The Thymidine Phosphorylase Imaging Agent 123I-IIMU Predicts the Efficacy of Capecitabine

Nobuya Kobashi1, Hiroki Matsumoto1*, Songji Zhao2, Shunsuke Meike1, Yuki Okumura1, Tsutomu Abe1, Hiromichi Akizawa3, Kazue Ohkura4, Ken-ichi Nishijima2, Nagara Tamaki2, Yuji Kuge2,5

1. Research Center, Nihon Medi-Physics Co., Ltd., 299-0266 Sodegaura, Japan
2. Graduate School of Medicine, Hokkaido University, 060-8638 Sapporo, Japan
3. Showa Pharmaceutical University, 194-8543, Machida, Japan
4. Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 061-0293 Ishikari-Tobetsu, Japan
5. Central Institute of Isotope Science, Hokkaido University, 060-0815 Sapporo, Japan

*Corresponding author:

Hiroki Matsumoto

Research Center, Nihon Medi-Physics Co., Ltd.
299-0266 Sodegaura, Japan
Telephone: +81 438 62 7611
Fax: +81 438 62 5911
E-mail: hiroki_matsumoto@nmp.co.jp
First author:

Nobuya Kobashi
Research Center, Nihon Medi-Physics Co., Ltd.
299-0266 Sodegaura, Japan
Telephone: +81 438 62 7611
Fax: +81 438 62 5911

Word count: 4911

Financial Support: This work was supported by the Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program of the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Short running title: 123I-IIMU and capecitabine efficacy
Abstract

Recently, companion diagnostics with nuclear medicine techniques have been anticipated as more suitable means than biopsy for predicting treatment efficacy. The anti-cancer effect of capecitabine, an orally administered chemotherapeutic agent activated by thymidine phosphorylase (TP), is positively associated with tumor TP expression levels. This study aimed to assess whether TP imaging using a radiolabeled uracil derivative, 123I-5-iodo-6-[(2-iminoimidazolidinyl)methyl]uracil (123I-IIMU), could predict the efficacy of capecitabine treatment. **Methods:** Sensitivity to doxifluridine, a metabolite of capecitabine and direct substrate for TP, was assessed by WST assays in vitro for three human colon cancer cell lines with different TP expression profiles. The intracellular uptake and retention of 123I-IIMU were evaluated. Mice inoculated with each cell line were treated with capecitabine for 2 weeks, and tumor growth was compared. **In vivo** distribution studies and single photon emission computed tomography/computed tomography imaging of 123I-IIMU were performed in inoculated mice. **Results:** In vitro experiments showed a positive relation between TP expression levels and doxifluridine sensitivity. In vitro studies revealed that intracellular uptake and retention of 123I-IIMU were dependent on TP expression levels. In vivo experiments in inoculated mice showed that 123I-IIMU accumulation in tumor tissue was in line with TP expression levels and susceptibility to capecitabine treatment. Moreover, single photon emission computed tomography/computed tomography imaging of 123I-IIMU in tumor-inoculated mice showed that 123I-IIMU
reflects TP expression levels in tumor tissues. **Conclusion:** 123I-IIMU could be used as an *in vivo* companion diagnostic for predicting the efficacy of capecitabine treatment.

Keywords: companion diagnostics, doxifluridine, single photon emission computed tomography, uracil derivative.
Introduction

Molecularly targeted drugs such as gefitinib and trastuzumab have been widely used in cancer treatment. To select patients expected to respond to these medicines, in vitro companion diagnostics have been used in clinical practice to assess gene mutations or protein expression before administration. Companion diagnostics also decrease unnecessary adverse drug reactions while enabling patient stratification and facilitating drug development. Currently, biopsy samples or surgical specimens are used for in vitro companion diagnostics in clinical practice. However, several studies have evaluated companion diagnostics with imaging modalities (1-3). The folate receptor imaging agent 99mTc-etarfolatide was developed as a companion radiopharmaceutical agent for vintafolide, a conjugate of folic acid and a vinca alkaloid, for targeting folate receptors in cancer cells (1-3). 99mTc-etarfolatide had higher sensitivity and specificity for the non-invasive detection of vintafolide-susceptible metastatic cancer foci than folate receptor immunohistochemistry using biopsy samples, suggested to result from changes in folate receptor expression over time or the heterogeneity of folate receptor expression among cancer lesions. Therefore, to avoid repeated biopsies and correctly evaluate the expression of target proteins difficult to examine with limited samples (e.g., the folate receptor), radiopharmaceutical companion diagnostics are more suitable than in vitro companion diagnostics. Additionally, other imaging agents such as 18F-FAC for gemcitabine (4) and 18F-misonidazole for tirapazamine (5) have been reported to predict the effect of anticancer drugs.
Capecitabine, an orally bioavailable drug and the prodrug of 5-fluorouracil, is a broadly used anticancer drug for colorectal, breast, and stomach cancer. It produces serious adverse reactions including hand-foot syndrome, diarrhea, and bone marrow suppression (6,7), and tumor response rates vary from 20–50% (8-10). Thymidine phosphorylase (TP), which is overexpressed in various tumors, catalyzes the reversible conversion of thymidine to thymine and 2-deoxy-D-ribose-1-phosphate (11). Capecitabine is absorbed through the intestine and metabolized to doxifluridine by carboxylesterases and cytidine deaminases in the liver. Doxifluridine is metabolized to active forms by TP in the liver and tumor tissues (12) (Suppl. Fig. 1). Capecitabine-based chemotherapies have been reported to be more effective in tumors expressing high TP levels (13-16). However, in these studies, tumor TP expression levels were determined immunohistochemically in surgical specimens or biopsy samples. TP expression is heterogeneous even in primary tumors (17), differs between tumor and stromal cells and between the primary lesion and metastatic foci (18), and is affected by chemotherapy (e.g., taxanes, cyclophosphamide, anthracycline, and platinum) and radiotherapy (19-23). Based on these previous reports, TP imaging should be more suitable for predicting capecitabine efficacy than biopsy, similar to ⁹⁹mTc-etarfolatide for vintafolide-susceptible tumors. Furthermore, if TP imaging could predict capecitabine response, non-responder patients could be identified earlier without unnecessary adverse effects and have an opportunity to receive alternative medications.
We previously designed, synthesized, and evaluated the radiolabeled TP inhibitor 125I-5-iodo-6-[(2-iminoimidazolidinyl)methyl]uracil (125I-IIMU) as a non-invasive TP imaging probe (24). 125I-IIMU accumulated in cancer cells and tumor tissues depending on TP expression levels (25-27), suggesting that radiolabeled IIMU enables TP-specific image acquisition. Because TP is responsible for capecitabine activation, we hypothesized that 123I-IIMU, as an imaging probe for single photon emission computed tomography (SPECT), could be used to predict capecitabine efficacy in cancer patients. To test this hypothesis, we examined relations among TP expression levels, capecitabine sensitivity, and 123I-IIMU accumulation in human colorectal cancer cell lines.

Materials and Methods

Cell cultures

The human colorectal cancer cell lines HCT116, WiDr, and DLD-1 were obtained from American Type Culture Collection and cultured in McCoy's 5A, MEM, and RPMI1640 culture media, respectively, containing 10% fetal bovine serum and penicillin/streptomycin/neomycin at 37°C in 5% CO₂. All cell culture regents were purchased from Life Technologies Corporation (Carlsbad, CA).
Cell viability assay

Cells were seeded at a density of 2×10^3 (HCT116), 8×10^3 (WiDr), and 3×10^3 (DLD-1) cells/well in 96-well plates and treated with doxifluridine (Santa Cruz Biotechnology, Santa Cruz, CA), a metabolite of capecitabine, at concentrations of 391 nM to 200 μM for 48 h at 37°C. After incubation, viable cells were assessed using Cell Counting Kit-8 (WST-8 colorimetric method, Dojindo Laboratories, Kumamoto, Japan) according to the manufacturer's protocol. Absorbance at 450 nm was measured using a VersaMax microplate reader (Molecular Devices, Sunnyvale, CA). Cell viability was expressed as the absorbance relative to the absorbance of untreated controls in each experiment and calculated as a percentage. The survival curves for each doxifluridine-treated cell line were constructed using GraphPad Prism v5.0 (GraphPad Software. San Diego, CA), and the half maximal inhibitory concentration (IC$_{50}$) value of doxifluridine was calculated accordingly.

Transient transfection with small interference RNA

TP small interference RNA (siRNA) was synthesized by Japan Bio Services (Asaka, Japan). The siRNA sequences were 5'-AUAGACUCCAGCUUAUCCAAGGUGC-3' (sense) and 5'-GCACCUUGGAUAAGCUGGAGUCUAU-3' (antisense) (28). Silencer Negative Control siRNA was
purchased from Life Technologies Corporation. HCT116 cells were transfected with 20 nM siRNA using Lipofectamine RNAiMAX (Life Technologies Corporation). After 72-h incubation, cells were collected for cell viability assay and western blot.

Intracellular uptake and retention studies

HCT116 and DLD-1 cells were seeded at a density of 5×10^5 cells/well in 6-well plates, washed twice with 0.01 M phosphate-buffered saline (phosphate-buffered saline, 0.0027 M KCl, 0.137 M NaCl), and placed in serum-free medium containing 123I-IIMU (1 mL). For cellular uptake assay, cells were incubated for 0.5, 1, and 2 h at 37°C. For cellular efflux assay, cells were incubated with 123I-IIMU for 2 h and then washed twice with ice-cold phosphate-buffered saline. After the tracer solution was removed, serum-free medium (1 mL) was added, and the cells were further incubated for 0.5, 1, and 2 h. Following incubation for uptake or efflux, the cells were washed twice with ice-cold phosphate-buffered saline and lysed in 0.5 M NaOH (0.5 mL). Radioactivity in each aliquot was measured using a gamma counter (ARC-7001, Hitachi Aloka Medical, Mitaka, Japan) and normalized against the total protein concentration.

Animal model
Female Balb/c-nu/nu mice (5–8 weeks old) were purchased from CLEA (Tokyo, Japan). All animal studies were approved by the Laboratory Animal Care and Use Committee of Hokkaido University or Nihon Medi-Physics Research Center and conducted in accordance with the institutional guidelines of each institution. Tumor cells (2.0×10⁶ cells) were suspended in serum-free culture medium, mixed with an equal volume of Matrigel (Becton, Dickinson and Company, Franklin Lakes, NJ), and subcutaneously inoculated in the right flank of mice. For SPECT/CT imaging, HCT116 and DLD-1 cells were inoculated in the right and left flank of mice, respectively. Experiments started when the average tumor volume was 250–400 mm³.

Capecitabine treatment

Capecitabine (Santa Cruz Biotechnology) was suspended in distilled water and orally administered (539 mg/kg/day) to tumor-inoculated mice for 5 days per week, as previously reported (29). Control tumor-inoculated mice were left untreated. To evaluate capecitabine antitumor effect, tumor size and body weight were measured twice per week. Tumor volume was calculated using a caliper according to the following equation: volume = height × width × depth × (π / 6). Relative tumor size was calculated by dividing the tumor volume on any given day by that on the first day of treatment.
Biodistribution studies

These studies were performed 15 days after inoculation. Under isoflurane/air anesthesia, saline containing $^{123}\text{I}}$-IIMU (667 kBq/0.1 mL) was injected through the tail vein. At 30 min post-injection, tumor and control tissues were collected and weighed, and their radioactivity was measured using a single channel gamma counter (Ohyo Koken Kogyo, Fussa, Japan). Radioactivity was expressed as a percentage of the injected dose per gram of tissue (%ID/g).

Single photon emission computed tomography/computed tomography

SPECT/CT imaging was performed using an Inveon SPECT/CT scanner (Siemens Medical Solutions, Munich, Germany) with a double head detector. Each head contained a 68×68 pixelated scintillator array. Each pinhole collimator had an aperture of 2.0 mm. The radius of rotation was 35 mm. Studies were performed 12 days after inoculation. A saline solution of $^{123}\text{I}}$-IIMU (25 MBq/0.1 mL) was injected through the tail vein under isoflurane anesthesia. At 45 min after administration, data were acquired for 30 min.

Immunohistochemistry
After SPECT/CT scanning, the mice were euthanized by exsanguination under deep isoflurane anesthesia, and tumor tissues were excised. Tumor tissues were fixed in 15% formalin for 48 h, paraffin embedded, and sectioned at 4 μm. The sections were mounted on slides, deparaffinized, and rehydrated. Antigen retrieval was performed by heating the slides at 95°C in pH 9.0 ethylenediaminetetraacetic acid solution for 20 min. Endogenous peroxidase activity was blocked by treatment with 0.3% H₂O₂ for 10 min.

The slides were incubated with Mousestain kit blocking reagent A (Nichirei Biosciences, Tokyo, Japan) and then with a mouse monoclonal anti-TP antibody (GF40-100UGCN, Merck, Darmstadt, Germany) overnight at 4°C. Sections were then incubated with Mousestain kit blocking reagent B (Nichirei), followed by incubation with Mousestain kit simple stain mouse MAX-PO (M) at room temperature. The sections were developed using diaminobenzidine (Dako, Japan) and counterstained with hematoxylin. Additionally, some sections were stained with hematoxylin-eosin using a standard protocol.

Statistical analysis

Data are presented as the mean ± standard error of the mean (SEM). One-way or two-way analysis of variance and Tukey's multiple comparison tests were used to analyze capecitabine efficacy in vivo and in biodistribution experiments. Student's t test was used for other experiments. P < 0.05 was considered statistically significant.
Results

Antiproliferative activity of doxifluridine in cancer cell lines

Because capecitabine is converted to doxifluridine in the liver and then to 5-fluorouracil by TP in tumor cells (Suppl. Fig. 1), we used doxifluridine in our *in vitro* assay. TP expression levels in HCT116 cells were higher than those in WiDr or DLD-1 cells (Fig. 2A). HCT116 cells were more sensitive to doxifluridine treatment than WiDr and DLD-1 cells (Fig. 2B). The doxifluridine IC$_{50}$ values for HCT116, WiDr, and DLD-1 cells were 26.4, 74.3, and 77.9 µM, respectively, suggesting that TP expression levels parallel the antiproliferative activity of doxifluridine *in vitro*. There was no statistically significant difference among IC$_{50}$ values for the three cell types. TP siRNA transfection dramatically downregulated TP expression in HCT116 cells (Fig. 2C). After 50 µM doxifluridine treatment for 48 h, the viability of TP siRNA-transfected cells and negative control cells was 70.3 and 40.5%, respectively ($P < 0.01$) (Fig. 2D). Thus, downregulation of TP significantly inhibited doxifluridine anti-cancer activity.

Effect of capecitabine in transplanted tumors

Capecitabine *in vivo* antiproliferative activity was evaluated in mice inoculated with HCT116, WiDr, or DLD-1 cells. Capecitabine inhibited the growth of tumors formed from HCT116 cells, while no
significant change was observed in relative tumor size in mice inoculated with WiDr and DLD-1 cells compared to control (Fig. 3).

Intracellular 123I-IIMU uptake and retention

To assess whether 123I-IIMU could reflect TP expression differences among these cell lines, we performed intracellular uptake and retention studies. In HCT116 cells, 123I-IIMU intracellular uptake increased with incubation time and was significantly higher than that in DLD-1 cells (Fig. 4A). In the efflux assay, 30.7% of the radioactivity prior to removing the tracer solution was retained by HCT116 cells at 2 h after removal, whereas only 1.23% was retained by DLD-1 cells (Fig. 4B).

123I-IIMU uptake by transplanted tumors

We further examined the biodistribution of 123I-IIMU in mice carrying xenografts of the three cell lines. Radioactivity in HCT116, WiDr, and DLD-1 tumors at 30 min postinjection was 0.99, 0.38, and 0.22 %ID/g, respectively (Fig. 5A). Radiotracer levels in other tissues were similar across groups (Suppl. Table 1). Additionally, radioactivity levels in thyroid gland and stomach, an indicator of *in vivo* deiodization, were low in these mice, as previously reported (24). These data indicate a positive relation between 123I-IIMU accumulation and tumor expression levels of TP. Fig. 5B shows that capecitabine
antiproliferative activity in tumor-bearing mice is consistent with 123I-IIMU accumulation in tissues from each tumor cell line.

SPECT/CT imaging of 123I-IIMU and immunohistochemical detection of TP

To assess whether 123I-IIMU could detect high TP expression in tumors in vivo, we performed a SPECT/CT study (Fig. 6A). 123I-IIMU accumulated in xenografts of capecitabine-sensitive HCT116 cells, but not in DLD-1-inoculated xenografts. In HCT116 tumors, 123I-IIMU showed a high tumor/muscle ratio (Suppl. Table 1) and clearly enabled the detection of high TP expression in SPECT images. However, a large amount of 123I-IIMU was distributed in the liver and small intestine (Suppl. Fig. 2). To confirm the TP expression levels in HCT116 and DLD-1 cells, HCT116 and DLD-1 tumors were excised after SPECT/CT imaging, sectioned, and immunohistochemically stained (Fig. 6B). High TP expression levels were observed in HCT116 tumors. Little TP expression was observed in DLD-1 tumors.

Discussion

Antiproliferative activity of doxifluridine *in vitro* was higher in HCT116 cells, which have higher TP expression levels, than in WiDr and DLD-1 cells (Figs. 2A and 2B). TP downregulation significantly decreased sensitivity to doxifluridine (Figs. 2C and 2D). A previous study showed that the antiproliferative
activity of doxifluridine *in vitro* was higher in HCT116 cells than in DLD-1 cells (30). Our results are consistent with this finding. We further investigated the relationship between the efficacy of capecitabine and TP expression levels *in vivo* (Fig. 3). The efficacy of capecitabine has been found to correlate with TP mRNA levels and TP activity in previous studies (31,32). These studies showed that HCT116 cells were susceptible to capecitabine treatment, but neither WiDr nor DLD-1 cells were. Additionally, HCT116 had the highest TP activity among the three cell types, and DLD-1 had the lowest. Our results also correspond to these findings *in vivo*.

In vitro, intracellular uptake and retention of 123I-IIMU were higher in HCT116 cells than in DLD-1 cells with low TP expression (Figs. 4A and 4B). In our previous studies, we found high accumulation of 125I-IIMU in high TP-expressing A431 human epithelial carcinoma cells (25,26), and 125I-IIMU accumulation was inhibited by adding unlabeled IIMU. These results showed that the uptake of radiotracer in tumor cells corresponded to TP expression levels. Additionally, *in vivo* biodistribution experiments showed higher uptake of 123I-IIMU in HCT116 tumors than in the other tumors (Fig. 5A), and the antiproliferative effect of capecitabine against tumor growth in mice was associated with the accumulation of 123I-IIMU in each cell line (Fig. 5B). In our previous studies, we investigated the biodistribution of 125I-IIMU and 123I-IIMU in mice (25,27). The radiolabelled tracers mainly accumulated in liver and small intestine, consist with our present results. Furthermore, we confirmed mRNA and protein
levels of TP in various mouse tissues (27). We observed high TP expression in liver and intestine, which corresponded to the observed high accumulation of radiolabeled IIMU (Suppl. Table. 1). Taken together, our results show an association between 123I-IIMU accumulation in tumor cells and capecitabine efficacy both in vitro and in vivo with the same cancer cell lines. However, it was not clear whether 123I-IIMU-SEPCT/CT can detect differences between high and low TP expressing tumor. Therefore, we performed a SPECT/CT study, in which 123I-IIMU clearly detected HCT116 tumors with high TP expression levels (Figs. 6A and 6B), while the accumulation of 123I-IIMU in DLD-1 tumors was negligible, indicating that 123I-IIMU can discriminate tumor TP expression levels non-invasively. However, liver and small intestine metastasis may be difficult to visualize because we observed high physiological accumulations of 123I-IIMU in liver and small intestine (Suppl. Fig. 2). This result was consistent with the biodistribution study (Suppl. Table. 1).

99mTc-etarfolatide images as a biomarker to predict the antiproliferative activity of vintafolide did not always reflect immunohistochemical results because most surgical specimens for pathological diagnosis had been obtained months or years prior. Moreover, folate receptor expression levels in metastatic lesions differed from those in the primary tumor. However, in practice, technical and ethical issues prevent a pathological diagnosis being performed in all surgical specimens and metastases to predict drug response. Additionally, similar studies have reported that TP expression levels in tumors affect
capecitabine efficacy (13-16). Our results show that 123I-IIMU has potential as a prognostic imaging biomarker for capecitabine efficacy. Because radiation and chemotherapy alter TP expression, whole-body TP measurement in real time using 123I-IIMU would enable the more accurate prediction of treatment outcomes.

A limitation of our study is that we only used human colorectal cell lines. To further assess the potential use of 123I-IIMU imaging, further experiments with cell lines derived from cancer in other organs such as breast, head and neck are needed. Additionally, PET imaging with 124I-IIMU could provide more informative images concerning quantification of TP. However, 124I has a longer half-life time and numerous higher-energy gamma emissions. With regard to commercial availability, 123I is extensively used. Therefore, 123I-IIMU would be more acceptable for initial clinical study. TP activates not only capecitabine but also 5-fluorouracil, doxifluridine, and S-1 (33-37). Therefore, 123I-IIMU could likely predict the effect of treatment using all of these drugs. In vivo companion diagnostics using 123I-IIMU and SPECT may provide optimized treatments and better quality of life for individual cancer patients.
Conclusion

We showed an association between TP expression levels determined non-invasively using 123I-IIMU in tumor cells and the efficacy of capecitabine in vitro and in vivo, suggesting that 123I-IIMU is a predictive imaging biomarker for the outcome of capecitabine treatment.

Disclosure

This work was supported by the Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program of the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Conflicts of Interest: Nobuya Kobashi, Shunsuke Meike, Yuki Okumura, Tsutomu Abe, and Hiroki Matsumoto are employees of Nihon Medi-Physics Co., Ltd. Hiromichi Akizawa, Kazue Ohkura, Ken-ichi Nishijima, Songji Zhao, Yuji Kuge, Hokkaido University, and Health Sciences University of Hokkaido have patent rights for 123I-IIMU.

Acknowledgments

The authors thank Ms. Miho Ikenaga for performing the cell viability assay.
References

phosphorylase inhibitor as a tumor diagnostic agent for angiogenic enzyme imaging. *Nucl Med Biol.*

phosphorylase: suppressed accumulation into tumor cells by target gene knockdown. *Nucl Med
Commun.* 2011;32:1211–1215.

phosphorylase (TP) imaging probe and TP expression levels in normal mice. *Ann Nucl Med.*

aggressiveness and 5-fluorouracil sensitivity in cholangiocarcinoma. *World J Gastroenterol.*

which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and

Figures

Figure 1. Structure of 123I-IIMU.
Figure 2. Effect of TP on doxifluridine antiproliferative activity *in vitro*. A. Western blot analysis of TP expression in three colorectal cell lines, with recombinant TP protein (rTP) used as positive control.

B. Doxifluridine antiproliferative effect in colorectal tumor cells. Data are expressed as the percent absorbance relative to the control in each experiment (n = 3). C. Western blot analysis of TP expression levels in negative control (NC) and TP siRNA-transfected HCT116 cells. Arrows show TP bands. D. Antiproliferative effect of doxifluridine in siRNA-transfected HCT116 cells. Statistical analysis was performed using unpaired Student’s t-test (*P < 0.01) (n = 4).

(Explanations and figure labels are not translated into another language.)
Figure 3. Effect of TP on tumor growth inhibition by capecitabine in mice inoculated with colorectal tumor cells. Tumor-inoculated mice were randomized for administration of 539 mg/kg/day capecitabine (Cap-treated) or no treatment (non-treated). Arrows indicate capecitabine administration. Statistical analysis was performed using two-way analysis of variance followed by Tukey's multiple comparison test (*$P < 0.05$, †$P < 0.01$ vs. HCT116 non-treated). Results are expressed as mean ± SEM (n = 7–10).
Figure 4. Dependence of 123I-IIMU intracellular uptake and retention on TP expression levels in colorectal carcinoma cell lines. Intracellular uptake (A) and retention (B) of 123I-IIMU in HCT116 and DLD-1 cells were dependent on TP expression levels. Results are expressed as the mean ± SEM of triplicate experiments in one day.
Figure 5. Relation between ^{123}I-IIMU accumulation in tumors and capecitabine effect on tumor growth using mice inoculated with tumor cell lines. **A.** Accumulation of ^{123}I-IIMU in tumor-inoculated mice at 30 min postinjection. Statistical analysis was conducted using one-way analysis of variance followed by Tukey's multiple comparison test (*$P < 0.05$, †$P < 0.01$, n.s. = not significant). **B.** ^{123}I-IIMU accumulation in tumors was positively associated with the effect of capecitabine on tumor growth at 18 days after pretreatment. Results are expressed as the mean ± SEM of three to 10 independent experiments.
Figure 6. 123I-IIMU imaging of mice inoculated with tumor cells and immunohistochemistry for TP at 45 min postinjection. 123I-IIMU accumulation in tumor tissue depended on TP levels (A). Coronal (top) and transverse (bottom) images of 123I-IIMU SPECT/CT. Red arrows indicate HCT116 tumor. White arrows indicate DLD-1 tumor. Immunohistochemistry for TP (upper row) and hematoxylin-eosin staining (lower row) in HCT116 (left column) and DLD-1 (right column) tumor tissue sections from a mouse that underwent SPECT/CT (B). The same experiments were conducted in different animals at 30 or 180 min after administration, yielding similar results (Suppl. Figs. 2 and 3). Abbreviations: R, right side; L, left side; MAX, maximum; MIN, minimum. Scale bars = 50 μM.