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The number of studies in the literature involving quantification of the

metabolic heterogeneity seen in 18F-FDG PET images has in-
creased sharply over recent years. We hypothesized that inclusion

of very small regions of interest as unique data points will have

deleterious effects on these studies.Methods: Using a combination

of probability theory and clinical 18F-FDG PET data, we numerically
calculated the curve describing the probability a given tumor vol-

ume is large enough to adequately sample the underlying tumor

biology assayed via a PET/CT scanner at a planar resolution of

4 mm and transaxial resolution of 4 mm (64 mm3 voxel size). We then
used a computer simulation to isolate the effects of tumor volume

on the image local entropy. Results: We computed the underlying

global intensity distribution for 70 cervical cancer tumors ranging

from 4 to 248 cm3), which were ensemble-averaged over the same
intensity scale. From this distribution, we determined that about 700

total voxels (45 cm3) are required to give 95% certainty that the

global intensity distribution has been sufficiently sampled for com-
mon statistical comparisons of individual tumor intensity distribu-

tions to be made canonically. We demonstrated that one previously

suggested measure of heterogeneity is dependent on tumor volume

and that measurement of heterogeneity is about 5 times more sen-
sitive to volume changes for volumes below the proposed minimum

than for those above it. Conclusion: Inclusion of tumor volumes

below 45 cm3 can profoundly bias comparisons of intratumoral up-

take heterogeneity metrics derived from data from the current gen-
eration of whole-body 18F-FDG PET scanners.
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With advances in medical imaging techniques, there is in-
creasing interest in the quantification of cancerous tumor micro-
environments. Modern imaging enables the description of intra-
tumor qualities in situ. One example is the use of the 18F-FDG
radioactive glucose analog with PET (1). Consider, for example,

the 18F-FDG PET image of a cancer of the uterine cervix shown in
½Fig: 1�Figure 1. There, greater gray-scale pixel intensity (brighter) os-

tensibly implies greater metabolic activity. It is this type of het-
erogeneity that interests researchers of tumor biology (2).
In the specific case of 18F-FDG PET images, spatial variations

among differently shaded pixels are to be quantified. The goal is to
objectively declare one tumor, or intratumoral region, to be more
heterogenous than another tumor or intratumoral region with the
hope that image heterogeneity quantifiers will provide prognostic
clinical value. Toward this end, several quantifiers have been pro-
posed (3–8). Regardless of the specific heterogeneity quantifier
used, the distribution of gray-scale intensities constrains the values
that quantifiers can attain. In short, fewer unique intensities
implies less possible heterogeneity.
The distribution of measured image intensities depends on both

tumor biology and imaging physics. In the case of 18F-FDG PET,
the well-known partial-volume effect tends to lower uptake values
while increasing apparent tumor volume (9). In other words, the
partial-volume effect is known to increase the number of unique
intensities measured. This can cause distributions of measured
intensities to appear more heterogeneous than would be dictated
by tumor biology alone. Whatever their combined role, both phys-
ical and biological sources of image heterogeneity could yield their
own prognostic information about the tumor. Therefore, interpa-
tient comparison of objectively quantified image heterogeneity
could be important clinically.
Because the value of uptake heterogeneity quantifiers depends

crucially on the distribution of the gray-scale intensities for each
patient, adequate sampling of those distinct distributions is para-
mount for comparative heterogeneity studies. Because the number
of samples of each intensity distribution is the number of image
pixels in the identified region of interest (ROI), the tumor volume
itself indicates how well an individual intensity distribution has been
sampled. We therefore hypothesized that there is some minimum
tumor volume below which comparison of intratumoral uptake
heterogeneity quantifiers is invalid because of under-sampling.
It was the purpose of this research to describe the computation

of a lower bound on tumor volume below which the effects of
latent under-sampling are profound. We then demonstrated this
small-volume effect on one previously proposed metric of uptake
heterogeneity, the image local entropy (5,6,10).

MATERIALS AND METHODS

Delineation of Tumor Regions

This was a retrospective study of 70 patients with cancers of the

uterine cervix who underwent pretreatment hybrid PET/CT (Biograph
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40 True Point Tomograph Scanner; Siemens) using the 18F-FDG ra-

diotracer assay of glucose uptake by cells. The raw 18F-FDG PET data
were scatter- and attenuation-corrected via the proprietary software

native to the PET machine. Images were reconstructed using ordered-
subset expectation maximization (8 subsets; 4 iterations). A gaussian

smoothing filter of 4 mm in full width at half maximum was applied

after reconstruction. No additional processing was implemented. The
relevant ROI first was identified visually by an experienced oncolo-

gist. To objectively delineate tumor from background, any ROI pixel
brighter than 40% of the maximum ROI pixel brightness was consid-

ered part of the tumor (11). The oncologist then made slight manual
adjustments to the ROI to remove any obvious nontumor pixels such

as those comprising bladder or bowel regions. This ROI was exported
as a set of Cartesian coordinates in DICOM structure files. Use of

these data for this retrospective research with waiver of informed
consent was approved by the Washington University Institutional Re-

view Board. Tumors ranged in size from 4 to 248 cm3 and approx-
imately followed an exponential distribution with median volume of

29 cm3. Because our 18F-FDG PET data were given to a planar
resolution of 4 mm and a transaxial resolution of 4 mm, we used

the conversion factor of 0.064 cm3/voxel throughout this work.

Relative Intensity Scale

The ROIs and the original 15-bit gray-scale DICOM images were
imported into custom computer software written in Python, version

2.6.2 (http://www.python.org/), using the pydicom library, version
0.9.3 (http://code.google.com/p/pydicom/). For each patient, our soft-

ware automatically extracted the image pixels bounded by a given
ROI, confirmed those pixels to be above the clinical threshold, and

then stored the pixel intensities as observed radioactivity densities
given in Bq/mL. Those values were then binned into probability

histograms using the Freedman–Diaconis optimal bin width (12) for
that group of radioactivity densities (i.e., the bin size was computed

for each patient). The values were then rescaled such that the domain
of each histogram was 0.4 (the clinical threshold) to 1.0. To facilitate

interpatient comparison of histograms, each histogram was resampled

via cubic splines at intervals of 5% intensity using the SciPy inter-
polation package, version 0.7.1 (http://www.numpy.org/). This inter-

val was found to be the median Freedman-Diaconis bin size in the
rescaled domain for all imaged tumors. The final result was that each

tumor was associated with a common-scale histogram representing
the probability that a given intensity interval appears within that

tumor.

Creation of Test Images

To isolate the effects of tumor size on the example heterogeneity

metric, we created shapeless “tumor” images with a known intensity
histogram. A perfect square number of tumor voxels was used as the

number of pixels in a square, 2-dimensional, 8-bit gray-scale image
created via the Python Imaging Library, version 1.1.7 (http://www.

pythonware.com/products/pil/). Each image pixel was chosen at ran-
dom to have an intensity drawn from a known-intensity histogram

(which is presented in the “Results” section). The simulation in no
way attempted to mimic the PET scan process; it only represented

distinct, variable-size samplings of the distribution of measured 18F-
FDG PET intensities for our set of patients. This randomization may

be repeated numerous times for a given number of voxels, which we
multiply by 0.064 cm3/voxel. The result is a set of many test images

that, on average, obey the identical intensity distribution while having
no consistent spatial intensity patterns. Thus, each set of test images

represents tumors of identical volume, identical average shape, and
identical average heterogeneity.

Example Heterogeneity Statistic

We computed the local information entropy of a 2-dimensional
image as described by Haralick et al. (13). In brief, the cooccurrence

matrix describes the probability p that a pixel of a shade i occurs next
to a pixel of shade j. This matrix can be computed for various direc-

tions, pixel separations, and bit depths. We computed the horizontal
and vertical cooccurrence matrices for the nearest pixel neighbors of

8-bit gray-scale images. From each of these matrices, the local entropy

h 5 2+
255

j5103

+
255

i5103

pði; jÞ ln  pði; jÞ Eq. 1

was computed for each direction and then root-mean-square–averaged
to obtain a single local entropy value. The limits on the summations

reflect the 40% clinical threshold within the 8-bit (0–255) color
scale.

RESULTS

The Ensemble Intensity Histogram

The relative intensity histograms for each patient were ensemble-
averaged into a single relative intensity distribution. The resulting
probability histogram is shown in ½Fig: 2�Figure 2. This histogram ena-
bles the estimation of a minimum volume required for heteroge-
neity studies.

Derivation of the Minimum Volume

Given the probability r that an intensity will be in the least
populated bin, the probability of having precisely L intensities
in the least populated bin after choosing v voxels is

Pðv,LÞ 5
�
v
L

�
rLð12rÞv2L Eq. 2

since there are “v choose L” ways of arranging a sequence con-
taining L intensities among the v 2 L intensities from all other

FIGURE 1. Transaxial 18F-FDG PET cross-section of uterine cervical

cancer with clear variations in intensity. For example, upper right corner

of tumor is brightest and several darker spots are visible throughout.

These intensity variations represent variations in 18F-FDG uptake within

tumor. Vertical edge of image corresponds to 10 cm within patient.
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bins collectively (14). We, however, allow for at least L intensities,
since higher bin-population scenarios could contribute probability
to lower bin-population scenarios and since having many more
samples than the bare minimum is preferable. We therefore sum
the individual probabilities given in Equation 2 as

Pðv,l$ LÞ 5 +
N

l5L

Pðv,lÞ: Eq. 3

We need not derive a closed analytic form for P(v, l $ L) in
order to discover the requisite number of voxels to ensure a min-
imum least-bin population. For the present derivation, we chose
the traditional minimum of 5 frequencies per tested contingency
as the required minimum population. Further reasoning behind
this choice and its impact on our results is presented in the
“Discussion” section. In½Fig: 3� Figure 3, the probability of having pre-
cisely L intensities in the least populated bin is shown for sev-
eral examples (L 5 5, 10, 20, 30, and 40), where we have
rescaled v to more familiar units of cm3. The first curve (solid)
shows that near a volume of 100 cm3, the probability of having
precisely 5 intensities in the least populated bin is approximately
zero. This is because, for this volume, so many samples have
occurred that more than 5 intensities is virtually guaranteed to
be in the least populated intensity bin. We thus use 0–100 cm3

as a practical domain on which to focus our search. As is seen
in Figure 3, the precise-number probabilities are nonzero over
this domain to L 5 40 (dot-dot-dash). We may therefore sum
Equation 3 from l 5 5 to l 5 40 and be assured that we have
included all scenarios for which 5 or more intensities populate
the least populated bin for volumes within the 0- to 100-cm3

search domain. The resulting probability of having at least 5
intensities in the least populated intensity bin for r 5 0.013
(this value is read from the ensemble histogram) is plotted in

½Fig: 4� Figure 4 as the solid curve.

Impact on Clinical Data Analysis

The severity of under-sampling on clinical studies is shown by
the vertical lines in Figure 4, which indicate the first and second
quartiles of our tumor volume data. The adequate-sampling prob-
ability averaged over 1 cm3 to the first quartile (12 cm3; cross-
hatched) is only 2%. Between 1 cm3 and the median (29 cm3;
hatched), the average is 25%. The large dot at 45 cm3 indicates
the intersection with P 5 0.95, that is, the volume at which one
may be 95% certain that enough samples reside in the least pop-
ulated intensity bin for meaningful statistical comparisons. For
our clinical data, this leaves less than half (34%) the tumor vol-
umes as viable data points for comparing 18F-FDG PET hetero-
geneities. The other 2 curves in Figure 4 represent the probability
of having at least 5 intensities in the least populated bin but using
r 6 1.96(0.002) as the probability of populating the least popu-
lated bin (here, 0.002 is the SE read from the ensemble histo-
gram). The bar between the nonsolid curves thus indicates the
95% confidence interval around 45 cm3. The results of the above
calculation for less stringent sampling criteria are shown in ½Fig: 5�Figure
5. Requiring fewer than 5 samples in the least populated intensity
bin is unlikely to sufficiently abate the under-sampling effects we
describe.

Demonstrated Effect on Heterogeneity Studies

It has been proposed that local entropy may be a useful clinical
measure of uptake heterogeneity (5,6,10). Furthermore, local en-
tropy has been claimed to be the most reproducible metric among
similar heterogeneity metrics (10). We therefore chose to demon-
strate the small-volume effect on comparative heterogeneity stud-
ies via the local entropy metric. We first sought to isolate the effect
of tumor size from the effects of intensity distribution or intensity
rearrangement. This was done by creating sets of 2-dimensional,
shapeless tumor images. For each tumor volume, 25 tumor images
were created on which the local entropy was computed and then

FIGURE 2. Intensity histogram resulting from the ensemble average of

70 tumors, each of which is measured on same percentage-of-maximum

scale. Intensities are approximately linearly distributed until flattening of

tail occurs at highest intensity values. Error bars represent SE within

each intensity bin.

FIGURE 3. Probability that precisely L samples fall into last intensity

bin given in Figure 2, plotted for several L values. Up to 100 cm3 prob-

ability curves from higher numbers of samples (40 . L . 5) are not zero

and therefore contribute to the probability that at least 5 samples fall into

final intensity bin.
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ensemble-averaged to a single mean heterogeneity value. The re-
sult is the plot of local entropy (h) versus tumor volume (v) given
in½Fig: 6� Figure 6. Foremost is the striking increase in h(v) over the first
45 cm3 of tumor volume compared with the flatness of h(v) for
volumes greater than 45 cm3. For 240 . v . 45 cm3, the mean
value is ‹h› 5 8.1 and the individual h values differ (on average)
by only 4% from that mean. We now compare this large-volume

mean to the small-volume h values as is done in heterogeneity
studies when tumors of widely varying volumes are analyzed
together. The first quartile of tumor volumes—as indicated by
the first vertical line in the inset of Figure 6—differ on average
by 38% from the large-volume mean ‹h› 5 8.1. For all v , 45
cm3, h(v) still differs on average by 23%. Therefore, the local
entropy is about 5 times more sensitive to a volume change
applied to a small volume than to the same change applied to
a large volume. It is thus seen that before any assessment of tumor
biology has been made, the statistic ostensibly doing that assess-
ment has been saddled with a nonnegligible value change that has
nothing to do with tumor biology.

DISCUSSION

For any tumor assayed via 18F-FDG PET, the tumor data are
a distribution of gray-scale intensities. Data of this intensity dis-
tribution represent the biology of the tumor. We have demon-
strated a feasible clinical scenario in which tumors following
identical intensity distributions—that is, identical measured tumor
biology—have heterogeneity measures that depend strongly on
tumor volume. Therefore, differences in uptake heterogeneity ob-
served between disparate tumor volumes may not indicate actual
biologic differences between those tumors.
We chose to illustrate this point via the local entropy because

that statistic has been proposed previously as a robust measure of
uptake heterogeneity; however, we now argue that heterogeneity
statistics generally are more sophisticated than the statistical
moments familiar to most clinicians. Heterogeneity is a measure
of the deviation from homogeneity. In image processing parlance,
heterogeneity is the “texture” of the image; the differences from
smoothness. In 1973, Haralick et al. described a comprehensive
set of texture metrics for gray-scale images (13). Each of those

FIGURE 4. Probability (solid curve) that at least 5 samples fall into the

last intensity bin given in Figure 2. Large dot indicates level of 95%

certainty that adequate sampling of intensity distribution has occurred.

Other curves represent probabilities computed from 1.96 times 1 SE

above or below ensemble-average last-bin probability. Horizontal error

bar extends from 34 cm3 (531 voxels) to 65 cm3 (1,016 voxels).

FIGURE 5. (Left-hand scale) Volume associated with sufficient sam-

pling plotted vs. increasingly strict criterion for adequate sampling of

intensity distribution. (Right-hand scale) Nonlinear scale indicating ap-

proximately how much of our volume data remains after imposition of

each adequate-sampling criterion.

FIGURE 6. Ensemble average of root-mean-square local entropy plot-

ted as function of image size (tumor volume). Local entropy is much less

sensitive to volume for volumes greater than 45 cm3 (large dot). Inset

shows percentage difference in mean local entropy from the value av-

eraged over only large volumes. Vertical lines indicate first and second

quartiles of our tumor volume data. First quartile exhibits large deviation

from large-volume average.

4 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 55 • No. 1 • January 2014

jnm116715-sn n 11/16/13



fundamental metrics, one of which is the local entropy, is itself
computed from gray-scale co-occurrence matrices. These matri-
ces are simply the tallies of differences between pixel neighbors.
That is, co-occurrence matrices track the probability that fixed-
distance pixels are shaded differently. Over the entire image,
these local variations accrue into the global texture statistics
some propose to use as a measure of tumor heterogeneity. Pre-
cisely because they are accrued statistics, they measure only the
information that actually is contained in the image data and, as
such, must to some degree depend on sample size.
This dependence on sample size is not a failing of existing

texture metrics. In quantifying texture, one is interested in the
spatial patterns and intensity variations observed in image data. In
18F-FDG PET images, these variations ultimately are caused by
some combination of the scanning process and tumor biology. If
the total number of pixels is largely diminished, so too is the
certainty that patterns and variations allowed by the underlying
biology have had adequate opportunity to manifest. To put this
another way, the set of intensities and intensity arrangements
necessary to build a complete picture of the possible biology is
itself incomplete for small volumes. Mathematically speaking,
many texture metrics proposed to measure uptake heterogeneity are
supposed to have completely different values for smaller volumes—
values that may have no predictable relation to those computed for
larger volumes. This is in stark contrast to the use of statistical
moments such as the distribution variance as a first-order hetero-
geneity quantifier where, in the case of a common intensity dis-
tribution, moment values predictably regress to the mean values as
sampling (of any size) is repeated across patients.
The minimum tumor volume we describe is a minimum with

regard to the type of comparative heterogeneity analysis some
researchers have proposed. That is, it is a minimum imposed by
the desire for robust mathematical manipulation of intratumor
statistics. Our point is that although very small tumor volumes
may be sufficient for treatment planning or other clinical purposes,
they do not necessarily contain enough intensity data to be further
analyzed using the heterogeneity quantifiers earlier proposed.
We used a straightforward argument to estimate that the mini-

mum tumor volume for adequate intensity sampling is about 700
voxels (45 cm3 for our image data). This argument is based ulti-
mately on a tried-and-true criterion found in classic (14,15) and
modern (16) textbooks alike regarding adequate sampling of un-
known distributions that are to be compared via x2 goodness-of-fit
testing. We chose this test because, in essence, that is what sta-
tistics derived from 18F-FDG PET images are—a comparison of
intensity distributions. Without sufficient frequencies in every
possible contingency, the x2 statistic does not regress to the x2

distribution, and table values regarding “significance” levels be-
come moot. Although there are situations in which less strict
sampling criteria are appropriate (14–16), for the present context,
the reasoning against these lax criteria is clear from Figure 6. If,
for example, a minimum intensity-bin population of only one
were required, the corresponding volume (�15 cm3; Fig. 5) would
yield a local entropy value in the most steeply increasing portion
of the h(v) curve. In other words, if the measured intensities have
not sufficiently revealed the underlying intensity distribution, the
heterogeneity metric is highly sensitive to tumor volume. Thus,
inclusion of tumor volumes—or intratumor regions—so small as
to essentially guarantee that under-sampling has occurred must
bias the results of any comparative uptake heterogeneity study.
Therefore, in the context of such studies, the default presumption

should be that no statistical inference whatsoever may be made
from small 18F-FDG PET volumes. The onus is on the researcher
to demonstrate that a new heterogeneity result is not due to the
effects of under-sampling.
As seen in Figure 6, h(v) is monotonic in v and therefore acts as

a mere surrogate for tumor volume. This means that a decrease in
volume must correspond to a decrease in heterogeneity. What is
important here is the relative size of decrease. From Figure 6, it is
seen that the derivative of h with respect to v is much less for the
larger volumes than for the smaller ones. This indicates that h is
much less sensitive to changes in v for large v. Thus, discovering
a 20% change in heterogeneity between 2 large volumes actually
could be significant since we suspect that h is not strongly af-
fected by volume over the domain of only large volumes. Contrast
this, for example, to the comparison of heterogeneities between an
80 cm3 tumor and a 20 cm3 tumor where a 20% change in h is
seen to be caused by volume alone.
We feel that performing the analysis we presented in a higher

dimension does not offer anything new while only serving to
complicate subsequent discussion. The local entropy is extensible
into 3 dimensions. However, because of the increased dimen-
sionality, one must include much more detail as to which of the
directional cooccurrence matrices are computed and how statis-
tics derived from those matrices are implemented or combined.
Furthermore, because these matrices already represent spatial
averages over the entire image set (13), rearrangement of the image
data is not likely to alter the qualitative dependence on volume. In
specific cases of quantitative dependence, added dimensionality
increases the number of spatial intensity configurations possible
while the sampling (tumor volume) remains the same. Intuitively,
however, as the number of unique scenarios a quantifier can describe
increases—whether through data dimensionality or quantifier
sophistication—the minimum sample size for meaningfully com-
paring those scenarios increases as well. We therefore predict the
deleterious small-volume effect we describe to be even worse for
3-dimensional data and for higher-order heterogeneity metrics but
caution that the specific dependence of a given metric on dimen-
sionality quickly goes far beyond the intended scope of this work.
Another potential influence on the quantitative value of uptake

heterogeneity metrics is the partial-volume effect. In the case of
18F-FDG PET, the partial-volume effect renders voxels at the
tumor–microenvironment interface to be less bright than voxels
filled with tumor (9). In fact, any intensities measuring less than
the brightest biologically possible intensity could result solely
from partial filling with background or necrotic regions. It is
therefore feasible that the partial-volume effect creates at least
some—if not all—of the heterogeneity that is visually evident
in 18F-FDG PET images. For this reason, one might expect that
partial-volume correction could influence our calculations. It is
almost certain that such a correction will alter the overall distri-
bution of measured 18F-FDG PET intensities. However, this al-
teration is unlikely to profoundly affect the bright end of the
intensity histogram, because the brightest pixels likely are al-
ready the closest to being completely filled with tumor and
therefore are the least affected by the partial-volume effect (or
partial-volume correction). The nonsolid curves shown in Figure
4 represent the effect of plus or minus 1 SE around the proba-
bility of measuring the brightest intensities. The horizontal error
bar in Figure 4 might therefore represent a reasonable bound on
partial-volume effects (or any systematic measurement effects)
because, by ensemble averaging many same-scale histograms, we
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have allowed the biology of similarly sized tumors numerous
chances to manifest under the same scanning process.
The calculation of minimum volume we present is better thought

of as a technique to be applied to distinct image datasets, rather than
a justification for a rigid rule to be applied uniformly to all image
data. What is crucial to our calculation is the number of samples of
the underlying intensity distribution. Although this means that cal-
culation of the probability at which at least L observations reside in
the least populated intensity bin is independent of voxel size (Eq. 3),
the input probability (r) is not. Because different PET scanners have
voxels corresponding to different physical sizes, and because both
partial-volume effects and uptake can depend nonlinearly on tumor
size and biology, the distribution of measured intensities is itself
likely unique to the particular combination of tumor type, scanner
resolution, and scanner modality. In other words, the probability that
any intensity resides in the least populated bin—as well as the bin
size definition itself—is sensitive to the scanning process. In gen-
eral, one can compute the ensemble intensity distribution for the
image dataset; find the probability (r) that an intensity resides in the
least populated intensity bin; use Equation 2 to construct a plot
similar to Figure 3, from which the practical summation limit
may be read; and compute the minimum number of voxels by
setting P equal to 0.95 (or whatever confidence level is desired)
in Equation 3 and numerically solving for v.

CONCLUSION

Each PET-imaged tumor is a single sampling of all radioactivities
that are physically and biologically permissible for that particular
scanner–tumor combination. Because image heterogeneity statistics
accrue manifestations of possibilities, it is the very nature of these
statistics to reflect small sample sizes. Thus, inclusion of small
tumor volumes necessarily biases tracer uptake heterogeneity stud-
ies toward statistically significant differences even when no differ-
ence in uptake exists. We have argued that this bias is lessened if all
ROIs included in comparative heterogeneity analyses are above
a minimum number of voxels. We have described a technique for
computing this number that, when applied to our specific 18F-FDG
PET image data, yields a minimum comparison volume of 45 cm3.
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