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ABSTRACT 

Accurate quantification of positron emission tomography (PET) uptake depends on 

accurate attenuation correction in reconstruction. Current magnetic resonance-based 

attenuation correction methods (MRAC) for body PET imaging use a fat/water map 

derived from a two-echo Dixon magnetic resonance imaging (MRI) sequence, where 

bone is neglected. Ultrashort echo-time and zero echo-time (ZTE) pulse sequences can 

capture bone information. We propose the use of patient-specific multi-parametric MRI 

consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize 

pseudoCT images with the use of a deep learning model: we name this method Zero 

echo-time and Dixon Deep pseudoCT (ZeDD-CT). Methods: Twenty-six patients were 

scanned using an integrated 3 Tesla time-of-flight PET/MRI system. Helical x-ray 

computed tomography (CT) images of the patients were acquired separately. A deep 

convolutional neural network was trained to transform ZTE and Dixon MRI into synthetic 

CT images (ZeDD-CT). Ten patients were used for model training and sixteen patients 

were used for evaluation. Bone and soft tissue lesions were identified and the SUVmax 

was measured. The root-mean-squared-error (RMSE) was used to compare the MRAC 

methods with the ground-truth CTAC. Results: A total of 30 bone lesions and 60 soft 

tissue lesions were evaluated. For bone lesions, there was a factor of 4 reduction of 

RMSE in PET quantification (RMSE were 10.24% for Dixon PET, and 2.68% for ZeDD 

PET); for soft tissue lesions, there was a factor of 1.5 reduction of RMSE (RMSE were 

6.24% for Dixon PET, and 4.07% for ZeDD PET). Conclusion: The ZeDD-CT produces 

natural-looking and quantitatively accurate pseudoCT images and reduces error in pelvis 

PET/MRI attenuation correction compared to standard methods. 
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INTRODUCTION 

 Reproducible quantification of radiotracer update is central to treatment response, 

and is typically reported as the standardized uptake values (SUV) (1,2).  Accurate 

quantification of uptake depends on accurate attenuation correction, which is a major 

challenge faced in PET/MRI systems. Uptake quantification is especially important when 

comparing across different PET/CT and PET/MRI systems, between different vendor 

systems, or even the same systems with different sets of reconstruction parameters. In 

PET/CT, 511 keV photon attenuation coefficients can be readily estimated from CT 

Hounsfield units (HU) using a bilinear model (3); however, in PET/MRI, MRI measures 

nuclear spin properties and lacks photon attenuation information. Thus, it is difficult to 

infer attenuation information from the MR image intensities, often resulting in inaccurate 

attenuation correction and associated errors in the PET uptake estimates. 

 Current commercially available MRAC methods for body PET imaging use a 

fat/water map derived from a two-echo Dixon MRI sequence, where bone is misclassified 

as soft-tissue (4). Conventional MR imaging approaches do not detect any signal from 

bone due to its very short T2* relaxation time ( ଶܶ ൎ  Bone attenuation .((7–5) ݏ0.4݉

estimation, however, is important particularly in pelvis PET/MRI due to the significant 

amount of bone, which has the largest photon attenuation among all tissue types. 

Misclassifying bone in the attenuation coefficient map leads to a large underestimation of 

PET uptake in and around bone (8–11).  

 Atlas-based methods are commonly used for MRAC in the brain and include bone 

by registering to an atlas generated from transmission (12,13) or CT scans (14–16). 

These methods have been enhanced with the addition of a local pattern-recognition 



algorithm (15) or a dedicated pulse sequence (17,18). The challenge of atlas-based 

methods is that, by relying on an atlas, they do not completely account for patient-specific 

variations in bone structure and density. 

 To capture patient-specific bone information for MRAC, methods based on 

ultrashort echo-time (19–23) and zero echo-time (11,24–26) pulse sequences have been 

proposed. Transverse relaxation rate (R2*) maps have been measured using ultrashort 

echo-time to estimate continuous-valued attenuation coefficients for bone, however these 

methods can fail in regions with large magnetic susceptibility differences, such as the 

sinuses, that may be misclassified as bone. ZTE MRI has also demonstrated excellent 

bone depiction; an inversely proportional relationship between soft-tissue normalized 

proton-density-weighted ZTE and CT HU values has been found for the head (24–26) 

and the pelvis (11). However, soft-tissues and bone have different corresponding 

conversion maps so segmentation was necessary to determine the appropriate values to 

assign in each region. 

 Deep learning is a machine learning technique that has been demonstrated to be 

well suited for processing low-level noisy data such as natural images (27), and can 

classify and segment medical images (28). Deep learning has also been used for image 

transformation tasks (29) and the MRAC problem can be posed as transforming MR 

images to synthetic CT images, which has been demonstrated using T1- or T2-weighted 

images (30,31). 

 Machine learning using artificial neural networks has been used to generate 

attenuation coefficient maps (32). The work used a 3-layer artificial neural network with 

154 total parameters and a 6-voxel-neighborhood input. In contrast, deep learning using 



deep convolutional neural networks have several layers (typically more than 10) and 

millions of parameters. With many more layers in deep learning, the input can effectively 

cover the whole image. 

In this paper, we introduce a method using patient-specific multi-parametric MRI 

consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize 

pseudoCT images with a deep learning model. Dixon MRI provides patient-specific 

continuous-valued attenuation coefficients in soft-tissues (4) while ZTE MRI provides the 

same in bone (11,24–26), and deep learning allows a direct and fully-automated 

conversion of MR images to synthetic CT images (30,31). We use this so-called Zero 

echo-time and Dixon Deep pseudoCT (“ZeDD-CT”) for PET image reconstruction and 

evaluate the impact on radiotracer uptake estimation. 

 

MATERIALS AND METHODS 

An overview of the methodology is shown in Figure 1. A deep convolutional neural 

network was trained with Dixon and ZTE MRI to produce the ZeDD-CT. A Dixon 

pseudoCT (4) was generated as well. The different pseudoCTs were compared with 

ground-truth CT and the pseudoCT/CT images were converted to attenuation coefficient 

maps with a bilinear model (3). The different maps were then used for PET image 

reconstruction and data analysis was performed. 

 

Deep Learning 

     Deep Convolutional Neural Network. The deep convolutional neural network was 

based on the U-net architecture (33), composed of 13 layers in total. A graphical 



schematic of the model is shown in Figure 2. The model utilized convolutions (Conv), 

fractionally-strided convolutions (34)  (Frac Conv), layer normalization (35) (Layer Norm), 

and rectified linear unit (ReLU) activation functions. The TensorFlow 

(http://www.tensorflow.org) software package was used to implement and train the neural 

network. 

 Inputs to the model were volume patches of the following dimensions: size 32 

pixels  32 pixels  16 pixels  3 channels at the Dixon MR image resolution. Each 

channel was a volume patch of the bias-corrected and soft-tissue normalized proton-

density ZTE image, Dixon fractional fat image, and Dixon fractional water image, 

respectively, at the same spatial location. The ZTE images were resampled with linear 

interpolation to have the same spatial resolution as the Dixon images. The output was the 

corresponding ZeDD-CT image with size 32 pixels  32 pixels  16 pixels  1 channel. 

The network structure leads to an effective input receptive field of at least 19 pixels × 19 

pixels × 19 pixels (6858-neighborhood). 

 

     Model Training. Model training was performed with an L1-loss, gradient difference loss 

(GDL), and Laplacian difference loss (LDL) as follows: 

 

௧௢௧௔௟ܮ ൌ ଵܮ ൅ ஽௅ீܮ ൅  ௅஽௅ܮ

ଵܮ ൌ |࢟ െ ෝ࢟| 

஽௅ீܮ ൌ |Δ୶࢟ െ Δ୶ෝ࢟|ଶ ൅ หΔ୷࢟ െ Δ୷ෝ࢟ห
ଶ
൅ |Δ୸࢟ െ Δ୸ෝ࢟|ଶ 

௅஽௅ܮ ൌ ࢟׏| െ  ෝ࢟|ଶ׏

 



where ࢟ is the ground-truth CT image patch and ෝ࢟ is the output ZeDD-CT image patch. 

The gradient difference loss and Laplacian difference loss enforce image sharpness. The 

Adam optimizer (36) (learning rate = 0.001 halved every 2000 iterations, ߚଵ ൌ 0.9, ଶߚ ൌ

0.999, ߳ ൌ 1 ൈ 10ି଼	) was used to train the neural network. An L2 regularization (ߣ ൌ 1 ൈ

10ିହሻ on the weights of the network was used. He initialization (37) was used to initialize 

the weights. A mini-batch of 64 volumetric patches was used for training on one GTX 

Titan X Pascal (NVIDIA Corporation, Santa Clara, CA, USA) graphics processing unit. 

There are 6 million parameters that are determined with the training process. 

 Random crops were extracted from the MR and CT images: to select whether a 

patch would be used for training, the mean HU value of the corresponding ground-truth 

CT patch was measured. The probability of the patch being used for training was based 

on a sigmoidal probability distribution: 

 

Pୟୡୡୣ୮୲	୮ୟ୲ୡ୦ ൌ sigmoidሺ
௠௘௔௡ܷܪ

100
൅ 700ሻ 

 

This was done to reduce the number of patches containing all air. Model training takes 

approximately 6 hours to reach stability, which occurred at approximately 46,000 

iterations at which point the training is stopped. 

 

     ZeDD-CT generation. Sequential overlapping 32 pixels  32 pixels  16 pixels patches 

at intervals of 8 pixels  8 pixels  4 pixels were extracted from the MR images and were 

input to the model. The overlapping patches of the model output were merged by taking 



their mean at each voxel location. The ZeDD-CT generation took approximately 3 minutes 

with a single GTX Titan X Pascal graphics processing unit. 

 

 

Patient studies 

The study was approved by the local Institutional Review Board and all patients 

signed a written informed consent form.  

Patients with pelvic lesions were scanned using an integrated 3 Tesla time-of-flight 

PET/MRI system (38) (SIGNA PET/MR, GE Healthcare, Waukesha, WI, USA). The 

patient population consisted of 26 patients (Age = 58.1 ± 14.2 years old, 15 males, 11 

females):  ten (10) patients were used for model training and sixteen (16) patients were 

used for evaluation. The patient demographics, disease diagnoses, and PET radiotracers 

of the evaluation dataset are summarized in Supplemental Table 1. 

By extracting overlapping patches as described above from the images of the 10 

training datasets, roughly 600,000 training examples were used train the neural network.  

 

     PET/MRI Acquisition. The PET images were acquired with two radiotracers: 18F-

fluorodeoxyglucose and 68Ga-PSMA-11. PET had 600 mm transaxial field-of-view (FOV) 

and 25 cm axial FOV, with time-of-flight timing resolution of approximately 400 psec. The 

imaging protocol included a six bed-position whole-body PET/MRI as well as a dedicated 

pelvic PET/MRI acquisition. The PET data were acquired for 15 min during the dedicated 

pelvis acquisition, during which time clinical MRI sequences as well as the following 

MRAC sequences were acquired: Dixon (FOV = 500500312 mm, resolution = 



1.951.95 mm, slice thickness = 5.2 mm, slice spacing = 2.6 mm, scan time = 18 s) and 

ZTE MR (cubical FOV = 340340340 mm, isotropic resolution = 222 mm, 1.36ms 

readout duration, FA = 0.6°, 4 µs hard RF pulse, scan time = 123 s). The Dixon MRI, ZTE 

MRI, and PET image reconstruction (FOV = 600 mm, 2 iterations, 28 subsets, matrix size 

= 192192, 89 slices of 2.78 mm thickness) parameters used were the same as in our 

previous work (11). Only data from the dedicated pelvic PET/MRI acquisition were used 

for this study. 

 

     CT Imaging. Helical CT images of the patients were acquired separately on different 

machines (GE Discovery STE, GE Discovery ST, Siemens Biograph 16, Siemens 

Biograph 6, Philips Gemini TF ToF 16, Philips Gemini TF ToF 64, Siemens SOMATOM 

Definition AS) and were co-registered to the MR images using the method outlined below. 

Multiple CT protocols were used with variable parameter settings (110-130 kVp, 30-494 

mA, rotation time = 0.5 s, pitch = 0.6-1.375, 11.5-55 mm/rotation, axial FOV = 500-700 

mm, slice thickness = 3-5 mm, matrix size = 512×512). Pre-processing consisted of filling 

in bowel air with soft-tissue HU values and copying arms from the Dixon-derived 

pseudoCT due to the differences in bowel air distribution and the CT scan being acquired 

with arms up, respectively; more details can be found in section 2.B.2 of our previous 

work (11). 

 

     Image pre-processing and registration. The same methodology in our previous work 

(11) was used for MRI and CT image pre-processing and co-registration and data 

preparation for PET image reconstruction. MRI and CT image pairs were co-registered 



using the ANTS (39) registration package using the SyN diffeomorphic deformation model 

with combined mutual information and cross-correlation metrics. 

 

     Data Analysis. Standard image error analysis and lesion-based analysis was 

performed as in our previous work (11): the average (µ) and standard deviation (σ) of the 

error and RMSE were computed over voxels that met a minimum signal amplitude and/or 

signal-to-noise criteria.  Global HU and PET SUV comparisons were only performed in 

voxels with amplitudes > -200 HU in the ground-truth CT to exclude air, and a similar 

threshold of > 0.08 cm-1 attenuation in the CTAC was used for comparison of AC maps. 

In addition to standard analysis, summary analysis was performed by co-registering each 

patient CT to a reference CT image (“atlas-space”) with ANTS using the SyN 

diffeomorphic non-rigid registration model with cross-correlation metric. The reference CT 

data was manually selected from the patient dataset that had a medium-sized body. This 

atlas-space transformation was applied for the pseudoCT/CT, AC maps, and PET 

reconstructions, and the respective difference images with ground-truth. Bone and soft 

tissue lesions were identified by a board-certified radiologist. Bone lesions are defined as 

lesions inside bone or with lesion boundaries within 10 mm of bone (9).  A Wilcoxon 

signed-rank test was used to compare the SUVmax biases compared to CTAC of individual 

lesions. 

 To directly compare with our previous work, the data analysis methodology 

described above was performed on a subset population that was additionally processed 

using the Hybrid ZTE/Dixon method (11). A Friedman test with a Tukey post-hoc test was 



used to perform multiple comparisons testing between the Dixon, Hybrid ZTE/Dixon, and 

ZeDD attenuation correction methods. 

 

RESULTS 

ZeDD-CT images 

 Sample ZeDD-CT images generated are shown in Figure 3. The bone depiction in 

the femur was comparable to ground-truth CT while there were difficulties in depicting the 

finer bone structure in the spine. The error across all patients was -36  130 HU and -12 

 78 HU for the Dixon pseudoCT and ZeDD-CT, respectively. The error for each patient 

is shown in Supplemental Figure 1. 

 

Attenuation coefficient map analysis 

 Difference images of the attenuation coefficient maps in the atlas-space are shown 

in Figure 4. There was significant bone underestimation in Dixon MRAC whereas the error 

was largely corrected in the ZeDD MRAC.  The RMSE across all patients was 5.71% (ߤ ൌ

െ2.21%, ߪ ൌ 5.27%) and 2.59% (ߤ ൌ െ0.69%, ߪ ൌ 2.50%) for the Dixon MRAC and ZeDD 

MRAC, respectively. The mean underestimation was reduced by a factor of 3 when using 

the ZeDD MRAC. Additionally, the standard deviation was reduced by a factor of 2. The 

error for each patient is shown in Supplemental Figure 2. 

 

PET image analysis 

 Difference images of the reconstructed PET images in the atlas-space are shown 

in Supplemental Figure 3. The trend was similar with the AC maps: the Dixon PET 



underestimated the uptake within and around bony regions and this error was largely 

corrected in the ZeDD PET. Additionally, uptake within soft tissue regions were slightly 

underestimated as well. Across all patients, the RMSE was 6.10% (ߤ ൌ െ3.40%, ߪ ൌ

5.07%) and 2.85% (ߤ ൌ െ1.11%, ߪ ൌ 2.62%) for the Dixon PET and ZeDD PET, 

respectively. The underestimation bias was reduced by a factor of 3 and the standard 

deviation was reduced by a factor of 2 when using the ZeDD MRAC. The error for each 

patient is shown in Supplemental Figure 4. 

 

Lesion analysis 

 Lesion analysis data are summarized in Figure 5. There were 30 bone lesions and 

60 soft tissue lesions across the 16 patient datasets. For bone lesions, there was a factor 

of 4 reduction of RMSE in PET quantification (RMSE are 10.24% [ߤ ൌ െ9.45%, ߪ ൌ

3.95%] for Dixon PET, and 2.68% [ߤ ൌ െ1.41%, ߪ ൌ 2.28%] for ZeDD PET; pୠ୭୬ୣ ൏

0.0001); for soft tissue lesions, there was a factor of 1.5 reduction of RMSE (RMSE are 

ߤ] 6.24% ൌ െ4.74%, ߪ ൌ 4.06%] for Dixon PET, and 4.07% [ߤ ൌ െ2.39%, ߪ ൌ 3.29%] for 

ZeDD PET; pୱ୭୤୲	୲୧ୱୱ୳ୣ ൏ 0.0001). We show the spatial distribution of lesion errors in 

Supplemental Figure 5.  

 

Hybrid ZTE/Dixon Comparison 

 Comparisons across a subset of 6 patients between Dixon, Hybrid ZTE/Dixon and 

ZeDD is summarized in Supplemental Figure 6. The whole-volume RMSE in attenuation 

coefficient maps are 6.05% (ߤ ൌ െ2.79%, ߪ ൌ 5.37%ሻ, 6.43% (ߤ ൌ െ1.29%, ߪ ൌ 6.30%ሻ 

and 2.18% (ߤ ൌ െ0.56%, ߪ ൌ 2.11%ሻ, for Dixon, Hybrid ZTE/Dixon, and ZeDD, 



respectively. The whole-volume RMSE in PET images are 6.73% (ߤ ൌ െ4.15%, ߪ ൌ

5.30%ሻ, 5.78% (ߤ ൌ െ2.12%, ߪ ൌ 5.38%ሻ and 2.34% (ߤ ൌ െ0.77%, ߪ ൌ 2.21%ሻ, for Dixon, 

Hybrid ZTE/Dixon, and ZeDD, respectively. The bone lesions (N=17) RMSE are 11.27% 

ߤ) ൌ െ10.78%, ߪ ൌ 3.30%ሻ, 2.85% (ߤ ൌ െ2.52%, ߪ ൌ 1.33%ሻ and 1.59% (ߤ ൌ

െ0.88%, ߪ ൌ 1.33%ሻ, for Dixon, Hybrid ZTE/Dixon, and ZeDD, respectively; and the soft 

tissue lesions (N=20) RMSE are 6.67% (ߤ ൌ െ5.88%, ߪ ൌ 3.16%ሻ, 2.82% (ߤ ൌ

െ2.12%, ߪ ൌ 1.86%ሻ and 3.41% (ߤ ൌ െ2.29, ߪ ൌ 2.53%ሻ, for Dixon, Hybrid ZTE/Dixon, 

and ZeDD, respectively. For bone lesions, Hybrid ZTE/Dixon and ZeDD are significantly 

different from Dixon (p<0.001, p<0.001, respectively) and no significant different was 

found between Hybrid ZTE/Dixon and ZeDD (p=0.27); for soft tissue lesions, the Hybrid 

ZTE/Dixon and ZeDD are significantly different from Dixon (p<0.001, p<0.001, 

respectively) and no significant difference was found between Hybrid ZTE/Dixon and 

ZeDD (p=0.9863). 

 

DISCUSSION 

 This paper presents a deep convolutional neural network to generate pseudoCT 

images using combined ZTE and Dixon MRI, named Zero echo-time and Dixon Deep 

pseudoCT (“ZeDD-CT”) for attenuation correction in PET/MRI and analyzes its 

performance in pelvic lesions. This is the first work to evaluate the performance of a 

pseudoCT generated from deep learning in the context of pelvis PET/MRI attenuation 

correction. This is also the first to use patient-specific multi-parametric MRI with deep 

learning to generate synthetic CT images. The ZeDD method demonstrated improved 

quantitative uptake for pelvic lesions over the Dixon-based method. 



Accurate quantification of PET uptake will likely be important for precision 

medicine, as it provides more reliable comparisons across scanners, correlation of 

imaging parameters, and accurate monitoring of treatment response. Although in some 

cases the attenuation correction error maybe systematic and reproducible for the same 

patient, a patient may be scanned on different machines within their clinical lifetime. 

Accurate and precise uptake estimation is also important when developing models that 

correlate PET parameters with quantitative MR parameters such as from diffusion-

weighted imaging. The ZeDD-CT not only improves the PET uptake estimation accuracy, 

but the precision as well: the standard deviation of PET error in the pelvis was reduced 

by a factor of 2. 

In previous work investigating pelvic osseous lesions, SUV underestimation 

ranged from 9% to 15% when bone was misclassified (8–11), which is in line with the 

results in this study with Dixon MRAC (underestimation of 9.45  3.95%). Using a model-

based approach to incorporate bone attenuation in the body decreased the SUV error in 

bone lesions to -2.9  5.8% (17), and our prior work using ZTE-based MRAC with 

segmentation and regression models had small bone lesion errors of -3.2  0.85% (11). 

In the current study, we show bone lesion errors of -1.41  2.28% using the ZeDD-CT. 

 The major improvement in using deep learning is clinical feasibility. We found no 

significant difference between quantifications based on our previous method (Hybrid 

ZTE/Dixon-AC) and ZeDD. However, Hybrid ZTE/Dixon relied on a very time-consuming 

segmentation process that takes 4–6 hours for an experienced user. Other existing 

methods were automated, but required some human-prescribed parameters (20–

22,25,26). The deep learning approach is fully-automated and fully-data-driven: MR 



images are directly converted to pseudoCT images in a single model. While model 

training takes several hours, it is only performed once. Once the model is trained, 

pseudoCT images can be generated in a few minutes immediately after MRI acquisition 

is completed, making the current method clinically feasible.  

 Since the PET/MRI and CT acquisitions were done on separate days, there may 

be errors due to imperfect deformable image registration as well as mismatch of bowel 

air distributions. The bowel air distributions mismatch makes the comparison for soft-

tissue lesions difficult since bowel air is filled in with soft-tissue HU values derived from 

the Dixon pseudoCT; this may be the reason why the performance of the ZeDD-CT is not 

as remarkable with soft tissue lesions as with bone lesions. 

 In a few cases, there were small artifacts where bowel air or skin folds were 

assigned bone HU values (e.g. Figure 3D), a limitation of the patch-based method: the 

patch’s location inside the body can only be inferred from the structures within the patch. 

However, these artifacts only occurred in 5 of 16 test patients and correspond to a small 

fraction of the voxels in the PET imaging volume. 

 Another limitation is that our model was trained on limited patient demographics: 

mostly elderly patients being scanned at our institution. Thus, the model we have 

generated may not be applicable to a pediatric population, who have different bone 

densities than older patients. 

 There are arbitrarily many combinations of the elements to produce a deep 

learning model and new techniques and elements for designing deep learning models are 

being produced constantly: the deep learning field is the most fast-paced in recent history; 

the paper by Alex Krizhevsky (40) published in 2012 is considered a “classic” paper in the 



field and has over 12,000 citations at the time of this writing. We proposed one of many 

possible models and demonstrated that utilizing deep learning may lead to fast, fully-

automated, and clinically feasible methods for MRAC. 

 

CONCLUSION 

 We have developed and evaluated the use of a deep convolutional neural network 

with multi-parametric MRI that produces natural-looking and quantitatively accurate 

pseudoCT images. The ZeDD-CT been tested in the context of pelvis PET/MRI 

attenuation correction, and error is reduced compared to standard methods. 
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Figure 1. Overview of the methodology.  



Figure 2. Deep learning architecture based on U-net (33). Each operation in the network 

is specified in the legend. 

 

 



Figure 3. Qualitative comparison of ZeDD-CT with ground-truth CT for several patients. 

Corresponding MR images are shown in (A). The dark orange arrows with black outline 

point to a region of bowel air that is captured in the ZeDD-CT. The differences in bowel 

air distributions between the pseudoCT and ground-truth CT are due to the scans being 

taken at different times. Bone depiction quality is inspected more closely in (B) and (C). 

The yellow dashed box indicates the zoomed in regions. Small artifacts where bowel air 

(orange arrow) and skin folds (yellow arrow) were assigned bone HU values are shown 

in (D). 

 



Figure 4. Quantitative comparison of Dixon MRAC and ZeDD MRAC with CTAC in atlas-

space. The average CTAC in atlas-space (A) is provided for reference. The average 

difference maps of the Dixon MRAC and ZeDD MRAC with CTAC are shown in (B). The 

joint histograms in log-scale (C) show correlation of the attenuation coefficients across 

the whole volume from all patients. The Dixon MRAC is limited to values between 0.08 

cm-1 and 0.1 cm-1 because only soft-tissue is considered in this approach.  

 



Figure 5. Lesion-based analysis. Maximum standardized uptake values (SUVmax) were 

measured in bone lesions and soft tissue lesions (black arrows), with example PET 

overlays on the ZeDD-CT in (A). The scatter plots (B) and box plots (C) demonstrate the 

improved accuracy of the deep learning-based MRAC method with ground-truth CTAC 

compared to Dixon-based MRAC. 

 



Supplemental data for “Direct PseudoCT Generation for Pelvis 

PET/MRI Attenuation Correction using Deep Convolutional Neural 

Networks with Multi-parametric MRI: Zero Echo-time and Dixon 

Deep pseudoCT (ZeDD-CT)” 

 

Supplemental Figure 1. PseudoCT mean error for each patient. For each patient, the 

Dixon pseudoCT is consistently underestimating the Hounsfield units value. The 

underestimation is reduced in the ZeDD-CT images. The error bars indicate the standard 

deviation of Hounsfield units. The ZeDD-CT has lower standard deviation than the Dixon 

pseudoCT. 

 



Supplemental Figure 2. Attenuation correction map whole-volume error for each patient. 

For each patient, the Dixon MRAC is consistently underestimating the Hounsfield units 

value. The underestimation is reduced in the ZeDD MRAC. The error bars indicate the 

standard deviation of Hounsfield units. The ZeDD MRAC has lower standard deviation 

than the Dixon MRAC. 

 

 

 

 



Supplemental Figure 3. Average CTAC PET images from all patients registered to atlas-

space (A) and average difference images (B) and joint histograms (C) of Dixon PET and 

ZeDD PET with CTAC PET. The joint histograms in log-scale (C) show correlation of PET 

SUV across the whole volume from all patients.  

 



Supplemental Figure 4. PET whole-volume error for each patient. The Dixon PET is 

consistently underestimating the Hounsfield units value. The underestimation is reduced 

in the ZeDD PET images. The error bars indicate the standard deviation of Hounsfield 

units. The ZeDD PET has lower standard deviation than the Dixon PET. 

 



Supplemental Figure 5. Maximum error projections of the lesion error maps for each 

lesion projected onto the coronal plane are shown. A transparent CT image is overlaid 

for anatomic reference. The mean bias (µ), standard deviation (σ), and root-mean-

squared-error (RMSE) of the uptake in the voxels of each lesion compared to ground-

truth are shown below each image. Throughout the whole volume, as with the whole-

volume error maps, the lesion uptake was underestimated in the Dixon-based PET. 

 

  



Supplemental Figure 6. Comparative analysis with Hybrid ZTE/Dixon on lesion SUVmax. 

In the subset population of 6 patients, 17 bone lesions and 20 soft tissue lesions were 

identified. ZeDD produces similar results with Hybrid ZTE/Dixon; both methods 

demonstrate improvement in SUVmax uptake estimation over Dixon and is statistically 

significant. 

 

  



Supplementary Table 1. Patient demographics, disease diagnoses, and PET 

radiotracers of the test set. 

Patient # Age Gender Disease Radiotracer 

1 56 Male Lung cancer with bone metastases 18F-FDG 

2 59 Female Colon cancer 18F-FDG 

3 60 Male Colon cancer 18F-FDG 

4 56 Male Rectal cancer 18F-FDG 

5 58 Male Rectal cancer 18F-FDG 

6 58 Female Rectal cancer 18F-FDG 

7 54 Female Rectal cancer 18F-FDG 

8 69 Male Prostate cancer 68Ga-PSMA-11 

9 70 Male Prostate cancer 68Ga-PSMA-11 

10 60 Female Cervical cancer 18F-FDG 

11 83 Male Prostate cancer 68Ga-PSMA-11 

12 62 Male Prostate cancer 68Ga-PSMA-11 

13 51 Female Ovarian cancer 18F-FDG 

14 62 Male Rectal Cancer 18F-FDG 

15 78 Male Prostate cancer 68Ga-PSMA-11 

16 53 Male Prostate cancer 68Ga-PSMA-11 
 


