Stratification of 18F-Labeled PET Imaging Agents for the Assessment of Antiangiogenic Therapy Responses in Tumors

Julian L. Goggi*1,2, Romain Bejot*1, Shezhadi S. Moonshi1, and Kishore K. Bhakoo1

1Singapore Bioimaging Consortium (A*STAR), Helios, Singapore; and 2Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

Successful antiangiogenic therapies have been developed for the treatment of various cancers, but not all patients respond. Therefore, the early determination of therapy efficacy is essential for patient management. This study was done to evaluate the utility of various PET imaging biomarkers for early determination of the response to therapy with the antiangiogenic agent axitinib, a multiple receptor tyrosine kinase inhibitor, in tumors with diverse biologic characteristics. **Methods:** Mice bearing U87-MG and MDA-MB-231 subcutaneous tumors were treated with axitinib (25 mg/kg intraperitoneally daily for 10 d), and tumor volumes were assessed with caliper measurements. The animals were concurrently imaged longitudinally with 18F-FDG, 3'-deoxy-3'-18F-fluorothymidine (18F-FLT), and 2-18F-fluoroethyl-triazolyl conjugated c(RGDyK) peptide (18F-FtRGD) to determine the optimal radiopharmaceutical for measuring the early treatment response in the 2 tumor types. **Results:** Daily administration of axitinib successfully retarded the growth of both U87-MG and MDA-MB-231 subcutaneous tumors, with significant differences in tumor volumes being observed from day 7 after therapy on. 18F-FDG revealed a treatment efficacy response only at day 10 after treatment in both U87-MG tumor-bearing and MDA-MB-231 tumor-bearing animals. 18F-FLT afforded earlier detection of the therapy response, revealing a significant difference between drug- and vehicle-treated animals at day 3 for animals bearing U87-MG tumors and at day 7 for animals bearing the more slowly growing MDA-MB-231 tumors. 18F-FtRGD showed a rapid change in tumor retention that reached significance by day 7 in U87-MG tumor-bearing animals; in contrast, no significant difference in tumor retention was observed in MDA-MB-231 tumors. **Conclusion:** Longitudinal imaging with different radiopharmaceuticals displays various characteristics in different tumor types, depending on their biologic characteristics. Such studies may provide clinically important information to guide patient management and monitor the response to antiangiogenic therapy with the optimum noninvasive imaging agent in the relevant cancer type.

Key Words: angiogenesis; tumor; RGD; 18F-FDG; 18F-FLT

*Received Oct. 17, 2012; revision accepted Mar. 18, 2013. For correspondence or reprints contact: Julian L. Goggi, Singapore Bioimaging Consortium (A*STAR), Helios, Singapore 07-10, 11 Biopolis Way, 138667 Singapore. E-mail: julian.goggi@sbc.a-star.edu.sg
*Contributed equally to this work.
Published online 2013. COPYRIGHT © 2013 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
biology can affect patient management and the choice of an agent for the noninvasive monitoring of antiangiogenic treatment efficacy.

MATERIALS AND METHODS

Radiochemistry

All chemicals obtained commercially were of analytic grade and were used without further purification. Solvents and chemicals were purchased from Sigma-Aldrich unless stated otherwise. Reference compound \(^{18}\text{F}-\text{FLT}\) was purchased from ABX. \(^{18}\text{F}-\text{FDG}\) was purchased from Singapore Radiopharmaceuticals.

No-carrier-added \(^{18}\text{F}\)-fluoride was produced by the \(^{18}\text{O}(\text{p},\text{n})^{18}\text{F}\) nuclear reaction with a 16-MeV proton beam generated by a PETrace cyclotron (GE Healthcare) in a silver target with \(^{18}\text{O}-\text{H}_2\text{O}\) (Singapore Radiopharmaceuticals). A TracerLab FX\text{GSN} radiochemistry module (GE Healthcare) equipped with an S-1122 pump (Sykam) and a K-2001 single-wavelength UV detector (Knauer) was used for radiopharmaceutical synthesis and semipreparative high-performance liquid chromatography (HPLC) purification.

Radioactive analytic HPLC was performed with a PerkinElmer series 200 HPLC system equipped with a single-wavelength UV detector and a Flow-Ram Nan/PMT radiodetector (LabLogic). Thin-layer chromatography was performed on silica gel thin-layer chromatography plates (Sigma-Aldrich) and analyzed with an EZ-Scan radio-TLC strip scanner (Carroll & Ramsey). Levels of residual solvents were analyzed by use of a Varian 430 gas chromatograph with a flame ionization detector and a Varian Factour-Four VF–200 mass spectrometry column (30 m, 0.32 mm, 1 μm). \(^{18}\text{F}-\text{FLT}\) and \(^{18}\text{F}\)-FrRGD were produced by nucleophilic fluorination on the basis of previously described procedures (19,20). \(^{18}\text{F}-\text{FLT}\) was produced with a high radiochemical purity (>99%) and a specific activity of 150–270 GBq/μmol and was formulated in isotonic saline solution (pH 6.5–7.5), with a radioactive concentration of 1.0–2.0 GBq/mL at the end of synthesis. \(^{18}\text{F}\)-FrRGD was produced with a high radiochemical purity (>98%) and a specific activity of 10–50 GBq/μmol and was formulated in isotonic phosphate-buffered saline solution (pH 6.5–7.5), with a radioactive concentration of 0.5–6.0 GBq/mL at the end of synthesis.

Animals

All animal experiments were performed in accordance with Institutional Animal Care and Use Committee (IACUC) guidelines under IACUC 090437. A total of 70 outbred female nude CD1 mice were purchased from the Biological Resources Centre and housed under IACUC 090437. A total of 70 outbred female nude CD1 mice were purchased from Sigma-Aldrich unless stated otherwise. Reference compound \(^{18}\text{F}-\text{FDG}\), \(^{18}\text{F}-\text{FLT}\), or \(^{18}\text{F}\)-FrRGD was produced on days 0, 1, 3, 7, and 10 after initiation of the dosing regimen.

Each group of animals was injected in the lateral tail vein with a solution of \(^{18}\text{F}-\text{FDG}\), \(^{18}\text{F}-\text{FLT}\), or \(^{18}\text{F}\)-FrRGD. Small-animal PET and CT imaging with \(^{18}\text{F}-\text{FDG}\), \(^{18}\text{F}-\text{FLT}\), or \(^{18}\text{F}\)-FrRGD was performed on days 0, 1, 3, 7, 10 after injection. Animals were imaged under isoflurane anesthesia (2% alveolar concentration), and biologic monitoring for respiration and temperature was performed with a BioVet system (m2m imaging). Small-animal PET imaging was performed with a Siemens Inveon PET/CT scanner (Siemens Inc.).

Animals in the \(^{18}\text{F}-\text{FDG}\) group (n = 7 for U87-MG and n = 4 for MDA-MB-231) were kept fasting for 12 h before injection with ~3 MBq per animal and were imaged statically at 40–60 min after injection. Animals in the \(^{18}\text{F}-\text{FLT}\) group (n = 7 for U87-MG and n = 4 for MDA-MB-231) were injected with ~5 MBq per animal and were imaged statically at 30–50 min after injection. Animals in the \(^{18}\text{F}\)-FrRGD group (n = 4 for U87-MG and n = 7 for MDA-MB-231) were injected with ~10 MBq per animal and were imaged statically at 70–90 min after injection.

Low-dose CT images (40 kV, 500 μA, 4 × 4 binning, 200-μm resolution) were acquired for anatomic registration and attenuation correction. Images were reconstructed with the image reconstruction, visualization, and analysis programs supplied by the manufacturer, and PET and CT data were analyzed with Amide software (Sourceforge 10.3; http://amide.sourceforge.net).

The uptake of radioactivity in a tumor was determined by placement of a volume of interest around the tumor delineated on the CT images. A volume of interest was also placed around a region of the muscle in the lower left hind limb to provide reference tissue values. The tissue concentrations were determined with volume-of-interest analysis and are presented as percentage injected dose per gram (%ID/g).

Microvascular Density (MVD) Measurement

Once assayed for radioactivity on day 10, the tumors were immediately excised and fixed in neutral buffered formalin. The MVD of a tumor was quantified with a method previously described by Wedge et al. (22). Tumor specimens were fixed, stained for CD34 with a chromagen endpoint, and analyzed (without knowledge of treatment assignment) with a KS400 instrument (Imaging Associates). The MVD was calculated as the number of CD34-positive vessels in 5,000 μm² of viable tumor area in each tumor section.

Tumor Proliferation Assay

After the MVD was determined, the Ki67 staining of a tumor was quantified with a method previously described by Viel et al. (23).
Tumor specimens were treated with proteinase K at room temperature for 5 min and 5% serum blocking solution for 10 min, incubated overnight at 4°C with anti-human Ki67 monoclonal antibody diluted 1:75 (Dako), and visualized with a secondary antibody and 3,3′-diaminobenzidine tetrahydrochloride staining. Slides were analyzed (without knowledge of treatment) with a Leica SCN400 slide scanner (Leica Microsystems) and the “Measure Stained Cells” algorithms of Slidepath Tissue IA software (Leica Microsystems). Scanning and image analysis were performed at the Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Singapore.

RESULTS

Effect of Axitinib on U87-MG and MDA-MB-231 Tumor Sizes

Figures 1A and 1B show the average changes in tumor volumes (mean ± SD) from tumor inoculation, from treatment baseline (day 0, before axitinib or vehicle administration), and on each of the imaging days. From (and including) day 3 after initiation of the dosing regimen, there was a discernible difference in tumor diameter between the axitinib-dosed group and the vehicle-dosed group for both U87-MG tumor–bearing animals and MDA-MB-231 tumor–bearing animals; however, in both cases the difference did not reach significance until day 7 (P < 0.01 for U87-MG and P < 0.05 for MDA-MB-231; 2-tailed unpaired t test). Volume and diameter data were confirmed with CT measurements (data not shown).

Effect of Axitinib on U87-MG and MDA-MB-231 Tumor Uptake of 18F-FDG

The U87-MG tumor uptake of 18F-FDG (Table 1) was significantly reduced only in the axitinib-treated group, not in the vehicle-treated group, at day 10 after treatment initiation (P < 0.01; 2-tailed unpaired t test comparing normalized data). Figure 2A shows the data normalized to day 0. Overall, the uptake of 18F-FDG was lower in MDA-MB-231 tumors than in U87-MG tumors. Tumor uptake in the vehicle-treated animals was relatively stable from day 0 on (Table 1). Treatment with axitinib induced a slight reduction in 18F-FDG uptake that only reached significance by day 10 after therapy initiation (day 0) (P < 0.01; 2-tailed t test comparing normalized data). Figure 2B shows the data normalized to day 0.

Effect of Axitinib on U87-MG and MDA-MB-231 Tumor Uptake of 18F-FLT

Axitinib induced a significant therapy response, as measured by 18F-FLT, in U87-MG tumors by day 3 after treatment initiation (P < 0.05 at day 3, P < 0.01 at day 7, and P < 0.05 at day 10; 2-tailed t test comparing normalized data). The vehicle-treated group showed increasing tumor uptake of 18F-FLT from day 0 on, whereas in the axitinib-treated group tumor uptake remained stable (Table 2). Figure 3A shows the data normalized to day 0. The data showed that the uptake of 18F-FLT was lower in MDA-MB-231 tumors than in U87-MG tumors. Tumor uptake in the vehicle-treated animals stayed steady during the 10 d after treatment initiation. Treatment with axitinib...
induced a reduction in tumor uptake of 18F-FLT (Table 2) that reached significance by day 7 after therapy initiation ($P < 0.01$ at day 7 and $P < 0.01$ at day 10; 2-tailed t test comparing normalized data). Figure 3B shows the data normalized to day 0.

Effect of Axitinib on U87-MG and MDA-MB-231 Tumor Retention of 18F-FtRGD

U87-MG tumor retention of 18F-FtRGD was attenuated by axitinib therapy by day 7 after treatment initiation ($P < 0.05$ at day 7 and $P < 0.01$ at day 10; 2-tailed t test comparing normalized data). Tumor retention in the vehicle-treated animals increased steadily from day 0 on (normalized data). Tumor retention in the vehicle-treated animals stabilized tumor retention of 18F-FtRGD. Figure 4A shows the data normalized to day 0. 18F-FtRGD retention in MDA-MB-231 tumors was not significantly altered by the addition of axitinib over the time course studied (Table 3). In both vehicle- and axitinib-treated tumors, retention remained stable throughout the study. Figure 4B shows the data normalized to day 0.

MVD Analysis

MVD, a marker of angiogenesis, was significantly lower in tumors from axitinib-treated mice than in tumors from vehicle-treated mice 10 d after therapy initiation (Fig. 5) for both U87-MG tumor–bearing mice ($P < 0.01$; $n = 10$) and MDA-MB-231 tumor–bearing mice ($P < 0.05$; $n = 10$). This significant reduction in MVD in axitinib-treated mice confirmed the therapeutic response of the tumors to axitinib. Figure 6 shows staining for endothelial cells with CD34 of representative tumor sections taken 10 d after the administration of axitinib or vehicle.

The levels of Ki67, a marker of cell proliferation, were significantly lower in tumors from axitinib-treated mice than in tumors from vehicle-treated mice 10 d after therapy initiation (Fig. 7) for both U87-MG tumor–bearing mice ($P < 0.01$; $n = 6$) and MDA-MB-231 tumor–bearing mice ($P < 0.05$; $n = 6$). This significant reduction in Ki67 staining in axitinib-treated mice confirmed the therapeutic response of the tumors to axitinib.

TABLE 1

<table>
<thead>
<tr>
<th>Days after treatment</th>
<th>U87-MG tumors</th>
<th>MDA-MB-231 tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Axitinib treated</td>
<td>Vehicle treated</td>
</tr>
<tr>
<td>0</td>
<td>3.03 ± 0.46</td>
<td>2.99 ± 0.31</td>
</tr>
<tr>
<td>1</td>
<td>3.07 ± 0.62</td>
<td>3.24 ± 0.33</td>
</tr>
<tr>
<td>3</td>
<td>3.76 ± 1.10</td>
<td>4.29 ± 0.60</td>
</tr>
<tr>
<td>7</td>
<td>3.66 ± 0.83</td>
<td>4.94 ± 1.20</td>
</tr>
<tr>
<td>10</td>
<td>3.68 ± 0.41</td>
<td>5.26 ± 0.48</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Days after treatment</th>
<th>U87-MG tumors</th>
<th>MDA-MB-231 tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Axitinib treated</td>
<td>Vehicle treated</td>
</tr>
<tr>
<td>0</td>
<td>3.02 ± 1.18</td>
<td>2.82 ± 0.69</td>
</tr>
<tr>
<td>1</td>
<td>3.47 ± 1.23</td>
<td>4.3 ± 0.14</td>
</tr>
<tr>
<td>3</td>
<td>3.37 ± 0.84</td>
<td>4.9 ± 0.68</td>
</tr>
<tr>
<td>7</td>
<td>2.65 ± 0.60</td>
<td>4.14 ± 0.56</td>
</tr>
<tr>
<td>10</td>
<td>3.34 ± 0.60</td>
<td>4.68 ± 0.89</td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Days after treatment</th>
<th>U87-MG tumors</th>
<th>MDA-MB-231 tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Axitinib treated</td>
<td>Vehicle treated</td>
</tr>
<tr>
<td>0</td>
<td>1.62 ± 0.32</td>
<td>1.50 ± 0.25</td>
</tr>
<tr>
<td>1</td>
<td>1.66 ± 0.23</td>
<td>1.74 ± 0.29</td>
</tr>
<tr>
<td>3</td>
<td>1.37 ± 0.29</td>
<td>1.61 ± 0.43</td>
</tr>
<tr>
<td>7</td>
<td>1.43 ± 0.22</td>
<td>2.40 ± 0.56</td>
</tr>
<tr>
<td>10</td>
<td>1.65 ± 0.25</td>
<td>3.33 ± 0.63</td>
</tr>
</tbody>
</table>
Various methods are used clinically to assess antiangiogenic therapies in tumors; these methods include measuring blood flow and blood volume (dynamic contrast-enhanced CT and MR imaging), which assess the downstream effects of angiogenesis (24–26). However, PET imaging has the ability to directly measure processes in the angiogenesis pathway and potentially provide a more specific means to assess antiangiogenic therapy efficacy in tumors. Much of the utility of radiopharmaceuticals is dependent on the biology of tumors and their biochemical environment. The 2 cell lines chosen for evaluation in this study were U87-MG, a human glioma that grows rapidly and induces significant vascular changes, and MDA-MB-231, a human ductal breast carcinoma that grows slowly and induces little vascular modification (27).

18F-FDG was able to detect treatment responses in both tumor types; however, a statistical difference in tumor uptake was not observed until day 10 after therapy initiation, demonstrating that 18F-FDG is a relatively insensitive measure of a therapy response. The ability of 18F-FDG to diagnose tumors in vivo is well documented, but multiple studies have shown the limitations (such as the complication of uptake in benign nonpathologic tissue and inflammation) of 18F-FDG in the determination of a therapy response (28–30).

In contrast, 18F-FLT, which acts as a surrogate measure of tumor cell proliferation, revealed significant treatment responses by 3 d in the more rapidly growing glioma tumor and 7 d in the more slowly growing breast cancer. This improvement in early therapy determination through the use of 18F-FLT may be attributable to vascular effects, which may be more prominent in U87-MG tumors. However, the Ki67 data indicated similar levels of inhibition of the proliferation rate by the axitinib treatment in the 2 tumor types. Therefore, the higher basal proliferation rate and the higher 18F-FLT baseline uptake observed in U87-MG tumors may have made therapy efficacy easier to detect (31).

As expected from previous reports on integrin-binding ligands (18), 18F-FtRGD showed an excellent ability to detect a therapy response in the U87-MG model by day 7. Interestingly, this radiopharmaceutical revealed no therapy response in the MDA-MB-231 breast cancer model, despite
been related to the low levels of monitor a therapy response in MDA-MB-231 tumors may have the Lewis lung carcinoma model (38) sensitivity of RGD radiopharmaceutical binding and the ability to the reduced number of available cell surface binding sites, affect the expression of a breast carcinoma MDA-MB-435, which has a high level of beta3 integrin expression on the cell surface (37). However, previous studies indicated that RGD-containing ligands are capable of measuring therapy responses in other rapidly growing tumor types that have a low level of cell surface expression of alpha-b3, such as the Lewis lung carcinoma model (38). Therefore, it is likely that multiple biologic factors, including the lower level of vascularization and slow growth rate of MDA-MB-231 tumors, coupled with the reduced number of available cell surface binding sites, affect the sensitivity of RGD radiopharmaceutical binding and the ability to measure a therapy response in this tumor type.

CONCLUSION

The radiopharmaceuticals evaluated in this study report on different aspects of tumor biology: glucose metabolism (18F-FDG); thymidine kinase activity and, hence, proliferation (18F-FLT); and angiogenesis (18F-FiRGD). The ability of each of these radiopharmaceuticals to measure therapy efficacy after treatment with the antiangiogenic agent axitinib appears to be dependent on the characteristics of the tumors to be evaluated. These data suggest that differences in tumor biology may be critical for individual patient management and the choice of radiopharmaceutical agents for the noninvasive monitoring of therapy efficacy.

DISCLOSURE

The costs of publication of this article were defrayed in part by the payment of page charges. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734. The authors would like to acknowledge the kind support of BMRC, A*STAR, for funding this research. No other potential conflict of interest relevant to this article was reported.

