Recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal in 124I-PET/CT based dosimetry for 131I therapy of metastatic differentiated thyroid cancer

Donika Plyku1, Robert F Hobbs2,1, Kevin Huang1, Frank Atkins3, Carlos Garcia3, George Sgouros1,2, Douglas Van Nostrand3

1 Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA

2 Department of Radiation Oncology, Johns Hopkins University, School of Medicine, Baltimore MD, USA

3 Medstar Health Research Institute and Division of Nuclear Medicine, MedStar Washington Hospital Center, Washington, D.C., USA

Corresponding senior authors:
George Sgouros, PhD
Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, CRB II 4M.61, 1550 Orleans St. Baltimore MD 21287
Email: gsgouros@jhmi.edu
Phone: 410-614-0116
Fax: 413-487-3753

Douglas Van Nostrand, MD, FACP, FACNM
Director, Nuclear Medicine Research
MedStar Health Research Institute and Washington Hospital Center
Professor of Medicine, Georgetown University School of Medicine
Suite GA60F
110 Irving Street, N.W.
Washington, D.C. 20010
Office: 202-877-0300
Office Fax: 202-877-6601
E-mail: douglas.van.nostrand@medstar.net

First author:
Donika Plyku, PhD
Russel H. Morgan Department of Radiology and Radiological Science,
Johns Hopkins University,
School of Medicine,
CRB II 4M.60,
1550 Orleans St.
Baltimore MD 21287
Email: dplyku1@jhmi.edu
Phone: 410-502-8185
Fax: 413-487-3753

Word count: 7,098

Financial support: We would like to thank the support of donations from our grateful patients at MedStar Washington Hospital Center. This work was also supported by NIH NCI grant R01 CA116477.

Running title: rhTSH and THW in 131I therapy
ABSTRACT

Purpose: Patients with metastatic differentiated thyroid cancer (DTC) may be prepared using either thyroid stimulating hormone withdrawal (THW) or recombinant human thyroid-stimulating hormone (rhTSH) injections prior to 131I administration for treatment. The objective of this study was to compare the absorbed dose (D) to the critical organs and tumors determined by 124I-Positron Emission Tomography/Computed Tomography (PET/CT) based dosimetry for 131I therapy of metastatic DTC when the same patient was prepared with and imaged after both THW and rhTSH injections.

Methods: Four DTC patients at MedStar Washington Hospital Center were first prepared using the rhTSH method and imaged by 124I-PET/CT at 2, 24, 48, 72 and 96 hrs post-administration of approximately 30-63 MBq 124I. After 5-8 weeks, the same patients were prepared using the THW method and imaged as before. The 124I-PET/CT images acquired as part of a prospective study were used to perform retrospective dosimetric calculations for 131I therapy for the normal organs using the dosimetry package 3D-RD. The Ds from 131I for lungs, liver, heart, kidneys and bone marrow were obtained for each study (rhTSH and THW). A total of 22 lesions in three patients were identified. The contours were drawn on each PET image of each study. Time-integrated activity coefficients were calculated and used as input in OLINDA/EXM sphere dose calculator to obtain the absorbed dose to tumors.

Results: The THW-to-rhTSH organ absorbed dose ratio averaged over five organs for the first three patients was 1.5, 2.5 and 0.64, respectively, and averaged over three organs for the fourth patient was 1.1. The absorbed dose per unit administered activity to the bone marrow was 0.13, 0.086, 0.33 and 0.068 mGy/MBq following rhTSH, and 0.11, 0.14, 0.22 and 0.080 mGy/MBq following THW for each patient, respectively. With the exception of three lesions of one patient,
the D per unit administered activity of 131I was higher in the THW study compared to the rhTSH study. The ratio of the average tumor D after stimulation by THW compared to stimulation by rhTSH injections was 3.9, 27 and 1.4, for Pt1, Pt2 and Pt3, respectively. The ratio of mean tumor to bone marrow absorbed dose per unit administered activity of 131I, after THW and rhTSH was: 232 and 62 (Pt1); 12 and 0.78 (Pt2); 22 and 11 (Pt3), respectively.

Conclusion: The results suggest a high patient variability in the overall absorbed dose to the normal organs per MBq of 131I administered, between the two TSH stimulation methods. The tumor to dose-limiting-organ (bone marrow) absorbed dose ratio, i.e. the therapeutic index was higher in the THW-aided compared to rhTSH-aided administrations. Additional comparison for tumor and normal organ absorbed dose in patients prepared using both methods is needed before definitive conclusions may be drawn regarding rhTSH versus THW patient preparation methods for 131I therapy of metastatic DTC.

Keywords: dosimetry, imaging, differentiated thyroid cancer, radionuclide therapy, radiopharmaceuticals
INTRODUCTION

Iodine-131 sodium iodine (\(^{131}\text{I}-\text{NaI}\)) is used for the treatment of distant metastases of DTC. To enhance uptake of \(^{131}\text{I}\) by the metastatic thyroid tissue, patients are prepared for therapy by either thyroid hormone withdrawal or injection of recombinant human thyroid-stimulating hormone (rhTSH). Although rhTSH injections have been approved by the Food and Drug Administration for the preparation of patients for diagnostic radioiodine scans as well as for \(^{131}\text{I}\) remnant ablation of thyroid tissue (Thyrogen® Prescribed Information), the use of rhTSH injection is not approved by the Food and Drug Administration or the European Medicines Agency for preparation of patients for \(^{131}\text{I}\) treatment of distant metastases of DTC. For the absorbed dose to tumors comparing preparation with THW and rhTSH injections only a few reports have been published (\(^{1-4}\)), and further study is warranted. For the absorbed dose to non-tumor tissues, more reports have been published. These publications typically evaluated whole body and/or bone marrow dosimetry using \(^{131}\text{I}\) or \(^{123}\text{I}\), used dosimetry calculation methods that were not specifically developed for radiopharmaceutical therapy, which are not as quantitative as \(^{124}\text{I}\)-PET/CT based methods and were not necessarily performed in patients with metastatic disease, and/or did not compare THW versus rhTSH injections in the same patient (\(^{3-8}\)). The objective of this study was three-fold: to calculate the absorbed dose to bone marrow and multiple other critical organs (e.g. lung, liver, heart, and kidneys) by using \(^{124}\text{I}\)-PET/CT and dosimetry software that specifically accounts for patient anatomy and activity distribution (e.g. 3D-RD) in patients with metastatic DTC, to calculate the absorbed dose to tumors and the tumor to dose-limiting organ absorbed dose ratio for both studies (rhTSH and THW), and to compare the absorbed doses to those critical organs and tumors after preparation with THW versus rhTSH with the patient being his/her own control.
MATERIALS AND METHODS

Four male patients at MedStar Washington Hospital Center, diagnosed with metastatic DTC, referred for 131I dosimetry are included in this study. The study was approved by the MedStar Institutional Review Board and all patients signed a written informed consent. Each patient was placed on a low iodine diet for 14 days prior to beginning dosimetry and continuing until the day after completion of the first 124I scan. Patients were prepared with intramuscular injections of 0.9 mg of rhTSH on two consecutive days. At approximately 24 hours after the second rhTSH injection 30-63 MBq (0.8-1.7 mCi) 124I was administered orally. PET/CT imaging was performed at 2, 24, 48, 72 and 96 hrs after 124I administration. Patients were imaged on a Philips Gemini (time-of-flight) PET/CT camera. The whole-body scans were acquired using 16 bed positions. The field of view for each bed position was 18 cm in length. Depending upon the acquisition time post-administration, imaging duration was 2- or 4 min/bed position.

Approximately 5-8 weeks later the same patient was prepared using THW. The patient discontinued his/her thyroxine and began Cytomel™ (liothyronine sodium, Pfizer), 25 µg twice to three times a day for 21 days. Cytomel™ (Pfizer) was discontinued starting 14 days prior to the second oral 124I administration through the diagnostic imaging period and until the day after 131I therapy. The patient was also placed on a low iodine diet 14 days prior to beginning the second round of imaging for dosimetry; the low-iodine diet was continued until the day after 131I therapy. Serial 124I-PET/CT scans were again collected as described above.

Patients Demographics

The four patients are notated as: Pt1, Pt2, Pt3 and Pt4. Demographics and relevant clinical parameters are tabulated in Table 1. The 124I administered activity for each study and the administered activity prior to 131I therapy for each patient are given in Table 2.
Activity Quantification

The sensitivity of the Philips Gemini time-of-flight camera was measured by scanning an 124I standard of a known 124I activity and was determined to be 296 cps/MBq. The 124I sample was placed in a vial and the activity was measured using a dose calibrator. The vial was positioned at the center of the field of view of the PET/CT camera and imaged using a single bed scan.

Overview of Dose Calculation Approach

Normal tissue absorbed doses were obtained using the previously developed software package 3D-RD. Given the overall comparative nature of the study, many of the key features of 3D-RD, namely radiobiological modeling and voxelized dosimetry, were not utilized; nevertheless the use of personal anatomy of each patient justifies using such personalized software. Likewise the tumor absorbed dose calculations were performed using standard methods rather than a voxelized approach and radiobiological modeling.

Dosimetry Calculations for the Normal Organs

The activity for 124I was calculated for each organ volume of interest (VOI) and divided by the administered activity of 124I to obtain the % injected activity (%IA). This, divided by the organ volume in cm3 yields the % injected activity concentration (%IA/cm3) for each organ VOI. The time-integrated activity coefficient for 124I was obtained by dividing the time-integrated activity or area under the curve by the 124I injected activity values given in Table 2.

The 124I-PET/CT images were used as input to 3D-RD, the personalized dosimetry software package (9-12), to obtain absorbed dose to normal organs for 131I therapy. 3D-RD is a patient specific, three dimensional (3D)-image based dosimetry package that involves utilization of patient’s own anatomy and spatial distributions of radioactivity over time to perform absorbed dose calculations.
The PET activity data were corrected for the difference in physical decay between 124I and 131I according to equation 1:

$$A_{t^{131}}(t) = A_{t^{124}}(t) * e^{(t_{124} - t_{131})}$$

Eq. 1

where $A(t)$ represents activity at a measured time-point t post 124I-administration.

The 131I absorbed dose to the lungs, heart, liver, kidneys, and bone marrow was calculated using 3D-RD. The absorbed dose to salivary glands, also an organ of concern in 131I therapy, was not evaluated because the pharmacokinetics of radioiodine in the salivary glands are susceptible to a large number of physiologic processes (e.g. eating, chewing, visual stimuli, spontaneous salivation) such as the pharmacokinetics are minute by minute and cannot be reliably evaluated with the available time-activity data points of days (13). The standard 3D-RD workflow is a series of steps of image processing, Monte-Carlo simulation and data analysis and more detailed descriptions are given by Sgouros et al. (9), Prideaux et al. (10), and Hobbs et al. (14). Herein, we briefly outline each step of the 3D-RD calculation.

Image Registration and Volume of Interest Determination

First, all the serial PET/CT images for both THW and rhTSH injection studies were registered across time to the first time-point CT image of the study prepared with rhTSH injections, using a non-rigid or deformable registration algorithm with the imaging software Velocity®. For each patient, VOIs encompassing the heart, lungs, liver, kidneys and bone marrow were drawn manually using either HERMES® imaging software (HERMES Medical Solutions) or Velocity® (Varian Medical Systems Inc., Palo Alto, CA, USA), on the patients’ CT image. VOIs covering the thoracic and lumbar vertebrae (between T9-L4, depending on the patient) were drawn to estimate the absorbed dose to bone marrow. Figure 1 (a-e) show superimposed CT and PET images, and example organ VOIs. The metastases for patient Pt1 and Pt2 were located in the lungs.
To separate the dose to the lungs from the absorbed dose to tumors, the tumor volumes were excluded from the lungs’ VOIs. The heart wall could not be distinguished on CT and therefore the dose calculation represents dose averaged over heart-wall and contents. A streak artifact in the CT image of patient Pt4 affected the attenuation correction of the serial PET images for this patient, and specifically the bed position covering part of the liver and the kidneys. For this reason, these two organs were not included in the dose calculations for Pt4.

Image Processing and Monte-Carlo Simulation

The registered CT and PET images were used in 3D-RD to generate patient-specific anatomy and patient- and study-specific activity images. The attenuation image derived from CT was used to define the corresponding spatial tissue density (density map) and composition (materials map) distributions. Dose-rate images were obtained at each time-point by Monte-Carlo simulation with the energy spectrum of 131I emissions, obtained from the Medical Internal Radiation Dose radionuclide data and decay scheme database (15).

VOI Based Analysis

The energy deposition from Monte Carlo simulation was scored for each time-point in each VOI and divided by the mass of the VOI, obtained from CT, in order to calculate the dose rate. The dose-rate values for almost all normal organ VOIs exhibited a single-phase clearance over the measured time-points and were fit using a mono-exponential function. The one exception was for the Pt2 THW lung VOI, which study exhibited a period of uptake and was fit using a hybrid (trapezoidal-exponential) fit consisting of linear fits between the first two time-points and an exponential tail obtained by fitting to the final three time-points. The period of uptake observed in the lungs is consistent with the presence of diffuse lung metastases. The integration of the curve was calculated in each case to obtain the absorbed dose.
Bone Marrow Dosimetry

VOIs covering the thoracic and lumbar vertebrae (between T9-L4, depending on the patient) were manually drawn on the CT images for bone marrow dosimetry. The volumes of bone marrow VOIs were 120, 134, 94 and 53 ml for each patient, respectively. No corrections were made for partial volume effects. The bone marrow activity was obtained from the serial PET images and marrow dose calculations were performed by following the 3D-imaging based method described in Woliner-van der Weg et al. (16), with the exception that CT drawn VOIs instead of functional image based VOIs were used here. No further assumptions or corrections were made in the bone marrow dose calculations.

Dosimetry Calculations for Tumors

Detailed tumor dosimetry calculations were performed according to the Medical Internal Radiation Dose formalism given in Pamphlet 21 (17). A total of 22 tumors were identified: 9, 2 and 11 tumors in three patients. Initially, tumor contours were drawn on the CT image using the imaging software Hermes™ (Hermes Medical Solutions) with the guidance of a nuclear medicine physician. The volumes of the tumors were measured from the drawn anatomical structures and ranged from 0.38 - 47 cm³. Figure 1 (f) shows a representative tumor VOI.

To account for the partial volume effect, the tumor activity uptake was measured by delineating individual contours for each time-point PET image of the two studies, rhTSH and THW of each patient. A total of 220 contours were drawn for the three patients with metastases, Pt1, Pt2 and Pt3. Figure 2 depicts the method used to obtain the tumor activity in the region of interest. The tumor contours were drawn with the imaging software Velocity® using a minimum threshold of the maximum PET value for each image and tumor. The volume of the drawn tumor contour on each PET image varied from the “true volume” (the volume identified from the anatomical contour
drawn on the CT image, see “CT size” in Figure 2). The background activity concentration was also measured by drawing contours on the PET scan at specific locations in the patient’s body, i.e. bone, bone marrow and lungs, according to the tumor locations. Background activity was calculated as the product of the measured background activity concentration (counts/cm³) and the PET-based tumor contour volume (cm³) (see “PET size” in Figure 2), and subsequently subtracted from the measured tumor activity (counts). The product of the background activity concentration with the true tumor volume was then added back into the measured tumor activity (see Figure 2).

Measured tumor activity at each time-point was used to generate time-activity curves for each tumor and study. Time-activity curves were then integrated using a piece-wise hybrid trapezoidal fit in the uptake phase of the tumor, followed by a single-exponential fit in the clearance phase, i.e. from the last three time points. Time-integrated activity coefficients (previously known as residence times) were calculated for each tumor by dividing the time-integrated activity by the administered activity for 131I, given in Table 2. The time-integrated activity coefficients were used as input in the expression used to calculate the absorbed dose according to the Medical Internal Radiation Dose schema (17). A power-law function was fit to calculate the S-value ($r_T \leftarrow r_S$) (the radionuclide-specific quantity representing the mean absorbed dose rate to target tissue r_T at time t, after administration per unit activity present in source tissue r_S) for intermediate tumor mass values, based on the OLINDA/EXM (18) module for estimation of spherical tumor self-dose according to equation 2:

$$S = a \cdot m^b$$ \hspace{1cm} \text{Eq. 2}

where S is the S-value in mGy/MBq-hr, m is the tumor mass in g, $a = 108$ mGy/MBq-hr-g and $b = -0.97$ are parameters specific to 131I.
To account for the cross-dose component from 131I photons in the dose calculation to tumors, the whole-body to whole-body photon dose contribution from 131I was calculated in OLINDA using the measured whole-body time-integrated activity over the measured time-points for each study. This contribution was added to the calculated spherical tumor self-dose to obtain the total D to tumors from 131I.

To compare aggregate tumor kinetics relative to bone marrow kinetics for each patient, we summed the activity in all tumors at each time-point and divided by the total tumor mass. This was used to plot an aggregate tumor activity versus time curve that may be compared with the bone marrow time-activity curve under each preparation method.

RESULTS

Figure 3 (a-d) shows the % injected activity concentration (%IA/cm3) as a function of time post 124I administration and the clearance half-lives for five organs and each study. The rhTSH clearance half-life was longer than that of THW for bone marrow of Pt1 and Pt4, and all studied organs for Pt3. The rhTSH clearance half-life was faster than that of THW for the rest of the studied organs. The following organs exhibited a higher initial uptake in the rhTSH study compared to THW: the heart and bone marrow for Pt1, all the studied organs for Pt3, and the lungs and heart for Pt4. The initial uptake for the rest of the organs was lower in the rhTSH study compared to the THW study.

The difference in the obtained time-integrated activity coefficients between THW and rhTSH divided by the time-integrated activity coefficient of the THW study is shown in Figure 4. The time-integrated activity coefficient for the kidneys and bone marrow of Pt1, all studied organs of Pt3 and lungs and heart of Pt4 was higher in the rhTSH study compared to THW. The time-integrated activity coefficient was lower in the rhTSH compared to THW for the rest of the organs.
The normal organ absorbed dose results are summarized in Table 3. The absorbed dose per unit administered activity is lower in the THW study compared to the rhTSH for kidneys and bone marrow of Pt1 and heart of Pt4, and higher for the rest of the organs for Pt1 and Pt4. For Pt2, the absorbed dose per unit administered activity is higher in the THW study compared to rhTSH for all studied organs. For Pt3, the absorbed dose per unit administered activity is lower in the THW study compared to rhTSH for all studied organs. The observations on the difference in time-integrated activity coefficients between rhTSH and THW translate to the difference in the absorbed dose results between rhTSH and THW for Pt1, Pt2 and Pt3.

The THW to rhTSH absorbed dose per unit administered activity of 131I ratio, averaged over five organs (lungs, heart, liver, kidneys and bone marrow) for Pt1, Pt2 and Pt3, was 1.5, 2.5 and 0.64, respectively. The THW to rhTSH absorbed dose ratio averaged over three organs (lungs, heart and bone marrow) was 1.1 for Pt4. The bone marrow absorbed dose per unit administered activity following rhTSH was 0.13, 0.086, 0.33, 0.068 mGy/MBq, and, 0.11, 0.14, 0.22, 0.080 mGy/MBq following THW, for each patient, respectively.

With the exception of three lesions (with volumes 3.8, 4.3 and 12 cm3), the absorbed dose per unit administered activity of 131I was higher in the THW study compared to the rhTSH study. Table 4 lists the total absorbed dose per unit administered activity for each tumor, patient and study (rhTSH and THW), and the ratio in absorbed dose to tumors THW/rhTSH. The average absorbed dose to tumors per unit administered activity of 131I for rhTSH was: 8.0, 0.067 and 3.7 mGy/MBq and for THW: 26, 1.7 and 4.8 mGy/MBq, for Pt1, Pt2 and Pt3, respectively. The cross-dose component from 131I photons to the tumor D of Pt1, Pt2 and Pt3 was: 0.026, 0.020 and 0.075 mGy/MBq for rhTSH; and 0.028, 0.037 and 0.051 mGy/MBq for THW, less than 1% compared to the tumor self-dose.
The therapeutic index, i.e.: the ratio of the mean tumor to bone marrow absorbed dose per unit administered activity, was 62, 0.78 and 11 for rhTSH and 232, 12 and 22 for THW, for the three patients with lesions, respectively. Thus the therapeutic index was higher in all three patients with lesions for THW by factors of 3.7, 16, and 2.0, respectively. Aggregate (all tumors per specific patient) tumor activity concentration was calculated for 124I and plotted as a function of time for each study, rhTSH and THW along with the calculated bone marrow activity concentration for each patient Pt1, Pt2 and Pt3 (shown in Figure 5. a-c, respectively). For Pt1, Pt2 and Pt3 initial activity uptake is higher in the tumors compared to bone marrow.

DISCUSSION

We compared the absorbed dose to critical organs and tumors per MBq of 131I administered for the treatment of distant metastases secondary to DTC by performing 124I-PET/CT based dosimetry after the same patient was prepared by THW and by rhTSH injections.

The four major distinctive features of this study are: the use of 124I-PET/CT, the use of the 3D-RD dosimetry software, the evaluation of the absorbed dose to critical organs, and the comparison of preparations of THW versus rhTSH injections in patients who were their own control.

This study has several limitations. First, only four patients were studied. The prospective protocol is very demanding for patients, and recruiting such patients is very difficult. The patient had to have: rhTSH-aided 124I-PET imaging, THW-aided 124I-PET imaging, and then THW-aided 131I dosimetry, the latter being the standard of care for determining the maximum tolerated prescribed activity of 131I that could be administered. However, the strengths of the study were that each patient was his/her own control, and absorbed dose to the normal organs was calculated with 124I-PET/CT and 3D-RD software. Second, 124I-PET/CT scans prepared with rhTSH injections
were always performed first, before 124I-PET/CT scans prepared with THW. The reverse sequence was not considered acceptable because the volunteer would have had to undergo THW twice. Although it is possible that the first study affected the subsequent one, we believe this is unlikely for the following reasons. The normal organs that were studied are not known to typically have sodium iodine-symporters, so the possibility of “stunning” such as to normal thyroid tissue is unlikely to be present in these normal non-thyroid tissues. Although stunning from 124I is possible in metastatic lesions, given the low level of 124I activity, stunning in metastatic lesions is unlikely. In the unlikely scenario of stunning of the metastatic lesions from 124I administration we would expect this to reduce the uptake in the metastatic lesions, thereby reducing any production of radiolabeled T3 and T4 with 124I, and thus enhancing clearance from the whole body, not delaying it. A potential fourth limitation of this study is that the time interval between the two different preparations was approximately five to eight weeks. It is possible that during this time interval the patient’s situation changed. For example, the patient’s metastases could have progressed. This cannot be excluded but growth of metastases is unlikely to have affected organ clearance over the 5 to 8 week time-period. Repeat thyroglobulin levels were not available and would be less reliable because thyroglobulins are not necessarily consistent between stimulation from rhTSH injections and THW. In regard to a change in iodine intake, spot urine iodine levels were performed, but they are less than ideal and may be inadequate and problematic for several reasons. As reported by Sohn et al. (19) and Kim et al. (20), spot urine iodine levels are inferior not only to the reference standard of 24-hour urine iodine measurements but also to spot urine iodine/creatinine ratios. Also, patients who were prepared with rhTSH injections continue to receive thyroid hormone, and despite a patient being compliant with his/her low iodine diet, the thyroid hormone has iodine content. Patients are also variable in their compliance with a low iodine diet. One patient had a very high
urine iodine level, only one measurement during THW, and no measurements at all. Thus, because of these factors, a limitation of the study is the inability to strictly control and/or adequately measure urine iodine intake. Finally, an additional limitation is possibly the low prescribed activity that was administered.

From a dosimetric standpoint, the study would have benefitted from an uncertainty analysis. However, this is a substantially complex subject and an area of active research where very little in the way of definitive data or methodologies exist. Several generalities concerning uncertainties can intuitively be given: many of the systematic uncertainties will cancel out for direct comparison, the uncertainties are certainly greater for tumors than for normal organs, the combination of uncertainty and variability reinforces the notion that within this data set neither preparation approach gives higher or lower uptake or absorbed dose for the normal organs, and that THW has a qualitatively higher therapeutic index is unlikely to be affected by any uncertainties.

Unlike the previous studies, our study evaluated multiple critical organs in patients prepared with both THW and rhTSH injections that heretofore were not all evaluated with 124I and 3D-RD software. Multiple previous reports demonstrated reduced absorbed dose to the blood (e.g. bone marrow) in patients prepared with rhTSH injections (3-8). The reduced absorbed dose to the organs is attributed to the more rapid clearance of radioiodine when the patient is euthyroid versus hypothyroid (21). In our study, which consisted of four patients with metastatic disease, we observed a high patient variability in the uptake and absorbed dose results to normal organs overall between rhTSH and THW.

The absorbed dose to blood was found to be lower after stimulation with rhTSH than that in patients after THW in previous studies (22,23). De Keizer et al. (23) reported a mean absorbed
dose per unit administered activity of 131I to the red marrow of (0.16 ± 0.07) mGy/MBq after rhTSH-aided administration of high activities of 131I. The corresponding total red marrow absorbed dose was (1.2 ± 0.52) Gy, a value lower than 2 Gy, which is the level considered the safety threshold of radioiodine therapies. The specific absorbed dose to the blood was significantly lower after administration of rhTSH, mean of (0.11 ± 0.028) mGy/MBq, than after THW, mean of (0.17 ± 0.061) mGy/MBq, in the study published by Hanscheid et al. (8). Luster et al. (7) compared the 131I kinetics in patients while euthyroid and while hypothyroid and reported major differences in the residence times and absorbed doses to the blood: $(0.0011 \pm 2.9E-4)$ mGy/MBq for euthyroid versus $(0.0013 \pm 2.7E-4)$ mGy/MBq for hypothyroid patients. The mean absorbed dose per unit administered activity to the bone marrow in our study is (0.15 ± 0.12) mGy/MBq for rhTSH-aided and (0.14 ± 0.060) mGy/MBq for THW-aided administration, values comparable to the absorbed dose per unit administered activity to the bone marrow reported by de Keizer et al. (23) and the doses to the blood calculated by Hanscheid et al. (8), and higher than the doses to the blood reported by Luster et al. (7). However, the methods of dose calculation are different. In this study we calculated the absorbed dose to the bone marrow of 131I using the patient-specific 3D-RD software package, based on the 3D 124I-PET/CT imaging and VOIs covering the bone marrow region of the thoracic and lumbar vertebrae (between T9-L4, depending on the patient). In the other studies mentioned above by de Keizer et al. (23), Hanscheid et al. (8) and Luster et al. (7) the absorbed dose to the bone marrow is calculated based on collected blood time-activity data and following the blood dosimetry method described by Sgouros et al. (24,25). Woliner-van der Weg et. al. (16) compared the blood-based, planar image-based and 3D image-based red bone marrow dosimetry (using the 3D-RD software) approaches, in terms of the absorbed dose to the red bone marrow and the predictability of red bone marrow toxicity. In this study the authors showed that
the 3D-RD based red bone marrow dosimetry is a more sensitive predictor for the selection of patients showing any grade of red bone marrow toxicity than blood-based and planar image-based red bone marrow doses (16). Nevertheless, there is room for improvement in the calculation of the blood dose: a microscale model with marrow cavities, adipose cells and trabecular bone integrated into the macro-scale imaging would certainly be beneficial. The interior vertebral VOI consists of a mixture of trabecular bone and marrow space contents, i.e. red and yellow marrow, blood vessels, extracellular fluid and vasculature. In this study it was assumed that the activity concentration within the VOI is uniform and no further corrections were applied to account for differences in activity concentration or density within the VOI. Previous studies by Schwartz et al. (26) and Makris et al. (27) have applied a correction to the red marrow activity concentration for the trabecular bone component, assuming that the activity concentration in the trabecular bone was zero. This assumption is reasonable when there is no specific binding to bone components, which is true for the radiolabeled antibodies used in these two studies (26,27). Another study by Shah et al. (28) provided a detailed modeling of the 3D small-scale structure of individual marrow-containing bones within the skeleton and presented estimates of absorbed fractions and S-values for a variety of β-emitters. However, to our knowledge, presently there are no methods that can accurately estimate the activity concentration in the different bone marrow regions, which is indispensable for the absorbed dose calculation. The development of such a method, combined with model-based estimates on the radionuclide S-values for the bone marrow regions, would allow calculation of the D to the different bone marrow regions, permitting improved estimates of the bone marrow D. The latter may allow an increase in the administered activity and tumor dose, thus possibly an optimal therapeutic administration.
We found that the absorbed dose for potential 131I therapy to 19 out of 22 lesions was higher in the THW study compared to the rhTSH study. Explanations for this have included longer stimulation by TSH that occurs with THW and slower clearance of radioiodine during hypothyroidism secondary to THW, which in turn may result in a higher bioavailability of radioiodine \((29)\). The results reported here are consistent with the study conducted by Freudenberg et al. \((1)\) and Potzi et al. \((3)\) which reported a lower cumulated activity or lower absorbed dose to DTC metastases after rhTSH than after THW. In another study, Van Nostrand et al. \((30)\) found that significantly more foci of metastases of DTC were identified in 124I PET scans obtained after THW than in scans obtained after rhTSH. However, this study did not assess whether or not the detection of significantly more foci of metastases helps predict better outcomes. In addition, Klubo-Gwiezdzinska et al. \((31)\) were unable to demonstrate any difference in outcomes of patients treated with 131I when prepared with THW versus rhTSH.

The tumor to bone marrow absorbed dose ratio (the therapeutic index) was found to be significantly higher post THW than post rhTSH.

CONCLUSION

This study calculated the absorbed doses to normal organs including not only bone marrow, but also lung, heart, liver, and kidney as well as tumors, per MBq of 131I administered in patients with metastatic differentiated thyroid cancer.

The dosimetry calculations for the normal organs were performed based on the 124I-PET/CT imaging and using the patient-specific 3D-RD software. In addition, the patient was his own control in the comparisons between rhTSH and THW. The results suggest a high patient variability in the overall absorbed dose to the normal organs per MBq of 131I administered between the two TSH stimulation methods. The tumor absorbed dose per unit administered activity was
higher in the THW study than in the rhTSH study for the majority of the tumors (~86%). The therapeutic index or the tumor to dose-limiting organ (bone marrow) absorbed dose ratio was higher when the patient was prepared using THW compared to when rhTSH was used.

Although participation in this study or similar studies is demanding for patient volunteers, further recruitment of volunteers, in particular female volunteers for this or similar studies is warranted. In addition, studies are warranted to not only prospectively evaluate patient outcomes after 131I therapy in patients prepared with rhTSH versus THW, but also to evaluate the potential benefit of THW combined with rhTSH.

In regard to the present use of rhTSH preparation in patients with metastatic DTC, we submit that until further data are available, the use of rhTSH preparation in patients who cannot tolerate THW is a reasonable alternative, and in those patients who are able to tolerate THW, we recommend that the patient be explained the potential benefits and risks of each preparation so that each patient can make an informed decision regarding the approach taken.
REFERENCES

Figure 1. Transverse and sagittal views of patients’ CT and PET images (superimposed) and the drawn VOI covering the: a) lungs; b) heart; c) liver; d) kidneys; e) bone marrow and f) tumor.
Figure 2. Activity measurement method in tumors
Figure 3. Normal organ % injected activity (%IA) per organ volume (cm³) versus time (hr) post-injection of 124I for rhTSH and THW of patient: a) Pt1; b) Pt2; c) Pt3; and d) Pt4
Figure 4. Difference in time-integrated activity coefficient (THW-rhTSH)/THW
Graphs showing the concentration of rhTSH and THW over time for Pt2 bone marrow and all tumors, and Pt1 bone marrow and all tumors.
Figure 5. Aggregate tumor and bone marrow 124I activity concentration (%IA/cm3), rhTSH (dotted) and THW (solid) study for patient: a) Pt1; b) Pt2; and c) Pt3
Table 1. Patient demographics

<table>
<thead>
<tr>
<th></th>
<th>Pt1</th>
<th>Pt2</th>
<th>Pt3</th>
<th>Pt4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>47</td>
<td>30</td>
<td>63</td>
<td>51</td>
</tr>
<tr>
<td>Gender</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Thyroglobulin Level (ng/ml)</td>
<td>under rhTSH</td>
<td>under THW</td>
<td>under rhTSH</td>
<td>under THW</td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>324</td>
<td>N/A</td>
<td>1527</td>
</tr>
<tr>
<td>TSH Level (µIU/ml)</td>
<td>98</td>
<td>82.9</td>
<td>139</td>
<td>142</td>
</tr>
<tr>
<td>Urine Iodine Level (µg/l)</td>
<td>prior to rhTSH</td>
<td>under THW</td>
<td>prior to rhTSH</td>
<td>under THW</td>
</tr>
<tr>
<td></td>
<td>182</td>
<td>85</td>
<td>75</td>
<td>630</td>
</tr>
<tr>
<td>Thyroxine Dose Prior to and During rhTSH Stimulation (µg)</td>
<td>125</td>
<td>125</td>
<td>139</td>
<td>200</td>
</tr>
</tbody>
</table>
Table 2. 124I and 131I administered activities

<table>
<thead>
<tr>
<th></th>
<th>124I Activity (MBq)</th>
<th>131I Activity (mCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rhTSH</td>
<td>THW</td>
</tr>
<tr>
<td>Pt1</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>Pt2</td>
<td>61</td>
<td>65</td>
</tr>
<tr>
<td>Pt3</td>
<td>36</td>
<td>33</td>
</tr>
<tr>
<td>Pt4</td>
<td>37</td>
<td>33</td>
</tr>
</tbody>
</table>
Table 3. Absorbed Dose (D) per unit administered activity (AA) of 131I in mGy/MBq for each study (rhTSH and THW), and ratio in absorbed dose per unit administered activity (THW/rhTSH)

<table>
<thead>
<tr>
<th></th>
<th>Organ VOI</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lungs</td>
<td>Heart</td>
<td>Liver</td>
<td>Kidneys</td>
<td>Bone marrow</td>
</tr>
<tr>
<td>Pt1</td>
<td>D per unit AA for rhTSH (mGy/MBq)</td>
<td>0.21</td>
<td>0.15</td>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>D per unit AA for THW (mGy/MBq)</td>
<td>0.58</td>
<td>0.21</td>
<td>0.19</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>THW/rhTSH Ratio</td>
<td>2.8</td>
<td>1.4</td>
<td>1.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Pt2</td>
<td>D per unit AA for rhTSH (mGy/MBq)</td>
<td>0.11</td>
<td>0.27</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>D per unit AA for THW (mGy/MBq)</td>
<td>0.66</td>
<td>0.33</td>
<td>0.20</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>THW/rhTSH Ratio</td>
<td>6.0</td>
<td>1.2</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Pt3</td>
<td>D per unit AA for rhTSH (mGy/MBq)</td>
<td>0.44</td>
<td>0.46</td>
<td>0.40</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>D per unit AA for THW (mGy/MBq)</td>
<td>0.25</td>
<td>0.28</td>
<td>0.24</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>THW/rhTSH Ratio</td>
<td>0.57</td>
<td>0.61</td>
<td>0.60</td>
<td>0.73</td>
</tr>
<tr>
<td>Pt4</td>
<td>D per unit AA for rhTSH (mGy/MBq)</td>
<td>0.10</td>
<td>0.11</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>D per unit AA for THW (mGy/MBq)</td>
<td>0.11</td>
<td>0.10</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>THW/rhTSH Ratio</td>
<td>1.1</td>
<td>0.91</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 4. Calculated tumor absorbed dose per unit administered activity of 131I in mGy/MBq, and the ratio in tumor absorbed dose THW/rhTSH

<table>
<thead>
<tr>
<th>Tumor #</th>
<th>Tumor Volume (cm3)</th>
<th>D per unit AA (mGy/MBq) for rhTSH</th>
<th>D per unit AA (mGy/MBq) for THW</th>
<th>THW/rhTSH Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>2.8</td>
<td>8.6</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>0.98</td>
<td>11</td>
<td>18</td>
<td>1.6</td>
</tr>
<tr>
<td>3</td>
<td>0.46</td>
<td>3.8</td>
<td>20</td>
<td>5.3</td>
</tr>
<tr>
<td>4</td>
<td>0.87</td>
<td>2.6</td>
<td>18</td>
<td>7.0</td>
</tr>
<tr>
<td>5</td>
<td>0.50</td>
<td>17</td>
<td>82</td>
<td>4.9</td>
</tr>
<tr>
<td>6</td>
<td>1.2</td>
<td>9.7</td>
<td>27</td>
<td>2.7</td>
</tr>
<tr>
<td>7</td>
<td>1.1</td>
<td>21</td>
<td>40</td>
<td>1.9</td>
</tr>
<tr>
<td>8</td>
<td>1.7</td>
<td>0.84</td>
<td>4.6</td>
<td>5.5</td>
</tr>
<tr>
<td>9</td>
<td>0.89</td>
<td>3.8</td>
<td>12</td>
<td>3.3</td>
</tr>
<tr>
<td>Pt2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.67</td>
<td>0.045</td>
<td>1.3</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>0.38</td>
<td>0.089</td>
<td>2.2</td>
<td>25</td>
</tr>
<tr>
<td>Pt3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.2</td>
<td>5.2</td>
<td>20</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>0.66</td>
<td>1.1</td>
<td>1.7</td>
</tr>
<tr>
<td>3</td>
<td>2.9</td>
<td>0.36</td>
<td>0.56</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>3.8</td>
<td>1.9</td>
<td>1.6</td>
<td>0.83</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>4.8</td>
<td>4.8</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>5.4</td>
<td>0.92</td>
<td>0.17</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>19</td>
<td>21</td>
<td>1.1</td>
</tr>
<tr>
<td>8</td>
<td>1.7</td>
<td>0.34</td>
<td>0.42</td>
<td>1.2</td>
</tr>
<tr>
<td>9</td>
<td>4.3</td>
<td>0.20</td>
<td>0.12</td>
<td>0.63</td>
</tr>
<tr>
<td>10</td>
<td>47</td>
<td>1.9</td>
<td>2.1</td>
<td>1.1</td>
</tr>
<tr>
<td>11</td>
<td>9.0</td>
<td>0.36</td>
<td>0.65</td>
<td>1.8</td>
</tr>
</tbody>
</table>