by morphological imaging summarized patients in whom the CT demonstrated an osteosclerotic or osteolytic lesion (n=11) or a suspicious lymph node ≥ 8 mm within the pelvis (n=7) or a suspicious pulmonary lesion (n=1) or those in whom the MRI had revealed a suspicious lesion within the prostate (n=1).

DISCUSSION

Over the past 4 years, we have successfully introduced ¹⁸F-DCFPyL and later ¹⁸F-JK-PSMA-7 into our routine PET/CT imaging procedure for prostate cancer patients (7,18,34). Zlatopolskiy and co-workers had described the synthesis of ¹⁸F-JK-PSMA-7 and we found that production of ¹⁸F-JK-PSMA-7 could be produced with a consistently high radiochemical yield and purity (23). The robust synthesis of ¹⁸F-JK-PSMA-7 substantially reduced the need to reschedule appointments at short notice in our institute. Furthermore, recent preclinical data have highlighted favorable properties of ¹⁸F-JK-PSMA-7 in comparison with other ¹⁸F-labeled PSMA tracers, e.g. highest edge contrast, resolution, and signal-to-noise-ratio (23).

Here we present the first clinical study with ¹⁸F-JK-PSMA-7 across 10+75 patients. As a first step, we show that distribution patterns of ¹⁸F-JK-PSMA-7 and ⁶⁸Ga-PSMA-11 are highly concordant in patients consecutively examined with the two tracers. Interestingly, ¹⁸F-JK-PSMA-7 increased the detection rate of suspicious lesions in small anatomic structures, such as iliac or retroperitoneal lymph nodes. These lesions might have remained masked by the limited resolution of the ⁶⁸Ga-emitting tracers, but had a substantial impact on subsequent therapy in some of these patients. This finding corroborates our earlier observations on ¹⁸F-DCFPyL (7,18). In contrast to our previous studies, however, we were able to observe this improved sensitivity pattern of ¹⁸F-JK-PSMA-7, although the acquisition protocol of ⁶⁸Ga-PSMA-11 had been amended by a second PET scan, 3 hours after injection for patients with PSA levels below 2.0 µg/l (25-28). This finding suggests that the ability of ¹⁸F-PSMA specific ligands to visualize small anatomic structures reflects an intrinsic quality of the ¹⁸F-label and does not result from differences in image acquisition protocols. It remains an intrinsic advantage of the ¹⁸F-labeled PSMA ligands that batches with high ¹⁸F-activity were produced and that on each application, the ¹⁸F-activity injected was higher than the corresponding amount of ⁶⁸Ga-activity.

As a second step, we measured and compared the detection rate of ¹⁸F-JK-PSMA-7 across a cohort of 75 patients with BCR and confirmed that ¹⁸F-JK-PSMA-7 tracer sensitivity and metastatic pattern also depended largely on the PSA level and type of previous therapy (surgery vs. radiotherapy). The PSA-stratified detection rates, which we found for ¹⁸F-JK-PSMA-7 in this study, were highly concordant with results reported for ⁶⁸Ga-PSMA-11 by independent institutes with very high expertise in this field (4). These observations suggest that the potential sensitivity of the new ¹⁸F-JK-PSMA-7 tracer is at least not inferior to previous PSMA tracers. Further, when combining the detection rate of ¹⁸F-JK-PSMA-7 across all BCR patients and excluding the patient subgroup with a PSA increase below the Phoenix criteria, we obtained a pooled localization rate of 84.8% (56/66 patients). It should be noted that at the same institute and with the same PET-scanner, but in another cohort with the same patient characteristics, we had observed a pooled localization rate of
79.1% (102/129 patients) for 68Ga-PSMA-11 and of 74.2% (46/62 patients) for 18F-DCFPyL in 2015 (18). Indeed, as shown by Mannweiler et al. in immunohistochemical analyses (35), lack of PSMA expression intrinsically limits the sensitivity of PSMA tracers to ~84%, so that 18F-JK-PSMA-7 exploits the full sensitivity potential of PSMA tracers.

Dosimetric data on 18F-JK-PSMA-7 were based on animal studies (23) and then on a cohort of 10 patients (29). 18F-JK-PSMA-7 showed fast excretion via the blood and the kidneys in humans, similar to that seen with 18F-DCFPyL. The blood protein binding of 18F-JK-PSMA-7 was significantly lower compared to 18F-PSMA-1007 and 68Ga-PSMA-11 in animal studies (23). The PSMA-positive metastases in patients showed an increase in SUV_{max} and SUV_{peak} up to 3 hours after the injection of 18F-JK-PSMA-7 (29).

Limitations: Our head-to-head comparison between 68Ga-PSMA-11 and 18F-JK-PSMA-7 was not designed as a prospective trial. The 18F-JK-PSMA-7 PET scans were clinically indicated due to an equivocal or negative interpretation of the first PET scan with 68Ga-PSMA-11 or due to an oligometastatic status before radiotherapy. It might be possible that the diagnostic accuracy of 68Ga-PSMA-11 PET/CT is underestimated in the initial cohort of 10 patients. Our working group did not set out to conduct the first-in-man observational study based on animal studies (23) with testing of 18F-JK-PSMA-7 on healthy volunteers. It is a general advantage of all 18F-labeled PSMA ligands that the injected activities are usually higher than the injected activities of the 68Ga-labeled PSMA ligands. In our pilot study we injected an activity of approximately 2 MBq 68Ga-PSMA-11 per kg body weight, which complies with the recommended range of 68Ga-PSMA (1.8-2.2 MBq per kg body weight) in the international guidelines (36), but higher activities of 68Ga-PSMA-11 will have a positive impact on lesion detectability (37).

CONCLUSION

We have shown that 18F-JK-PSMA-7 is safe and displays non-inferior sensitivity in prostate cancer patients, compared to 68Ga-PSMA-11. Further, in parallel to previous studies with 18F-DCFPyL, we observed even improved sensitivity of 18F-JK-PSMA-7, a modified version of 18F-DCFPyL, compared to 68Ga-PSMA-11 in a few selected patients with PSMA-positive lesions in small lymph nodes. Additionally the simplicity of 18F-JK-PSMA-7 production implying high radiochemical yields and a robustness propose this PSMA specific agent for routine clinical diagnostics.

DISCLOSURE

B.N., P.K., BD.Z., and A.D. have applied for a patent on 18F-JK-PSMA-7. No other potential conflicts of interest relevant to this article exist.
KEY POINTS:

QUESTIONS: Is 18F-JK-PSMA-7, a modified version of 18F-DCFPyL (2-MeO-18F-DCFPyL), helpful for PET/CT imaging of patients with prostate cancer?

PERTINENT FINDINGS: 18F-JK-PSMA-7 was directly compared to 68Ga-PSMA-11 PET/CT in a pilot study including 10 patients and additional suspicious PSMA-positive lesions were identified in 4 patients. During the first year of application 18F-JK-PSMA-7 PET/CT detected any PSMA-positive lesions in 84.8% of the patients with biochemical recurrence.

IMPLICATIONS FOR PATIENT CARE: We observed an improved detection rate of 18F-JK-PSMA-7 compared to 68Ga-PSMA-11 in a few selected patients with PSMA-positive lesions in small lymph nodes.
REFERENCES

FIGURE 1. (A) 68Ga-PSMA-11 PET/CT on the left and (B) 18F-JK-PSMA-7 PET/CT on the right of patient no. 1. Beside the concordant PSMA-positive tissue within the irradiated prostate (not shown) the patient had previously proven bone metastases, showing positive in the sternum on the 18F-JK-PSMA-7 scan (blue arrow on B), but faintly positive on the 68Ga-PSMA-11 scan (white arrow on A).
FIGURE 2. (A,C,E) 68Ga-PSMA-11 PET/CT on the left and (B,D,F) 18F-JK-PSMA-7 PET/CT on the right of patient no. 2. Besides the concordant PSMA-positive lymph node on the left near the bifurcation (white arrows on A and B), 18F-JK-PSMA-7 in this patient revealed a small PSMA-positive left iliac caudal lymph node dorsal to the ureter (blue arrows on D and F).
FIGURE 3. (A,C) 68Ga-PSMA-11 PET/CT on the left and (B,D) 18F-JK-PSMA-7 PET/CT on the right of patient no. 4. The PSMA-positive left iliac lymph node was visible on 18F-JK-PSMA-7 PET/CT (blue arrows on B and D).
FIGURE 4. (A) 68Ga-PSMA-11 PET/CT on the left, and (B) 18F-JK-PSMA-7 PET/CT on the right of patient no. 7. The 68Ga-PSMA-11 PET/CT revealed only one PSMA-positive retroperitoneal para-aortal lymph node (blue arrow on A), whereas the 18F-JK-PSMA-7 PET/CT showed 2 PSMA-positive retroperitoneal lymph nodes (blue arrows on B) on the MIP scan (MIP, maximal intensity projection).
<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age (y)</th>
<th>PSA (ng/ml)</th>
<th>Indication</th>
<th>Gleason score</th>
<th>Ga dosage (MBq)</th>
<th>Local PSMA +</th>
<th>Nodal PSMA +</th>
<th>Distant PSMA +</th>
<th>Therapeutic consequence</th>
<th>Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76</td>
<td>1.48 with ADT</td>
<td>Taking Bicalutamid.</td>
<td>6</td>
<td>160</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Salvage-RT. Bicalutamid as before without GnRH analogs.</td>
<td>PSA-decrease to 0.23 ng/ml. M osseous confirmed by previous PET/CT.</td>
</tr>
<tr>
<td>2</td>
<td>67</td>
<td>0.7</td>
<td>BCR after prostatectomy 4+3</td>
<td>6</td>
<td>172</td>
<td>0</td>
<td>1 left iliac</td>
<td>0</td>
<td>RT of the upper left iliac LN</td>
<td>PSA decrease to 0.5 ng/ml 4 months after RT without ADT. After 10 months PSA 0.6 ng/ml.</td>
</tr>
<tr>
<td>3</td>
<td>66</td>
<td>1.03</td>
<td>BCR after prostatectomy and radiotherapy 3+4</td>
<td>6</td>
<td>168</td>
<td>0</td>
<td>(1) retroperitoneal</td>
<td>0</td>
<td>Wait and see. **Ga PSMA PET/CT interpreted as unspecific. No indication for LAD or RT</td>
<td>PSA 1.06 ng/ml after 6 months</td>
</tr>
<tr>
<td>4</td>
<td>74</td>
<td>1.1</td>
<td>BCR after prostatectomy 3+4</td>
<td>6</td>
<td>134</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>LAD. After progression (PSA, PET/CT) RT of LN area</td>
<td>LN not confirmed by histology (0/4). PSA increase to 2.6 ng/ml after 8 months, progression proven by external **Ga-PSMA-11 PET/CT (2 PSMA-positive LN left iliac)</td>
</tr>
<tr>
<td>5</td>
<td>63</td>
<td>4.7</td>
<td>BCR after prostatectomy 4+3</td>
<td>6</td>
<td>157</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Salvage-RT of the prostate field</td>
<td>PSA decrease to 0.57 ng/ml</td>
</tr>
<tr>
<td>7</td>
<td>52</td>
<td>14.9</td>
<td>BCR after prostatectomy and radiotherapy 3+3</td>
<td>6</td>
<td>152</td>
<td>0</td>
<td>(2) mediastinal</td>
<td>0</td>
<td>**Ga PSMA PET/CT interpreted as unspecific. No indication for RT of mediastinum</td>
<td>PSMA-negative osteosclerotic bone metastases, detected 9 months later by **Ga-PSMA-11 PET/CT</td>
</tr>
<tr>
<td>8</td>
<td>73</td>
<td>0.8</td>
<td>BCR after prostatectomy 4+3</td>
<td>6</td>
<td>129</td>
<td>0</td>
<td>1 retroperitoneal</td>
<td>0</td>
<td>Further PSA increase to 1.13 ng/ml. Then RT of retroperitoneal LN area.</td>
<td>PSA decrease to 0.42 ng/ml 4 months after RT without ADT. **F-PSMA PET/CT (346 MBq) follow-up confirmed at least 2 retroperitoneal PSMA-positive LN.</td>
</tr>
<tr>
<td>9</td>
<td>74</td>
<td>1.017</td>
<td>BCR after prostatectomy 3+4</td>
<td>6</td>
<td>153</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Without any therapy PSA 0.7 ng/ml after 6 months and 1,2 ng/ml after 8 months</td>
<td>n.a.</td>
</tr>
<tr>
<td>10</td>
<td>59</td>
<td>0.51</td>
<td>BCR after prostatectomy 4+3</td>
<td>6</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>RT of prostate fossa with regard to R1 and negative PSMA PET scans.</td>
<td>PSA decrease to 0.4 ng/ml after 8 months without ADT</td>
</tr>
<tr>
<td>11</td>
<td>69</td>
<td>0.46</td>
<td>BCR after prostatectomy 4+3</td>
<td>6</td>
<td>76</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>RT of prostate fossa (standard field)</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1. Patient characteristics and localization of the pathological PSMA uptake detected by 68Ga-PSMA-11 PET/CT and 18F-JK-PSMA-7 PET/CT in the initial cohort of 10 patients. Patient No. 6 did not receive 68Ga-PSMA-11 PET/CT and was not included in our direct comparison. ADT, androgen deprivation therapy; BCR, biochemical recurrence; GnRH, gonadotropin releasing hormone; LAD, lymphadenectomy; LN, lymph node; n.a., not available; PSMA, prostate-specific membrane antigen; S-LAD, salvage lymphadenectomy; S-RT, salvage radiotherapy; RT, radiotherapy; 68Ga-PSMA, 68Ga-PSMA-11 PET/CT; 18F-PSMA, 18F-JK-PSMA-7 PET/CT.
TABLE 2

Results of 18F-JK-PSMA-7 PET/CT in 75 patients with BCR, specified by the initial therapy, and the PSA level. The BCR was defined by a PSA level of $\geq 0.2 \, \text{µg/l}$ after prostatectomy or by an increase in PSA level of $\geq 2.0 \, \text{µg/l}$ above nadir after radiotherapy. Some patients were sent to 18F-JK-PSMA-7 PET/CT before these criteria were fulfilled and were separately reported. Abbreviations: BCR, biochemical recurrence; oligo, oligo-metastasized (here: ≤ 3 PSMA-positive lymph nodes); PE, prostatectomy; PSMA, prostate specific membrane antigen; RT radiotherapy; T+, PSMA-positive tissue within the prostate fossa; N+, PSMA-positive lymph node; M+, PSMA-positive lesion in the bone, lung or liver.

<table>
<thead>
<tr>
<th>Indication for 18F-JK-PSMA-7 PET/CT</th>
<th>PSMA neg.</th>
<th>PSMA pos.</th>
<th>T+</th>
<th>N+</th>
<th>M+</th>
<th>T+N+</th>
<th>T+M+</th>
<th>N+M+</th>
<th>T+N+M+</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCR or PSA increase after PE ± RT (all)</td>
<td>9</td>
<td>40</td>
<td>10</td>
<td>19</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PSA < 0.2 µg/l</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 (oligo 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR, PSA 0.2 – 0.49 µg/l</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 (oligo 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR, PSA 0.5 – 1.99 µg/l</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 (oligo 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR, PSA \geq 2.0 µg/l</td>
<td>2</td>
<td>20</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 (oligo 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR or PSA increase after RT (all)</td>
<td>7</td>
<td>19</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 (oligo 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR, ∆ PSA < 2.0 µg/l</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 (oligo 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR, ∆ PSA \geq 2.0 µg/l</td>
<td>1</td>
<td>16</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 (oligo 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2: Results of 18F-JK-PSMA-7 PET/CT in 75 patients with BCR, specified by the initial therapy, and the PSA level. The BCR was defined by a PSA level of $\geq 0.2 \, \text{µg/l}$ after prostatectomy or by an increase in PSA level of $\geq 2.0 \, \text{µg/l}$ above nadir after radiotherapy. Some patients were sent to 18F-JK-PSMA-7 PET/CT before these criteria were fulfilled and were separately reported. Abbreviations: BCR, biochemical recurrence; oligo, oligo-metastasized (here: ≤ 3 PSMA-positive lymph nodes); PE, prostatectomy; PSMA, prostate specific membrane antigen; RT radiotherapy; T+, PSMA-positive tissue within the prostate fossa; N+, PSMA-positive lymph node; M+, PSMA-positive lesion in the bone, lung or liver.