64Cu-DOTATATE for non-invasive assessment of atherosclerosis in large arteries and its correlation with risk factors: head-to-head comparison with 68Ga-DOTATOC in 60 patients

Running title: 64Cu-DOTATATE and Atherosclerosis

*Catarina Malmberg¹, *Rasmus S. Ripa¹, Camilla B. Johnbeck¹, Ulrich Knigge², Seppo W. Langer³, Jann Mortensen¹, Peter Oturai¹, Annika Loft¹, Anne Mette Hag¹, Andreas Kjær¹

¹Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet & Cluster for Molecular Imaging, University of Copenhagen, Copenhagen, Denmark

²Department of Surgical Gastroenterology C & Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark

³Department of Oncology, Rigshospitalet, Copenhagen, Denmark.

*These authors contributed equally to the work

Wordcount: 3974
Correspondence:

Dr Rasmus S. Ripa, MD, DMSc, Department of Clinical Physiology, Nuclear Medicine & PET, KF-4012 Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark. E-mail: ripa@sund.ku.dk
Abstract

Background: The somatostatin receptor subtype 2 (SSTR2) is expressed on macrophages, an abundant cell type in the atherosclerotic plaque. Visualization of SSTR2, for oncological purposes, is frequently made using the 1,4,7,10-tetraazacyclodecane-1,4,7,10-tetraacetic acid (DOTA)-derived somatostatin analogues DOTA-Tyr3-octreotide (DOTATOC) or DOTA-Tyr3-octreotate (DOTATATE) for positron emission tomography (PET). We aimed to compare the uptake of the PET-tracers 68Ga-DOTATOC and 64Cu-DOTATATE in large arteries, in assessment of atherosclerosis by non-invasive imaging technique, combining PET and CT. Further, the correlation of uptake and cardiovascular risk factors was investigated.

Methods: Sixty consecutive patients with neuroendocrine tumors underwent both 68Ga-DOTATOC and 64Cu-DOTATATE PET/CT-scans, in random order. For each scan, the maximum and mean standardized uptake values (SUV) were calculated in five arterial segments, respectively. In addition, blood-pool corrected target-to-background ratio (TBR) was calculated. Uptake of the tracers was correlated with cardiovascular risk factors collected from medical records.

Results: We found detectable uptake of both tracers in all arterial segments studied. Uptake of 64Cu-DOTATATE was significantly higher than 68Ga-DOTATOC in the vascular regions both when calculated as maximum and mean uptake. There was a significant association between Framingham risk score and the overall maximum uptake of 64Cu-DOTATATE using SUV ($r=0.4; p=0.004$) as well as TBR ($r=0.3; p=0.04$), while no
association was found with 68Ga-DOTATOC. The association of Framingham risk score and maximum SUV of 64Cu-DOTATATE was found driven by BMI, smoking and diabetes ($p<0.001$, $p=0.032$, $p=0.025$, respectively).

Conclusions: In a series of oncologic patients, vascular uptake of 68Ga-DOTATOC and 64Cu-DOTATATE was found, with highest uptake of the latter. Uptake of 64Cu-DOTATATE, but not of 68Ga-DOTATOC, was correlated with cardiovascular risk factors, suggesting a potential role for 64Cu-DOTATATE in assessment of atherosclerosis.

Keywords:

PET/CT, atherosclerosis, molecular imaging, somatostatin receptor, macrophages.
Introduction

Atherosclerosis is a systemic condition that can evolve to manifest cardiovascular disease, with potential fatal stroke or myocardial infarction as result. Even though atherosclerosis is defined as a systemic condition, it consists of localized progressive plaques that can give rise to symptoms or proceed in a silent asymptomatic stage (1). Standard diagnosing of atherosclerosis include physical exam, diagnostic tests as blood tests, ECG, ankle/brachial index, ultrasound and invasive tests as angiography, intra-vascular coronary ultrasound and angioscopy (2,3). The examinations all vary in sensitivity, specificity, reproducibility and availability. With emerging research identifying and unravelling cellular and molecular mechanisms of the changes in the progressive atherosclerotic plaque, new doors in diagnosing both clinical and subclinical stages of the disease have opened. Further, findings of molecular targets and cellular markers that are involved in the disease have led to development of new and non-invasive diagnostic techniques.

One particular target is the macrophage which is an abundant cell type in the plaque and highly active in inflammation, a key-process in progressive atherosclerosis. It migrates into the arterial intima as a monocyte where it matures to become a phagocytic macrophage. Various processes and cellular targets involved with the presence of this cell type have been investigated and identified as targets for positron emission tomography (PET), with expression of the somatostatin receptor, a G
protein-coupled seven transmembrane protein, being one of them. Five human somatostatin receptors have been identified and in atherosclerotic plaques the somatostatin receptor 2 (SSTR2) is the most frequent (4-6). The somatostatin analogues DOTA-Tyr3-octreotide (DOTATOC) and DOTA-Tyr3-octreotate (DOTATATE) bind to somatostatin receptors, with highest affinity for the SSTR2. Hence, they might be potential tracers for molecular imaging of atherosclerosis (7,8). A recent prospective study in patients with symptomatic carotid stenosis has indicated that uptake of 64Cu-DOTATATE in a marker of activated macrophages within the plaque (9).

In our study, DOTATOC was labeled with the radionuclide 68Ga and DOTATATE with 64Cu. 68Ga is produced by a 68Ge/68Ga generator that can last up to 9-12 months because of the 68Ge half-life of approximately 270 days. 68Ga has a physical half-life of 68 minutes, which is compatible with the kinetics of most peptides. This makes 68Ga a favorable positron emitter, independent of an on-site cyclotron and with fast target localization and blood clearance, with mainly excretion through the kidneys. 64Cu, on the other hand, is generated on a cyclotron and has a half-life of 12.7 hours. The long half-life of 64Cu allows for early as well as late PET-scans, even the day after injection. It has a substantially shorter positron range than 68Ga, 1 vs 4 mm, rendering it a much better spatial resolution, but it has a lower positron abundance (10-14).
The objective of this study was to evaluate the use of two somatostatin receptor-binding PET tracers in assessment of the large arteries. The uptake of the tracers was compared in various vascular regions and the correlation with known cardiovascular risk factors was investigated, to support the hypothesis that vascular lesions containing macrophages are present in individuals with a recognized risk for atherosclerosis.
Methods

Study design and patient selection

We performed the analysis on scans from an on-going clinical trial comparing 68Ga-DOTATOC and 64Cu-DOTATATE PET/CT in patients with neuroendocrine tumors. All patients (n=60) included in the original trial were included in the present sub-study. The original inclusion criterion was: verified neuroendocrine tumor with clinical indication for 111In-octreotide single photon emission tomography (SPECT)/CT. Exclusion criteria were age below 18, pregnancy/lactation, performance status 0-2, and chemotherapy or radiation therapy in the previous 5 weeks.

The study protocol complied with the Declaration of Helsinki (version 2013) and was approved by the Regional Scientific Ethical Committee. Written informed consent was obtained from all participants (protocol number H-D-2008-045).

For this sub-study, the patients were reviewed regarding the two PET/CT-scans and known cardiovascular risk factors were collected retrospectively from their medical records. The investigated cardiovascular risk factors include age, gender, BMI, smoking habits, diabetes, arterial hypertension defined by ongoing treatment, and hypercholesterolemia defined as ongoing treatment hereof. Because of few available cholesterol-levels, the Framingham risk score was calculated by use of BMI, according with Framingham Heart Study (15).
Imaging procedures and analysis

All patients underwent hybrid PET/CT-scans with 68Ga-DOTATOC and 64Cu-DOTATATE, in random order as soon as possible but with maximum 60 days in between. Each patient had the two examinations performed on the same hybrid PET/CT scanner (Siemens Biograph mCT64, Siemens, Berlin, Germany). For the 68Ga-DOTATOC-scan, 150 MBq was injected intravenously and, after 45 minutes, whole-body PET was performed in direct connection with a whole-body CT-scan (120 kV, effective mAs 40) for attenuation correction of the PET and anatomical localization of the vessels. Likewise, the PET/CT-scan after intravenous injection of 200 MBq of 64Cu-DOTATATE was performed, 60 minutes following the injection. The PET scans were acquired in three-dimensional list mode for 3 min per bed position. The PET reconstruction settings were CT based attenuation correction, resolution-recovery (point spread function, TrueX) and time-of-flight (3 iterations, 21 subsets, zoom 1.0). A 2 mm full width at half maximum Gaussian filter was the applied to all images post-reconstruction.

Anatomical co-registration of CT and PET was carefully checked before assessment of vascular tracer uptake. Uptake was determined in five distinct vascular segments (the aortic arch; the descending thoracic aorta; the proximal and distal abdominal aorta; and the common iliac arteries). For analysis, three dimensional (3D) regions of interest (ROIs) were drawn manually slice by slice on both scans in these particular
regions using Inveon Research Workplace (version 4.1, Siemens, Erlangen, Germany),

avoiding adjacent hot spots arisen from lymph nodal metastases etc. The mean and

maximal standardized uptake value (SUV_{mean} and SUV_{max}, respectively) that correct for

injected dose, patient weight and time to acquisition were calculated for each 3D ROI

(figure 1). In addition, each patient had “whole artery SUV_{mean}” and “whole artery

SUV_{max}” calculated as the average of the 5 SUVs in each patient. Target-to-background

ratio (TBR) was determined by dividing SUV of the vascular segment with SUV_{mean}

from at least four 3D ROIs placed in the superior vena cava (representing the mean

evolution).

The coronary artery calcium score was assessed using Syngo.via version VB 10A

(Siemens Healthcare, Erlangen, Germany) and the Agatston equivalent method with

an attenuation threshold of 130 Hounsfield units.

Statistical analysis

Statistical analyses were made using IBM SPSS statistics (version 22, New York, USA).

The analysis and comparison of the uptake of the two tracers was made using the

Bland-Altman method. According to this method, the mean difference between

measurements is defined as “bias” and represents the systemic error in

measurements. The statistical significance of the bias was assessed using the t-test.

The 95% limits of agreement were defined as mean difference ±1.96 times the

standard deviation. All limits of agreement were calculated assuming normal
distribution of the differences. The associations between tracer uptake and cardiovascular risk factors were investigated using Spearman correlation and subsequent multiple regression with stepwise backward elimination to find potential predictors.
Results

Patient population

All 60 patients participating in the original study were also included in the present sub-study. The baseline characteristics including cardiovascular risk factors are shown in table 1. Framingham risk score describing the 10-year risk for cardiovascular disease, as calculated from BMI, showed 22% of patients with <10% risk (n=13), 17% with 10-20% risk (n=10), 20% with 20-30% risk (n=12), 27% with >30% risk (n=16). For 15% of the patients (n=9) it was not possible to calculate the risk, due to missing data. Forty-five % (n=27) had a coronary calcium score of zero, whereas 15% (n=9) had a score above 400.

PET/CT with 64Cu-DOTATATE and 68Ga-DOTATOC

The comparison of the uptake of the two tracers (figure 2a) showed, on Bland-Altman plot, that 64Cu-DOTATATE had a significantly higher uptake value than 68Ga-DOTATOC when calculated as whole artery SUV$_{\text{max}}$, p<0.001. The 95% limits of agreement were from -2.3 to 5.7. The uptake of 64Cu-DOTATATE was also significantly higher measured as whole artery SUV$_{\text{mean}}$, p<0.001, with 95% limits of agreement from -0.5 to 1.1 (Figure 2b). Representative images of high focal and low diffuse uptake of the two tracers are shown in figure 3. Also, venous SUV was higher with 64Cu-DOTATATE as compared to 68Ga-DOTATOC and the numeric difference between arterial and venous uptake was highest with 64Cu-DOTATATE (figure 4).
The mean difference between uptake of the tracers (SUV) was also calculated in the five regions respectively, with significant results in all five artery segments, showing higher uptake of 64Cu-DOTATATE, as seen in table 2.

Correlation with risk factors

The association between tracer uptake and risk factors was investigated using both SUV_{mean} and SUV_{max} in the five artery segments, for both tracers. We found an overall significant association between maximum 64Cu-DOTATATE uptake (whole artery SUV_{max}) and Framingham risk score ($r=0.4; \ p=0.004$, figure 5a), whereas maximum 68Ga-DOTATOC (whole artery SUV_{max}) did not correlate to Framingham risk score ($p=0.3$, figure 5b). Whole artery SUV_{mean} did not correlate with Framingham risk score, neither with 64Cu-DOTATATE ($r=0.1; \ p=0.4$) nor with 68Ga-DOTATOC ($r=-0.3; \ p=0.1$).

Similar results were found when using TBR rather than SUV, but with a lower correlation between maximum 64Cu-DOTATATE uptake (whole artery TBR_{max}) and Framingham risk score ($r=0.3; \ p=0.04$), and no correlation between Framingham risk score and 68Ga-DOTATOC uptake.

The association between maximum 64Cu-DOTATATE uptake and Framingham risk score was consistently found in three of the five vascular regions (descending thoracic aorta, proximal part of the abdominal aorta and in the iliac arteries), whereas 68Ga-DOTATOC was only inversely correlated with Framingham risk score in one region (distal part of the abdominal aorta), Table 3.
Multiple regression including gender, age, BMI, diabetes, smoking, systolic blood pressure, coronary calcium score, and treatment for hypertension and treatment for hypercholesterolemia, showed that BMI, smoking, diabetes and coronary calcium score were independent predictors of SUV$_{max}$ with 64Cu-DOTATATE (p<0.001; p=0.01; p=0.005; p=0.03, respectively).

Discussion

We present here the first comparison of arterial uptake of 64Cu-DOTATATE with 68Ga-DOTATOC in a population unselected for cardiovascular risk profile using hybrid PET/CT. We found a higher uptake of 64Cu-DOTATATE and wide limits of agreement for maximum uptake (SUV$_{max}$) of the two tracers. In addition, we found results in support of an association between 64Cu-DOTATATE and cardiovascular risk factors suggesting this radiotracer as a potential non-invasive biomarker of cardiovascular risk. This result supports our recent finding in patients with severe carotid stenosis. Where 64Cu-DOTATATE uptake in excised carotid plaques were associated with the gene expression of a marker of alternatively activated macrophages (9). Together, it therefore may seem that 64Cu-DOTATATE may be valuable in imaging of atherosclerosis both in patients with and without known atherosclerotic cardiovascular disease.

The use of PET-technique to visualize atherosclerosis was initiated by the finding that patients scanned after injection of fluorodeoxyglucose (FDG), labelled with the
radionuclide 18F, for tumor visualization, also showed arterial uptake of the tracer (16). The first clinical study with PET-imaging of atherosclerosis, published in 2002(17), was consequently performed using 18F-FDG, which is a marker for uptake of glucose and hereby metabolism in tissue. The uptake of FDG has later been shown to correlate significantly with plaque macrophage content, with other circulating inflammatory biomarkers (18-21) and known cardiovascular risk factors (6,22). Therefore, hope has risen that FDG might be used to evaluate therapeutic intervention (23). Following the optimistic results that PET-scans with 18F-FDG have given, additional and more specific tracers have been developed, e.g. tracers targeting macrophages. Whilst 18F-FDG visualizes the metabolism of the cell and therefore the physiological state of inflammation that a given cell in an atherosclerotic plaque is in, targeting a macrophage-expressed receptor could be a more specific tracer.

The aim of this study was to compare the uptake of two somatostatin receptor-binding PET-tracers in large arteries, and evaluate the use of them in PET/CT in assessment of atherosclerosis. These tracers have earlier been used and compared in connection with cancer diagnostics, primarily neuroendocrine tumors (24-26). Furthermore, 68Ga-DOTATATE has previously been assessed in relation to inflammation in aorta and compared to 18F-FDG (27). There are to our knowledge no studies that have compared the uptake of DOTATOC and DOTATATE in aorta in addition to their possible role for risk evaluation.
Both DOTATOC and DOTATATE are somatostatin analogues conjugated with the chelator 1,4,7,10-tetraazacyclodecane-1,4,7,10-tetraaceticacid (abbreviated DOTA), which hereafter are labeled with radiopharmaceuticals to be visualized on PET-scan. The difference between the peptides is a replacement of octreotide C-terminal threoninol (DOTATOC) to the natural amino acid threonine which produces octreotate (DOTATATE). When the peptides are labeled with 67Ga, they both bind to the SSTR2 with exceptional affinity, however highest for DOTATATE (7). Based on this, and other previous studies (7,14,28,29) we would expect an uptake of both tracers in regions with plaque formations and furthermore that the, in our case, 64Cu-labeled DOTATATE would show higher focal uptake in aorta than 68Ga-DOTATOC.

We found a consistent difference between uptake of the tracers calculated as SUV_{max}, SUV_{mean}, TBR_{max}, and TBR_{mean} in all tested vascular regions. All SUV results show highest uptake of 64Cu-DOTATATE. This was not unexpected, since 64Cu has shorter positron range (\sim1 mm) compared to that of 68Ga (\sim4 mm). 64Cu is thus less sensitive to both spillover and partial volume loss. In concordance with this we found especially SUV_{max} to have wide limits of agreements when comparing 64Cu-DOTATATE with 68Ga-DOTATOC. The difference in affinity between the tracers is also consistent with the higher SUV of DOTATATE than DOTATOC in the vascular regions. It should be acknowledged that a higher PET-signal is preferable when assessing plaques, because of their small dimensions.
We also investigated association between the uptake of tracer and classic cardiovascular risk factors. A positive correlation reinforces the theory that individuals with a certain behavior and phenotype, known to have higher risk of developing atherosclerosis also would have high tracer uptake (30).

The results showed an association between Framingham risk score and overall maximum 64Cu-DOTATATE uptake whereas overall 68Ga-DOTATOC uptake was not associated to the risk score. This is important methodological information since studies of atherosclerosis using 68Ga-labeled somatostatin-receptor tracers may overlook true differences. Previous studies have shown a high congruence between 68Ga-DOTATATE and 68Ga-DOTATOC binding (24,31). Therefore, it is our hypothesis that the difference in both measured vessel-wall uptake (figure 2) and Framingham risk correlation (figure 5) is primarily caused by the difference in radiotracer emission energy between 64Cu and 68Ga and thus related to the spatial resolution of the examination rather than a physiological difference in tracer binding. Still, other studies have shown correlation between DOTATATE labeled with 68Ga and risk factors (6,8,27). However, more atherosclerotic vessels in these studies may be the cause hereof.

As expected, we only found an association between Framingham risk score and SUV_{max}, whereas SUV_{mean} did not correlate. This is in concordance with previous studies (6,8,27) and further supports the hypothesis that vascular 64Cu-DOTATATE
uptake is heterogeneous and could serve as a marker of more advanced and potentially more vulnerable lesions. Similarly, we have previously found heterogeneous uptake of FDG in atherosclerotic carotid plaques (18).

A limitation of the study is the lack of histological samples to validate that the uptake of tracer is actually from vascular lesions and to what cell type the tracer is binding. Therefore, prospective studies are warranted with other (non-oncological) and larger patient groups to further validate the clinical use of PET/CT with somatostatin receptor-binding tracers in assessment of atherosclerosis (8).

Conclusion

In this study of two somatostatin receptor-binding tracers for PET/CT, we found a higher vascular uptake of the 64Cu-labeled DOTATATE than 68Ga-DOTATOC. Furthermore, results showed a significant correlation of Framingham risk score with uptake of 64Cu-DOTATATE, which was driven by smoking, BMI and diabetes. No such correlation was found with 68Ga-DOTATOC. We suggest that 64Cu-DOTATATE seems suitable for assessment of atherosclerosis even in the subclinical stages, but prospective studies to further validate this are required.
Acknowledgments: The staff in the PET center is thanked for their skillful assistance.

This work was supported by unrestricted grants from the John & Birthe Meyer Foundation; the National Advanced Technology Foundation; Danish Medical Research Council; Rigshospitalets Research Foundation; Svend Andersen Foundation; AP Møller Foundation; Novo Nordisk Foundation; and Lundbeck Foundation.

Disclosures: none
References

FIGURE 1. Method for vascular tracer uptake quantification. Example from distal abdominal aorta: 1. The outer vessel wall is manually delineated on all consecutive axial slices. 2. The imaging software fuses these consecutive ROIs into a single 3D volume of interest (VOI) covering the distal abdominal aorta. 3. A single SUV_mean and SUV_max is recorded for each VOI.
FIGURE 2. Comparison of 68Ga-DOTATOC and 64Cu-DOTATATE uptake in the large arteries. Bland-Altman plots of difference with identity line shown dashed and the mean difference with 95% limits of agreement shown in horizontal colored lines. The top line show comparison of maximum (A) standardized uptake value (SUV) and (B) mean SUV. Likewise, the bottom line show comparison of (C) maximum target to background (TBR) and (D) mean TBR.
FIGURE 3. Examples of PET/CT fusion showing uptake of 64Cu-DOTATATE (A and C) and 68Ga-DOTATOC (B and C). The patient in the top panel is a 67 years old man with a FRS of 30. The images show high focal uptake in the thoracic aorta on the 64Cu-DOTATATE PET (A), whereas the same location on the 68Ga-DOTATOC PET is more blurred (B). The patient in the lower panel is a 31 years old woman with a FRS of 2. The images show lower and more diffuse uptake with both tracers.
FIGURE 4. Standardized uptake values of 68Ga-DOTATOC and 64Cu-DOTATATE in the arteries (blue) and the superior cava vein (black). The data are paired, and each patient is represented with a dot in each of the four categories. The median uptake is shown in bold lines.
FIGURE 5. Correlation between Framingham Risk Score and (A) whole artery 68Ga-DOTATOC uptake and (B) whole artery 64Cu-DOTATATE uptake.
TABLE 1. Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean, range)</td>
<td>61 (31-81)</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>36/24</td>
</tr>
<tr>
<td>History of CAD (%)</td>
<td>7 (4/60)</td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>17 (10/60)</td>
</tr>
<tr>
<td>Hyperlipidemia (%)</td>
<td>13 (8/60)</td>
</tr>
<tr>
<td>Hypertension* (%)</td>
<td>48 (29/60)</td>
</tr>
<tr>
<td>Smokers (%) (current/ex)</td>
<td>28/22 (17/60, 13/60)</td>
</tr>
<tr>
<td>ASA-treatment (%)</td>
<td>17 (10/60)</td>
</tr>
<tr>
<td>BMI (mean, range)</td>
<td>25.7 (17-38)</td>
</tr>
<tr>
<td>Coronary calcium score (mean, range)</td>
<td>227 (0-3356)</td>
</tr>
</tbody>
</table>

*Defined as ongoing treatment for hypertension.
TABLE 2. Mean difference between 64Cu-DOTATATE and 68Ga-DOTATOC uptake in each region

<table>
<thead>
<tr>
<th>Region</th>
<th>SUV$_{\text{mean}}$ Mean</th>
<th>p</th>
<th>SUV$_{\text{max}}$ Mean</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>difference*</td>
<td></td>
<td>difference*</td>
<td></td>
</tr>
<tr>
<td>Aortic arch</td>
<td>0.5</td>
<td>0.007</td>
<td>2.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Thoracic aorta</td>
<td>0.3</td>
<td><0.001</td>
<td>2.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Proximal abdominal aorta</td>
<td>0.3</td>
<td><0.001</td>
<td>1.1</td>
<td>0.04</td>
</tr>
<tr>
<td>Distal abdominal aorta</td>
<td>0.2</td>
<td><0.001</td>
<td>1.6</td>
<td>0.003</td>
</tr>
<tr>
<td>Iliac arteries</td>
<td>0.2</td>
<td><0.001</td>
<td>1.4</td>
<td><0.001</td>
</tr>
</tbody>
</table>

* 64Cu-DOTATATE uptake minus 68Ga-DOTATOC uptake
TABLE 3. Correlations between Framingham risk score and maximum tracer uptake in 5 regions

<table>
<thead>
<tr>
<th>Region</th>
<th>64Cu-DOTATAE Spearman’s rho</th>
<th>64Cu-DOTATAE p</th>
<th>68Ga-DOTATOC Spearman’s rho</th>
<th>68Ga-DOTATOC p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic arch</td>
<td>0.30</td>
<td>0.36</td>
<td>0.03</td>
<td>0.8</td>
</tr>
<tr>
<td>Thoracic aorta</td>
<td>0.36</td>
<td>0.01</td>
<td>0.18</td>
<td>0.2</td>
</tr>
<tr>
<td>Proximal abdominal aorta</td>
<td>0.43</td>
<td>0.002</td>
<td>-0.07</td>
<td>0.6</td>
</tr>
<tr>
<td>Distal abdominal aorta</td>
<td>0.23</td>
<td>0.1</td>
<td>-0.35</td>
<td>0.013</td>
</tr>
<tr>
<td>Iliac arteries</td>
<td>0.37</td>
<td>0.008</td>
<td>-0.04</td>
<td>0.8</td>
</tr>
</tbody>
</table>