Feasibility of affibody-based bioorthogonal chemistry-mediated radionuclide pretargeting

Mohamed Altai¹, Anna Perols², Maria Tournma¹, Bogdan Mitran³, Hadis Honarvar¹, Marc Robillard⁴, Raffaella Rossin⁴, Wolter ten Hoeve⁵, Mark Lubberink⁶, Anna Orlova³, Amelie Eriksson Karlström², Vladimir Tolmachev¹

¹Institute for Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
²School of Biotechnology, Division of Protein Technology, KTH Royal Institute of Technology, Stockholm, Sweden
³Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
⁴Tagworks Pharmaceuticals, High Tech Campus 11, 5656AE Eindhoven, The Netherlands;
⁵Syncom, Kadijk 3, 9747 AT Groningen, The Netherlands
⁶Institute for Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden

This research was financially supported by grants from the Swedish Cancer Society (grant 2012/354) and the Swedish Research Council (grants 521-2012-2228 and 621-2013-5135).

Corresponding author: Vladimir Tolmachev, Professor.

Institute for Immunology, Genetics and Pathology, Uppsala University, Se-75185, Uppsala; Sweden. Tel. +46184713414; Fax. +46184713432; E-mail Vladimir.tolmachev@igp.uu.se

First author: Mohamed Altai, postdoctoral fellow

Institute for Immunology, Genetics and Pathology, Uppsala University, Se-75185, Uppsala; Sweden. Tel. +46184713414; Fax. +46184713432; E-mail Mohamed.altai@igp.uu.se

Word count: 4998

Running title: Affibody radionuclide pretargeting.

Conflict of interest statement. The authors disclose no potential conflicts of interest.
ABSTRACT

Affibody molecules constitute a new class of probes for radionuclide tumor targeting. The small size of affibody molecules is favorable for rapid localization in tumors and clearance from circulation. However, high renal re-absorption of affibody molecules prevents the use of residualizing radiometals, including a number of promising low energy beta- and alpha-emitters, for radionuclide therapy. We tested a hypothesis that affibody-based pretargeting mediated by a bioorthogonal interaction between trans-cyclooctene (TCO) and tetrazine would provide higher accumulation of radiometals in tumor xenografts than in the kidneys. Methods: TCO was conjugated to the anti-HER2 affibody molecule Z2395. DOTA-tetrazine was labeled with indium-111 and lutetium-177. In vitro pretargeting was studied in HER2-expressing SKOV-3 and BT474 cell lines. In vivo studies were performed on BALB/C nu/nu mice bearing SKOV-3 xenografts.

Results: ^{125}I-Z_{2395}-TCO bound specifically to HER2-expressing cells in vitro with an affinity of 45±16 pM. ^{111}In-tetrazine bound specifically and selectively to Z_{2395}-TCO pre-treated cells. In vivo studies demonstrated HER2-specific ^{125}I-Z_{2395}-TCO accumulation in xenografts. TCO-mediated ^{111}In-tetrazine localization was shown in tumors, when the radiolabeled tracer was injected 4 h after an injection of Z_{2395}-TCO. At 1 h post injection, the tumor uptake of ^{111}In-tetrazine and ^{177}Lu-tetrazine was ca. 2-fold higher than the renal uptake. Pretargeting provided more than a 56-fold reduction of renal uptake of ^{111}In in comparison with direct targeting.

Conclusion: The feasibility of affibody-based bioorthogonal chemistry-mediated pretargeting was demonstrated. The use of pretargeting provides a substantial reduction of radiometal accumulation in kidneys, creating preconditions for palliative radionuclide therapy.

KEYWORDS:
affibody, tetrazine, \textit{trans}-cyclooctene, radionuclide pretargeting, engineered scaffold protein, radionuclide therapy.
INTRODUCTION

Radionuclide targeting of tumor-specific overexpressed cell-surface proteins has a potential to improve cancer therapy. Radionuclide imaging might help to identify patients with tumors expressing a particular target and therefore respond to a particular therapy based on antibodies or tyrosine kinase inhibitors (1). Delivery of cytotoxic radionuclides (e.g. beta-or alpha-emitters) might have strong palliative or even curative effects (2).

Two classes of substances have commonly been exploited for radionuclide targeting: monoclonal antibodies (and their derivatives) and peptide ligands to receptors overexpressed in tumors. Engineered scaffold proteins (ESP) constitute a new type of targeting agents for radionuclide tumor targeting (3). ESPs contain a robust framework providing conformational stability and variable surface amino acids. Randomization of variable amino acids enables selection of high affinity binders to different proteins using molecular display technology. Several ESPs, such as affibody (Affibody AB) molecules (4), designed ankyrin repeat proteins (5), fibronectin domains (6), anticalins (7), cysteine-knot peptides (8), and ADAPTs (9) have been successfully used for radionuclide imaging of therapeutic targets in preclinical studies. Anti-HER2 affibody molecules have demonstrated sensitive and specific imaging of HER2-expressing metastases of disseminated breast cancer in a clinical trial (10). The small size (4-20 kDa) of ESPs permits rapid extravasation and diffusion in the extracellular space, improving targeting. Rapid clearance of unbound tracer provides low background during imaging and low exposure of radiosensitive bone marrow during therapy. However, many radiometal-labeled ESPs, have high renal uptake (5,6,9,11). For example, affibody molecules and ADAPTs and/or products of their in vivo degradation undergo efficient renal re-absorption after glomerular filtration followed by proteolysis in the proximal tubuli (9,11). In the case of residualizing radiometal labels, this
results in a renal uptake that substantially exceeds the tumor uptake. This makes radionuclide therapy using unmodified ESPs problematic.

Earlier, we have shown that it is possible to appreciably reduce the renal uptake of radionuclides using affibody molecules with non-residualizing labels. Internalization of affibody molecules by cancer cells is slow (12-14), and the residualizing properties of a radionuclide are not critical for good tumor retention. Internalization of affibody molecules in proximal tubuli and the following proteolytic degradation is rapid; radiocatabolites of non-residualizing labels (radioiodine and $^{186/188}$Re in combination with some chelators) are cleared rapidly from the kidneys (15-17). This approach provided a residence time in tumors that was longer than in the kidneys. There are, however, certain limitations of this approach. High energy beta particles emitted by rhenium isotopes are better suited for treatment of bulky tumors, not small metastases. Low energy beta particles of iodine-131 are suitable for treatment of small metastases, but the high abundance high-energy gamma quanta emitted by this nuclide contributes appreciably to the whole body irradiation (18). Finding an approach for the reduction of renal uptake/retention of residualizing radiometal labels would enable the utilization of low-energy beta emitters, such as 177Lu and 161Tb, or alpha-emitting nuclides, such as 213Bi, 225Ac and 227Th. This would provide an efficient way to treat small metastases.

A possible way to solve this issue is the application of pretargeting (19). Pretargeting is a two-step process. At the first step, a primary agent containing a recognition tag is injected. When the primary agent is localized in the tumor and cleared from circulation, a radiolabeled secondary agent having high affinity to the recognition tag is injected. The secondary agent is selected to have a better biodistribution profile in comparison with the primary agent. Several approaches to pretargeting have been investigated, including variants based on avidin-biotin interaction (20),
hybridization of complementary nucleic acid analogs (21), bispecific antibody-hapten interaction (22) and bioorthogonal chemistry (23). However, many hours might be required to clear a primary agent completely from blood if it is antibody-based. Incomplete clearance would cause an interception of the radiolabeled secondary agent in blood and prolonged circulation time of the radiolabel. Antibodies bound to cancer cell might be internalized, and long waiting time before injection of the secondary agent is associated with disappearance of antibody-recognition tag conjugates from the cell surface.

The use of pretargeting is favorable for ESPs, as these agents are often slowly internalized by malignant cells and clear rapidly, within a few hours, from blood (9,12-14). This ensures that a large number of recognition tags would remain on the surface of pretargeted malignant cells at the time of injection of the radiolabeled secondary agent.

The use of bioorthogonal chemistry based on the inverse-electron-demand Diels–Alder reaction between trans-cyclooctene (TCO) and tetrazine (23,24) seems to be an attractive approach for ESP-based pretargeting. Radiometal-labeled DOTA-conjugated tetrazine has low uptake in kidneys (23). Re-engineering of the primary agent is not required for modification with TCO. Incorporation of a unique cysteine into the cysteine-free scaffold of affibody molecules or ADAPTs can provide site-specific conjugation of TCO-tags in a controllable manner.

The goal of this study was to test the hypothesis that the use of ESP-based bioorthogonal chemistry-mediated pretargeting enables specific tumor targeting and provides higher uptake of radiometals in tumors than in the kidneys. An anti-HER2 affibody molecule Z2395 containing a C-terminal cysteine was used as a model ESP. A maleimido derivative of TCO was site-specifically
conjugated to Z_{2395} (Fig. 1). The specificity of Z_{2395}-TCO targeting of HER2-expressing cells was evaluated *in vitro* and *in vivo*.
MATERIALS AND METHODS

Detailed description of materials, equipment and some methods used in this study are given in the Supplemental data, which are available at http://jnm.snmjournals.org.

Conjugation and Labeling

Detailed descriptions of the conjugation of maleimido derivative of TCO to the Z\textsubscript{2395} affibody molecule, radiiodination of Z\textsubscript{2395}-TCO conjugate and labeling of DOTA-decaethylene glycol (PEG\textsubscript{10})-tetrazine with 111In and 177Lu are presented in Supplemental data.

In vitro Evaluation

HER2-expressing ovarian carcinoma SKOV-3 (1.6 × 106 receptors/cell) and breast carcinoma BT474 (2 × 106 receptors/cell) cell lines were used in in vitro studies. Binding specificity, affinity of Z\textsubscript{2395}-TCO to HER2, cellular retention of primary targeting agent, cellular processing and internalization of 111In-tetrazine-TCO-Z\textsubscript{2395} adduct were studied as described in the Supplemental data. Cellular processing and internalization was evaluated using a method validated for affibody molecules earlier (12),

In vivo Studies

The animal experiments were planned and performed in accordance with national legislation on laboratory animals’ protection. The animal study was approved by the Ethics Committee for Animal Research in Uppsala, Sweden.
SKOV-3 cells (8×10^6 cells per mouse) were implanted in the right hind leg of female BALB/C nu/nu mice. An average animal weight was 18.4±1.6 g, and the average tumor weight was 0.24±0.11 g at the time of experiment. Mice were divided into thirteen groups (n=4-6). At the end of each experiment, the mice were anaesthetized and euthanized by cervical dislocation. Blood was withdrawn by heart puncture. The organ and tissue samples were collected, weighed and their radioactivity was measured along with standards to determine the percentage of injected dose per gram (%ID/g). In the case of dual nuclide studies, whole spectra of each sample were recorded. For 125I measurements, counts in the energy window of 4-70 keV were integrated, for 111In, in the window of 110-600 keV. The data were corrected for background, dead time and spillover.

In vivo Specificity of 125I-Z2395-TCO and Tetrazine. Two groups of mice were injected intravenously with 5 μg (0.67 nmol) 125I-Z2395-TCO (5 μg/100 μL PBS per mouse, ca. 10 kBq). To check the HER2-specificity of xenograft targeting, one group (n=4) was subcutaneously injected with 500 μg (66 nmol) of non-labeled recombinant ZHER2:342 affibody molecule 45 min before injecting 125I-Z2395-TCO. Mice were sacrificed at 5 h p.i. The second group (n=6) was injected with 1μg (~0.7 nmol) 111In-tetrazine (1 μg/100 μL PBS per mouse, ca. 30 kBq) 4 h after injecting 125I-Z2395-TCO, to test the feasibility of in vivo pretargeting. An extra group (n=4) was injected only with 1μg 111In-tetrazine (~0.7 nmol). Mice were sacrificed 1 h after injecting 111In-tetrazine and tissue samples were treated as mentioned above.

Influence of Injected Dose of Both Primary (Z2395-TCO) and Secondary (tetrazine) Agents on Pretargeting. Two groups of mice (n=5) were injected intravenously with 30 μg (4.1 nmol) 125I-Z2395-TCO (30 μg/100 μL PBS per mouse, ca. 30 kBq). Four hours after injection of 125I-Z2395-TCO, mice were either injected with 5.2 μg (4.1 nmol) 111In-tetrazine (1:1 tetrazine/Z2395-TCO ratio, 100 μL PBS per mouse, ca. 30 kBq) or with 26 μg (20.5 nmol) 111In-tetrazine (5:1
tetrazine/Z2395-TCO ratio, 100 μL PBS per mouse, ca. 30 kBq). One hour after injecting 111In-tetrazine-tetrazine, the animals were sacrificed and the biodistribution was measured.

In the case of 177Lu-tetrazine, three groups of mice (n=5) were injected with Z2395-TCO (30 μg/4.1 nmol). Four hours later, mice were injected with 177Lu-tetrazine to provide tetrazine:Z2395-TCO ratios of 2:1 (10.4 μg/8.2 nmol), 1:1 (5.2 μg/4.1 nmol) and 1:5 (1.04 μg/0.82 nmol). The biodistribution was measured at 1h after injection of 177Lu-tetrazine.

Influence of Time of Injection of Secondary Agent. Three groups of tumor bearing mice (n=4) were injected with 30 μg (4.1 nmol) Z2395-TCO (30 μg/100 μL PBS per mouse, ca. 30 kBq). Four, eight and fourteen hours after affibody injection, the mice received 5.2 μg (4.1 nmol) 177Lu-tetrazine (1:1 tetrazine/Z2395-TCO ratio, 100 μL PBS per mouse, ca. 130 kBq). The biodistribution was measured at 1h after injection of 177Lu-tetrazine.

Dosimetry Evaluation. Five groups of mice (n=4) were injected intravenously with 30 μg (4.1 nmol) Z2395-TCO. Four hours later mice were injected with 5.2 μg (4.1 nmol) 177Lu-tetrazine (1:1 tetrazine/Z2395-TCO ratio, 100 μL PBS per mouse, ca. 130 kBq). The biodistribution was measured at 1, 4, 24, 72 and 168 h after 177Lu-tetrazine injection. Radiation dosimetry was estimated as described Supplemental data.

Imaging using SPECT/CT

To confirm the capacity of an affibody-based Diels-Alder pretargeting to target HER2-expressing tumors in vivo, an imaging experiment was performed as described in Supplemental data. Images were acquired at 1h post-111In-tetrazine injection.
RESULTS

Conjugation and Labeling

The efficacy of maleimido-PEG4-TCO conjugation was 23.5±0.5 %. The HPLC purification of the conjugate provided purity of >90% (Suppl. Fig. 1A). The mass spectrum of the purified Z2395-TCO (calculated weight 7525 kDa, found 7525.6) is shown in Suppl. Fig. 1B.

Z2395-TCO was indirectly radiolabeled with 125I in 18.9±0.3% radiochemical yield with a specific activity of 0.07 MBq/µg (0.5MBq/nmol). The radiochemical purity of 125I-Z2395-TCO was 99.4±0.4%. DOTA-tetrazine was efficiently labeled with 111In and 177Lu. For indium-111, the labeling yield was 99.5±0.5 % (n = 9) and the specific activity was 1.44 MBq/nmol. For lutetium-177, the yield of 99.4±0.5 % (n=5) and the specific activity of 23.6 MBq/nmol was achieved. The high yields excluded the need for further purification, and the labeled compound was diluted with PBS for further experiments. The gel electrophoresis confirmed the identity and purity of labeled tetrazine (data not shown).

In vitro Binding Specificity and Affinity

In vitro binding of 111In-tetrazine to Z2395-TCO pre-treated HER2-expressing cells exceeded non-specific uptake by untreated cells 10-fold, p<0.05 (Fig. 2). There was a highly significant reduction of 111In-tetrazine binding to both cell lines when Z2395-TCO binding was prevented by pre-saturation of receptors using non-labelled anti-HER2 affibody or under competition with a large excess of non-labeled tetrazine (Fig. 2). These data demonstrate that 111In-tetrazine binding depends on the interaction of Z2395-TCO with HER2 and on the interaction of tetrazine with TCO and confirm in vitro pretargeting.
According to LigandTracer measurements, the dissociation constant at equilibrium (K_D) for binding of ^125^I-Z2395-TCO HER2-expressing cells was 45±16 pM. The dissociation constant for ^111^In-tetrazine-Z2395-TCO was 9±7 pM.

The cellular retention of ^125^I-Z2395-TCO by HER2-expressing cells is presented in Fig. 3A. The retention profile was similar for both cell lines; an initial decrease of cell-associated activity followed by slower decline. The retention was better for SKOV-3 than for BT474; 54.6±0.5 % vs. 33.4±0.5 % at 24 h, respectively.

The data concerning the cellular processing and internalization of ^111^In-tetrazine-TCO-Z2395 is presented in Figs. 3B and 3C. The radioactivity was efficiently retained by HER2-expressing cells. The overall retention of the conjugate by SKOV-3 cells was higher than that for BT474. Internalization was slow with most of the retained radioactivity being membrane-bound. Apparently, cellular retention of the total radioactivity was quite good, with 63±1.7 and 72±2 % of cell-associated radioactivity retained after 24 h of incubation at 37°C in BT474 and SKOV-3 respectively. On the other hand, the internalization of ^111^In-tetrazine-TCO-Z2395 was relatively slow, with only 30±2% (BT474) and 22±1 % (SKOV3) of total cell-associated radioactivity internalized at 24 h.

In vivo Studies

The results of the in vivo specificity test showed that tumor accumulation of primary targeting agent Z_{2395}-TCO is HER2-mediated. Pre-saturation of HER2 decreased the tumor-associated radioactivity from 21±4 to 2.6±0.3 %ID/g (Fig. 4). Both blood and kidneys also showed a significantly lower concentration of radioactivity in the blocking group.
Comparison of 111In-tetrazine biodistribution (1 h pi) with and without pre-injection of Z_{2395}-TCO is presented in Fig. 5. In the case of pre-injection, the tumor uptake (3.2±0.7 %ID/g) was ca. 20-fold higher than without pre-injection (0.16±0.02 %ID/g), p <0.0005. The uptake in normal organs and tissues was also significantly (2-3 fold) higher after pre-injection (p<0.05).

Increasing the injected dose of 125I-Z_{2395}-TCO from 5 µg (0.67 nmol) to 30 µg (4.1 nmol) showed significant but small difference in tissue-associated radioactivity including the tumor (21±4 vs. 17±2 %ID/g) (Suppl. Fig. 2A). However, the higher dose of 125I-Z_{2395}-TCO (30 µg/4.1 nmol) increased the tumor localization of 111In-tetrazine significantly from 3.2±0.7 to 9.7±1.6 %ID/g (Table 1 and Suppl. Fig. 2B). At this higher affibody dose there was no increase of 111In-tetrazine accumulation in other organs and the tumor-to-kidney ratio was 2.1±0.5. The uptake of 177Lu-tetrazine was significantly lower than 111In-tetrazine in almost all organs including the tumor (5.4±0.8 vs. 9.7±1.6 %ID/g) and kidneys (2.5±0.3 vs. 5±2 %ID/g) (Table 1.) Due to the more rapid blood clearance of 177Lu-tetrazine, the tumor-to-blood ratio for 177Lu-tetrazine (19.5±2.2) was higher than for 111In-tetrazine (5.7±0.8). However the tumor-to-kidney ratio was the same.

The tumor-associated radioactivity was significantly reduced (p<0.05) when the injected 111In-tetrazine-to-Z_{2395}TCO ratio was increased by 5-fold (9.7±1.6 vs. 2.9±0.4 %ID/g) (Table 1 and Suppl. Fig. 3). As a result the tumor-to-kidney ratio decreased to 0.8±0.1. There was no significant difference between tumor uptake of 177Lu-tetrazine when tetrazine-to-Z_{2395}-TCO ratio was 2:1 (3.8±1.0 %ID/g) and 1:1 (4.8±1.3 %ID/g). The use of tetrazine-to-Z_{2395}-TCO ratio of 1:5 resulted in significant reduction of the tumor uptake (0.9±0.1 %ID/g) (Fig. 6A).
Increasing the time between injections of the primary and secondary agents from 4 to 8 h didn’t result in any significant difference in 177Lu-tetrazine tumor uptake (4.8±1.3 vs. 4.6±0.8 %ID/g) (Fig. 6B). The tumor localization of 177Lu-tetrazine decreased significantly when the secondary agent was injected 14 h, post Z2395-TCO injection.

Measurement of 177Lu-tetrazine biodistribution up to 1 week after radioactivity injection demonstrated that tumors and kidneys were the only organs with noticeable retention of radioactivity (Suppl. Table 1). Calculated areas under curves are presented in Suppl. Table 2. The calculated areas under curves were bigger for the tumors than for any other tissue, including kidney.

Estimated absorbed doses for pre-targeted 177Lu-tetrazine in humans are presented in Suppl. Table 3. The primary critical organ for 177Lu-tetrazine pretargeting was the kidney (0.021 mGy/MBq). The effective dose for pretargeted tetrazine is 0.005 mSv/MBq.

Imaging confirmed the results of the biodistribution experiments. The tumor xenografts were the only sites with prominent accumulation of radioactivity 1 h after injecting affibody pretargeted 111In-tetrazine (Fig. 7A).
DISCUSSION

Radionuclide pretargeting is usually applied in combination with monoclonal antibodies or their derivatives to reduce the residence time of a radionuclide in blood and spare the bone marrow. Here, pretargeting is used for correction of the undesirable biodistribution profile of a small targeting protein having rapid clearance and high kidney uptake.

This study demonstrated that 125I-Z2395-TCO retained picomolar affinity to HER2-expressing cell lines. In vitro binding of 111In-tetrazine to Z2395-TCO treated cells was clearly dependent on tetrazine-TCO interaction and based on specific binding of Z2395-TCO to HER2-expressing cells (Fig. 2).

In vivo specificity test (Fig. 4) demonstrated a high (21±4 %ID/g at 5 h p.i.) specific uptake of 125I-Z2395-TCO in HER2-expressing SKOV-3 xenografts. Apparently, the use of a PEG4 linker was sufficient to counterbalance the lipophilicity of TCO, since hepatic uptake of 125I-Z2395-TCO was low, at only 1.0±0.3 %ID/g. In agreement with earlier data (25), an increased injected dose of 125I-Z2395-TCO to 30 µg (4.1 nmol) reduced the tumor uptake only marginally, from 21±4 to 17±2 %ID/g (Suppl. Fig. 2A). This allowed for increasing amount of TCO delivered to the tumors from 0.14±0.03 to 0.70±0.08 nmol/g. This resulted in more than a three-fold increase of 111In-tetrazine localization in xenografts (Table 1 and Suppl. Fig. 2B). Importantly, uptake of 111In-tetrazine did not increase in any other organ or tissue.

Comparison of 111In-tetrazine biodistribution with and without pre-injection of Z2395-TCO (Fig. 5) demonstrates that the tumor uptake of 111In-tetrazine is TCO-mediated. In addition, an increase of tetrazine-to-affibody ratio of 1:1 (5.2 µg/4.1 nmol:30 µg/4.1 nmol) to 5:1 (26 µg/20.5 nmol:30 µg/4.1 nmol) decreased tumor uptake significantly (p <0.05) (Table 1. and Suppl. Fig.
which suggests a saturable character of tetrazine accumulation in Z2395-TCO-treated xenografts. Taken together, this gives strong evidence that localization of radionuclide is mediated by interaction of tetrazine with TCO.

The most remarkable aspect was the low renal uptake of 111In-tetrazine, 5±2 %ID/g (injected Z2395-TCO dose 30 µg/4.1 nmol, tetrazine-to-affibody ratio 1:1). Earlier, we evaluated biodistribution of Z2395, which was labeled with 111In using DOTA conjugated to the C-terminal cysteine (26). The same mouse strain, BALB/C nu/nu, was used in that study. The renal uptake of 111In-DOTA-Z2395 at 1h after injection was 284±22 %ID/g. Thus, pretargeting provided more than a 56-fold reduction of renal uptake of a radiometal in comparison with direct targeting. The microSPECT images (Fig. 7) demonstrate the difference clearly. This confirmed our hypothesis that rapid internalization of affibody molecules in kidneys would remove Z2395-TCO from the lumen of proximal tubuli and make it inaccessible for the radiometal-labeled tetrazine.

Pre-injection of Z2395-TCO results in higher blood retention and higher renal uptake of 111In-tetrazine (Fig. 5). It is likely that the residual Z2395-TCO in blood reacts with injected tetrazine. Moreover, the elevated renal uptake in this case is, most likely, due to re-absorption of 111In-tetrazine-Z2395-TCO adduct. We tested the hypothesis that it is possible to saturate Z2395-TCO in blood without affecting tumor uptake. However, an increase of tetrazine-to-affibody ratio from 1:1 to 5:1 did not decrease neither the blood concentration nor renal uptake significantly. Apparently, alternative approaches are required for reduction of the blood retention of radiometal-labeled-tetrazine after Z2395-TCO pre-injection.

A surprising finding of this study is the more rapid blood clearance and significantly lower uptake of 177Lu-tetrazine in tumors and kidneys compared to 111In-tetrazine. The only difference
between these substances is the DOTA-metal complex geometry. DOTA derivative complex with In(III) is a monocapped trigonal prism geometry while the complex with Lu(III) might have square antiprism or twisted square antiprism geometries (27). However, it was shown earlier that such subtle differences might be associated with substantial differences in biodistribution of radiolabeled peptides (26,28).

Preliminary assessment of dosimetry (Suppl. Table 2) demonstrated that kidney is a critical organ. The tumor dose might exceed the renal dose ca. 1.4-fold. With a renal absorbed dose limit of 27 Gy (29) this would enable a tumor dose of 37 Gy. This might be sufficient to obtain a palliation effect with some tumor shrinkage (30). Apparently, further optimization of the method is required. The most obvious approaches, such as an increase of the time span between the injection of primary and secondary agents or modification of tetrazine-to-affibody ratio, appeared to be inefficient. A possible way might be modification of physicochemical properties of chelator-tetrazine conjugate by variation of PEG length, chelator structure or the used therapeutic radionuclide.

CONCLUSION

This study provides proof-of-principle for bioorthogonal chemistry-mediated ESP-based pretargeting. The pretargeting enabled more than a 50-fold reduction of renal uptake of radiometals in comparison with direct ESP-based targeting. After optimization, this strategy may be used for radionuclide therapy.
REFERENCES

FIGURE 1. Structure of primary targeting conjugate TCO-PEG$_4$-Z$_{2395}$ (top) and secondary targeting agent DOTA-PEG$_{10}$-tetrazine (bottom).
FIGURE 2. Binding of 111In-tetrazine to SKOV-3 (left) and BT474 (right) cells when cells were pre-incubated with Z2395-TCO for 1 h prior to the addition of 111In-tetrazine (Pretargeting), cells are incubated with an excess amount of unlabeled anti-HER2 affibody molecule ZHER2:342 for 10 min followed by the addition of Z2395-TCO and 111In-tetrazine (Block with Z342), cells are pre-incubated with Z2395-TCO followed by the addition of excess unlabeled-tetrazine and finally the addition of 111In-tetrazine (Block with tetrazine) and when 111In-tetrazine was added directly to cells (111In-tetrazine only). Data represent the average±SD (n=3).
FIGURE 3. Cellular retention of 125I-Z2395-TCO (A) and processing of 111In-tetrazine-Z2395-TCO by BT474 (B) and SKOV-3 (C) cells. Data represent the average±SD (n=3).
FIGURE 4. In vivo targeting specificity of 125I-Z2395-TCO in mice bearing SKOV-3 xenografts at 5 h p.i. The blocked group was subcutaneously preinjected with an excess amount of nonlabeled affibody molecule. Data represent the average±SD (n=5). Asterisk marks a significant difference (p<0.05).
FIGURE 5. Biodistribution of 111In-tetrazine in mice bearing SKOV-3 xenografts (no pre-injection) and when mice were intravenously pre-injected with 5 µg (0.67nmol) Z$_{2395}$-TCO (pre-injection). Data are presented as the average±SD (n=5). Asterisk marks a significant difference (p<0.05).
FIGURE 6. Factors influencing pretargeting of 177Lu-tetrazine in mice bearing SKOV-3 xenografts. All mice were pre-injected with 30µg/4.1nmol Z$_{2395}$-TCO. A. Biodistribution of 177Lu-tetrazine at 1 h p.i. Mice were pre-injected with Z$_{2395}$-TCO four hours before injection of 177Lu-tetrazine. Tetrazine-to- Z$_{2395}$-TCO molar ratios were 2:1 (10.4 µg/8.2 nmol:30 µg/4.1 nmol), 1:1 (5.2 µg/4.1 nmol:30 µg/4.1 nmol) and 1:5 (1.04 µg/0.82 nmol:30 µg/4.1 nmol). B. Biodistribution of 177Lu-tetrazine (4.1 nmol) at 1 h p.i. when mice were pre-injected with Z$_{2395}$-TCO four, eight and fourteen hours prior to 111In-tetrazine injection. Data represent average±SD (n=4).
FIGURE 7. A. SPECT/CT image of mouse bearing SKOV-3 xenograft pretargeted with 30 µg (4.1 nmol) Z$_{2395}$-TCO and 4 h later injected with 111In-tetrazine injection. The image was acquired 1 h after injection of 111In-tetrazine. B. SPECT/CT image of mouse injected directly with 111In-DOTA-Z$_{2395}$ (1 h) (Image reprinted with permission from (26). Copyright 2013 American Chemical Society).
Table 1. Biodistribution of 111In-tetrazine in BALB/C nu/nu mice bearing SKOV-3 xenografts at 1h p.i. Z$_{2395}$-TCO was pre-injected 4h prior to 111In-tetrazine injection. Data are presented as an average % ID/g ± SD (n=5).

<table>
<thead>
<tr>
<th>Injected dose of Z$_{2395}$-TCO (µg/nmol)</th>
<th>30/4.1</th>
<th>30/4.1</th>
<th>30/4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injected dose of tetrazine (µg/nmol)</td>
<td>111In</td>
<td>177Lu</td>
<td></td>
</tr>
<tr>
<td>[1:1]*</td>
<td>5.2/4.1</td>
<td>26/20.5</td>
<td>5.2/4.1</td>
</tr>
<tr>
<td>[5:1]*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>1.7±0.4</td>
<td>1.3±0.1</td>
<td>0.27±0.02</td>
</tr>
<tr>
<td>Lung</td>
<td>1.1±0.1</td>
<td>1.1±0.23</td>
<td>0.47±0.09</td>
</tr>
<tr>
<td>Liver</td>
<td>0.6±0.1</td>
<td>0.53±0.07</td>
<td>0.25±0.02</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.4±0.1</td>
<td>0.4±0.1</td>
<td>0.13±0.02</td>
</tr>
<tr>
<td>Kidney</td>
<td>5±2</td>
<td>3.8±0.7</td>
<td>2.5±0.3</td>
</tr>
<tr>
<td>Tumor</td>
<td>9.7±1.6</td>
<td>2.9±0.4</td>
<td>5.4±0.8</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.3±0.2</td>
<td>0.13±0.03</td>
<td>0.14±0.17</td>
</tr>
<tr>
<td>Bones</td>
<td>0.3±0.1</td>
<td>0.18±0.04</td>
<td>0.14±0.08</td>
</tr>
</tbody>
</table>

* [Molar ratio between 111In/177Lu-tetrazine and Z$_{2395}$-TCO].

† Significant difference between 111In/177Lu-tetrazine.