Multimodality Assessment of Brain Tumors and Tumor Recurrence

Wolf-Dieter Heiss¹, Peter Raab*², and Heinrich Lanfermann*²

¹Max Planck Institute for Neurological Research, Cologne, Germany; and ²Institute for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany

Learning Objectives: On successful completion of this activity, participants should be able to describe (1) the differences in the information obtained by various MRI and PET modalities and (2) the best combination of imaging procedures to detect brain tumors, to define the biologic activity or malignancy of a tumor, to validate therapeutic effects, and to differentiate between recurrent tumor and tissue necrosis.

Financial Disclosure: The authors of this article have indicated no relevant relationships that could be perceived as a real or apparent conflict of interest.

CME Credit: SNM is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing education for physicians. SNM designates each JNM continuing education article for a maximum of 1.0 AMA PRA Category 1 Credit. Physicians should claim only credit commensurate with the extent of their participation in the activity. For CE credit, participants can access this activity through the SNM Web site (http://www.snm.org/ce_online) through October 2012.

Brain tumors are newly formed alterations of morphology, and for their diagnosis, therefore, CT or MRI is mandatory. These imaging modalities are essential for delineating the normal and pathologic anatomy and also for assessing vascular supply and impairment of the blood–brain barrier (BBB) (perfusion-weighted imaging; contrast enhancement). Additionally, MRI is capable of giving functional information on microstructural (diffusion-weighted imaging [DWI]), physiologic, and metabolic (MR spectroscopy [MRS]) changes of tumor tissues. PET and MRI provide physiologic, biochemical, and molecular information related to tumor metabolism, proliferation rate, invasiveness, and interaction with surrounding and remote areas—information that might be useful for clinical management. Especially, decisions on type and aggressiveness of treatment require detailed information on tumor type, location, and extent but also on biologic activity of the tumor and functional state of the surrounding brain. This comprehensive assessment of anatomic, functional, and molecular information is usually based on the spatial correlation of imaging data acquired sequentially with separate scanners, but the accuracy of this coregistration is limited by difficulties in patient repositioning and changes occurring between the different measurements. Sophisticated image fusion algorithms have been developed and are applied in many centers, but visual comparison of images positioned side by side is still the most commonly used approach in clinical practice. Temporal and spatial coregistration of morphologic and functional data in a single examination without repositioning the patient can be achieved by hybrid systems, as introduced with the PET/CT scanner (1). PET/CT is currently the most efficient imaging tool in general oncology, although PET and CT are still performed sequentially. Because the differentiation of soft-tissue contrast in the brain...
with CT is limited, a hybrid PET/MRI system will be better suited for applications in neurooncology. With such an integrated PET/MRI system, it is feasible to assess morphologic, functional, and molecular information on the human brain in a single session, in which several MRI procedures can be performed during a single PET study, for example, for 18F-FDG (2). This review describes the value of the different imaging modalities in the various steps of the management of patients with brain tumors. Therefore, it is structured according to the questions arising in the clinical work-up.

DIAGNOSIS AND GRADING

For the diagnosis and classification of tumors of the nervous system, internationally accepted guidelines have been formulated (3), and for many of these tumors, grading is based primarily on histologic criteria, such as cell density, nuclear and cellular atypia, number of mitoses, and vascular endothelial proliferation. The system of the World Health Organization (WHO) classifies the most frequent brain tumors, the gliomas, into 4 grades (Table 1), with grades I and II being benign; grade III being anaplastic; and grade IV, glioblastoma multiforme, being the most malignant tumor with the worst prognosis (4). Histologic grading is based on tissue biopsies, which may not be representative since gliomas are frequently heterogeneous (5). Thus, imaging indicators of tumor grade and prognosis may be of additional value.

Morphologic Imaging

CT is often the first-line technique after the acute onset of new cerebral symptoms with a question of intracranial hemorrhage, ischemic stroke, or a space-occupying lesion. Tissue asymmetries or a change in tissue density, either decreased or increased, are diagnostic hints for space-occupying lesions. A slightly increased tissue density indicates an increase in tissue cellularity, whereas a strong increase of tumor density indicates tissue calcification, which can indicate a histologic primary brain tumor subtype such as an oligodendroglioma. A decreased tissue density indicates low tumor cellularity or edema. Contrast-enhanced CT can delineate a disrupted BBB, but its sensitivity is much lower than that of MRI. CT also has difficulties in the delineation of tumor borders or infiltration zones, and pathologies in the neighborhood of the skull base and the posterior fossa are better delineated by MRI because of the absence of artifacts caused by beam hardening in CT, in particular due to the petrous bone. CT has a clear advantage over MRI in its ability to show changes of bony structures that might be caused by tumors and additionally can detect calcifications in tumors, which are typically seen in oligodendrogliomas.

MRI is the major technique for the detection of the presence of brain tumors in patients, not only for the anatomic information that can be obtained through its high soft-tissue contrast and resolution but increasingly also for functional information.

Anatomic MRI relies on classic techniques such as T1- and T2-weighted imaging, fluid-attenuated inversion recovery sequences, and contrast-enhanced T1-weighted imaging (Fig. 1). Differential diagnosis relies on the location, size, and disruption of the BBB of a lesion, medical history, and age of the patient, although, among other limitations, disruption of the BBB does not allow for a reliable separation between low- and high-grade tumors (6) and about one third of nonenhancing gliomas are malignant (7).

Classic anatomic imaging is still the basis for diagnosis and grading but does not meet the requirements for individual cancer assessment before treatment or during follow-up (with the advent of modern cytostatic cancer therapies) or the trend toward individualized treatment.

PET

PET can overcome the limitations of conventional MRI and can be used to derive information on tumor hypoxia, necrosis, proliferative activity, or vasculature.

Glucose Metabolism. Glucose is the main substrate of the energy supply to the brain. The tracer for measurement of the cerebral metabolic rate of glucose is 18F-FDG, which is transported into the tissue and phosphorylated to 18F-FDG-phosphate but does not undergo significant further metabolism and accumulates in proportion to local metabolism. For calculation of quantitative metabolic rates, a conversion factor (lumped constant) is applied to account for the different properties of this analog tracer. Because of an overexpression of hexokinase II, this lumped constant is higher in tumors (8), and 18F-FDG therefore overestimates the glucose consumption if the value for normal brain is used. This discrepancy between glucose consumption and 18F-FDG uptake can be shown using 11C-glucose and indicates that glucose consumption is not increased in certain gliomas despite a marked uptake of 18F-FDG (9). Additionally, altered glucose transport into the tumor and increased non-

| Table 1 |

WHO Classification of Gliomas

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Grade I</th>
<th>Grade II</th>
<th>Grade III</th>
<th>Grade IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor type</td>
<td>Low-grade astrocytoma</td>
<td>Low-grade astrocytoma</td>
<td>Anaplastic</td>
<td>Glioblastoma multiforme</td>
</tr>
<tr>
<td>Characteristic</td>
<td>Reserved primarily for pilocytic tumors</td>
<td>Diffuse infiltrating lesions with no enhancement</td>
<td>Variable enhancement with edema</td>
<td>Heterogeneous enhancement (often ring enhancement) with edema</td>
</tr>
</tbody>
</table>
oxidative glycolysis affect the calculation of cerebral metabolic rate of glucose; therefore, uptake of glucose relative to cerebral cortex or deep white matter is usually used for the identification of tumor tissue.

Imaging of brain tumors with 18F-FDG was the first oncologic application of PET (10). As in other malignancies (11), glucose consumption is increased in brain tumors, especially in malignant gliomas, but differentiating tumors from normal tissue or nontumorous lesions is often difficult because of the high metabolism in normal cortex. 18F-FDG uptake in low-grade tumors is usually similar to that in normal white matter, and uptake in high-grade tumors can be less than or similar to that in normal gray matter. The sensitivity of detection of lesions is further decreased by the high variance of 18F-FDG uptake and its heterogeneity within a single tumor that has areas of low uptake and areas of high uptake near each other. Therefore, 18F-FDG grading of newly discovered gliomas must be applied with caution, and the high variability must be taken into consideration. However, ratios of 18F-FDG uptake in tumors to that in white matter (ratio of tumor to white matter > 1.5) or gray matter (ratio of tumor to gray matter > 0.6) were able to identify and distinguish benign tumors (grades I and II) from malignant tumors (grades III and IV) (Fig. 2) (12). Delayed imaging (3–8 h after injection) can improve the distinction between tumor and normal gray matter (13), since excretion of the tracer is faster in normal brain than in tumor tissue.

The amount of accumulation of 18F-FDG in a primary brain tumor correlates with histologic tumor grade (14,15), cell density (16), and survival (17,18). Glucose consumption in normal brain tissue is reduced in most patients with malignant brain tumors (19). The impairment of tissue metabolism is related to prognosis (20). The most malignant gliomas (grade IV, glioblastoma) show high uptake that is often heterogeneous because of the necroses typical of this tumor type. Relatively benign tumors with high 18F-FDG uptake include pilocytic astrocytoma, which is characterized by metabolically active fenestrated endothelial cells, and ganglioglioma. In meningiomas, 18F-FDG uptake is variable and may be related to aggressiveness and the probability of recurrence (21). Other malignant tumors in the brain—primitive neuroectodermal tumors, medulloblastomas, malignant lymphomas, and brain metastases from systemic cancers—often show high 18F-FDG uptake (22,23).

![Figure 1](image1.png)

FIGURE 1. Images of patient with new onset of seizure and history of colon carcinoma. Top row from left to right shows CT scan, fluid-attenuated inversion recovery MR image, T2-weighted MR image, and T1-weighted contrast-enhanced MR image; bottom row from left to right shows contrast-enhanced CT scan, T1-weighted contrast-enhanced MR image, perfusion-weighted MR image (rCBV), and ADC image. T2-weighted image shows cortical involvement of tumor in anterior medial part, which is unusual for metastases. Perfusion-weighted image demonstrates rCBV elevation indicative of high-grade glioma. ADC values in more solid anteromedial parts are lower than in normal brain tissue, indicating higher cellularity. Final diagnosis was glioblastoma multiforme WHO IV.

![Figure 2](image2.png)

FIGURE 2. Typical PET patterns of 18F-FDG uptake in gliomas of different grades: metabolic activity of grade II glioma is below level of gray matter (A); that of grade III and IV gliomas is above (B and D). Typical of glioblastoma (grade IV) is central necrosis and metabolically active rim (arrows). Oligodendrogliomas (C) have higher metabolic activity than astrocytomas of same grade (higher cellular density).
Amino Acid Uptake. Labeled amino acids and their analogs—L-[methyl-11C]-methionine (11C-MET), 11C-tyrosine, 18F-fluorotyrosine, 18F-deoxyphenylalanine (F-DOPA) and O-218F-fluoroethyltyrosine—are particularly attractive for imaging brain tumors because of the high uptake in tumor tissue and low uptake in normal brain and, as a consequence, higher tumor-to-normal-tissue contrast. This increased amino acid uptake, especially in gliomas, is not a direct measure of protein synthesis or dependent on BBB breakdown but rather is related to increased transport mediated by type L amino acid carriers: facilitated transport is upregulated because tumors increase transporter expression in their vasculature (24). Additionally, the countertransport system A is overexpressed in neoplastic cells and seems to be positively correlated with the rate of tumor cell growth (25). Therefore, elevated transport of amino acids not only is a result of increased protein synthesis but also reflects the increased demand for the different metabolic activities in the tumor cell. Tumors also influence growth of their vasculature and therefore can regulate their increased demand for nutrients, including amino acids.

The most frequently used radiolabeled amino acid, 11C-MET, can be applied only in centers with an on-site cyclotron. For the discrimination of brain tumors from nontumoral lesions, a sensitivity of 76% and a specificity of 87% (26) have been described. In gliomas, 11C-MET uptake is greater in high-grade than in low-grade tumors (Fig. 3) (27–29) and is increased in most low-grade gliomas in the absence of BBB damage—a substantial advantage over CT, conventional MRI, and 18F-FDG PET (30,31). Therefore, 11C-MET can provide additional information when used in combination with 18F-FDG PET for diagnosis of these tumors. Angiogenesis and amino acid uptake are related (32). In many instances, the extent of increased 11C-MET uptake is larger than that of contrast enhancement (33) and indicates tumor infiltration and tumor margins. Especially in low-grade gliomas, amino acid uptake is related to prognosis and survival (34,35). 11C-MET PET therefore has special value in low-grade gliomas: for differentiation from nontumorous lesions, for detection of recurrences, for indicating changes in grade of progressing disease, and for potentially allowing a better prediction of prognosis. 11C-MET PET was useful for differentiating tumorous from nontumorous lesions in children and young adults when the decision about further therapy was difficult or impossible to make from routine structural imaging alone (36). High 18F-fluoroethyl-L-tyrosine (FET) uptake indicative of tumor cell infiltration was associated with markers of neuronal cell loss in 1H-MRS (37).

11C-MET uptake differs with tumor type: in oligodendrogliomas, uptake tends to be higher than in astrocytomas of the same histologic grade, although oligodendrogliomas are less aggressive (38). In oligodendrogliomas, 11C-choline PET may be useful in evaluating the potential malignancy, but 11C-MET PET is superior in detecting hot lesions (39). 11C-MET uptake is increased in other malignant intracranial tumors but also in benign neoplasias such as meningiomas (22).

Because of the short half-life of 11C (20 min) 18F-labeled aromatic amino acid analogs have been developed for tumor imaging. Tumor uptake of 18F-FET and dihydroxy-18F-fluoro-L-phenylalanine (F-DOPA) is similar to that of 11C-MET (40,41). In a large study, F-DOPA demonstrated excellent visualization of high- and low-grade tumors and was more sensitive and specific than 18F-FDG, but no significant relation to tumor grade or to contrast enhancement was observed (42). Especially in newly diagnosed tumors, uptake was related to proliferation, whereas this correlation was not observed in recurrent gliomas (43).

Nucleoside Uptake. Labeled nucleosides are indicators of cellular proliferation and should provide information on histologic grade. The thymidine analog 3-deoxy-3,18F-fluorothymidine (18F-FLT) was developed as a noninvasive tracer of tumor cell proliferation (44). Uptake of 18F-FLT correlates with thymidine kinase-1 activity, an enzyme expressed during the DNA synthesis phase of the cell cycle (45), which is high in proliferating cells and low in quiescent cells. With this tracer, an excellent delineation of grade III and IV tumors with a high tumor-to-normal ratio was obtained.

FIGURE 3. PET images showing uptake of 11C-MET and of 18F-FLT in gliomas of low grade (top row) and high grade (bottom row). Uptake of 18F-FLT is especially high in malignant glioma and also demonstrates infiltration into surrounding tissue.
at the base of the skull. This tracer was especially success-
and extent of meningiomas near bony structures, especially
ground ratio (\(46\)), whereas grade II gliomas and stable lesions did not show
considerable tracer uptake (Fig. 3); additionally, a high corre-
lation of \(^{18}\)F-FLT uptake was seen with Ki-67 expression as a surro-
gate marker for tumor proliferation (47). Although abso-
lute tumor uptake of \(^{18}\)F-FLT was lower than that of \(^{11}\)C-MET,
tumor-to-normal-brain uptake ratios were higher than for
\(^{11}\)C-MET because of the low \(^{18}\)F-FLT concentration in normal
brain. Gadolinium-enhanced MRI yields complementary
information on tumor extent, because \(^{18}\)F-FLT uptake also
occurs in regions with a disrupted BBB and sensitivity for
detection of low-grade gliomas is lower than with \(^{11}\)C-MET
\((48\)). A kinetic analysis of \(^{18}\)F-FLT uptake permits the assessment
of tumor proliferation rates in high-grade gliomas,
whereas uptake ratios of \(^{11}\)C-MET and \(^{18}\)F-FLT failed to corre-
late with the in vitro–determined proliferation index by
Ki-67 immunostaining \((46\)). In another study \((49\), \(^{18}\)F-FLT
PET was superior to \(^{11}\)C-MET PET in tumor grading and
assesssment of proliferation in different gliomas, and the com-
bination with \(^{11}\)C-MET PET added significant information.

Marker of Hypoxia. Hypoxia in tumors is a consequence of
disturbed angiogenesis not balanced to the needs of the
quickly proliferating tissue. As a consequence, oxygen
supply is inadequate. \(^{18}\)F-fluoromisonidazole \((^{18}\)F-FMISO)
is a marker of hypoxia and has potential for detecting a
specific pathophysiology of brain tumors \((50\), \(^{18}\)F-
FMISO-PET demonstrated a correlation with perfusion at
0–5 min after injection, whereas late persistent uptake of
this tracer was independent of perfusion and BBB disrup-
tions \((51\)). Hypoxia is a driving force for angiogenesis, as
also expressed in a correlation between \(^{18}\)F-FMISO uptake
and Ki-67 and vascular endothelial growth factor (VEGF)
receptor 1 expression \((52\), and considerable \(^{18}\)F-FMISO
uptake was therefore found in high-grade but not in low-
grade gliomas. The volume of hypoxia in a glioma as deter-
mined by \(^{18}\)F-FMISO uptake before initiation of treatment
was related to aggressiveness as assessed by serial MRI
\((53\)) and to progression and survival after radiotherapy
\((54\)).

Somatostatin Receptor Ligands. Meningiomas express
somatostatin receptors of subtype 2, which can be detected by
\(^{68}\)Ga-DOTA-phenyl-tyrosin-osteotide. In contrast to \(^{18}\)F-
FDG, \(^{68}\)Ga-DOTATOC shows a high meningioma-to-back-
ground ratio \((55\)) and was helpful in visualizing the location
and extent of meningiomas near bony structures, especially
at the base of the skull. This tracer was especially success-
ful in improving volume delineation for planning intensity-
modulated radiation therapy in combination with CT
\((56,57\)) and recently with simultaneous MRI \((58\).

Physiologic MRI

Modern MRI techniques are being increasingly used to
improve the sensitivity and specificity of tumor diagnostics;
these techniques offer possibilities for the detection of
functional information. MRS can assess tumor metabolism
and physiology, DWI can assess tissue microstructure by
characterizing water mobility, and perfusion-weighted imag-
ing can assess vascular integrity and function.

MRS. MRI is primarily based on the imaging of hydro-
gen atoms contained in water and fat. MRS is based on the
detection of molecule-specific energy spectra, which are
dependent on the chemical molecular structure and can be
interpreted as a fingerprint of the specific molecule. Such a
spectrum is represented by a curve, with the area under the
curve of a certain peak representing the concentration of the
metabolite within the sampled tissue, and the position of the
peak, which is shifted away from the position of a standard
substance, representing the metabolite. The amount of the
shift is counted in parts per million and referred to a standard
substance at 0 ppm by definition.

Single-voxel spectroscopy gives information just from a
certain tissue area, whereas 2- and 3-dimensional chemical
shift imaging collect data from one or more tissue slices with
several voxels in each slice. Multivoxel chemical shift imag-
ing can therefore better delineate tissue inhomogeneities than
single-voxel spectroscopy.

Absolute quantification of metabolites is difficult; therefore,
relative quantification methods are usually used for clinical
purposes. Metabolite data can be referred to other metabolites
within the same voxel, but since all the metabolites can be
changed by a tumor, it is advisable to relate tumor data to
contralateral healthy tissue.

Several metabolites can be measured by MRS; because of
the relaxation time, the amount of assessable metabolites
is dependent on the echo time of the sequence used.

The main metabolites for tumor diagnostics are shown in
Table 2.

The separation of low-grade and high-grade gliomas is of
high prognostic importance. Choline and lipids have shown
the best predictive value; by the use of MRS, tumors could
be correctly diagnosed 85%–95% of the time \((59,60\)). In
general, brain tumors tend to differ from nonneoplastic
tissue by an elevation of choline and possibly lactate and
lipids, combined with a reduction of tumor creatine or
tumor N-acetylaspartate (NAA). Actively proliferating
tumors require an increased membrane turnover leading to
a choline increase. Because of destruction of neurons
by the tumor, NAA is decreased \((Fig. 4\); lactate indicates
anaerobic glycolysis by the tumor tissue, and lipids indicate
necrosis.

For tumor grading, lactate and lipids indicate higher
tumor grades \((61\), as does increased choline \((Fig. 5\)) \((62\). Choline
as part of cell membrane phospholipids correlates well with the Ki-67 proliferation marker in gliomas \((62,63\).
A cutoff of 1.6 for normalized choline values was found to
be predictive of high-grade astrocytomas. Elevated choline
is unfortunately not completely specific for high-grade
tumors, since pilocytic astrocytomas \((64\) and low-grade
oligodendrogliomas can have increased choline levels as
well. For oligodendrogliomas, a cutoff of 2 was indicated
by Xu et al. for the separation between low- and high-grade
oligodendrogliomas \((65\). Elevated normalized creatine val-
ues indicate a shorter time to progression in WHO grade II
and III astrocytomas \((66,67\).
Because tumor tissue is known to be heterogeneous, MRS can also be used to guide stereotactic brain biopsies to assess the region with the highest membrane turnover, but this is still the domain of PET with 18F-FDG or amino acids.

MRS can also be used to assess infiltrating brain tumors, since choline elevation can extend to areas without contrast enhancement or to tissue that appears normal on conventional MRI. An increase of myoinositol indicates zones of active glial activation due to a reaction toward infiltrating tumor cells, as does the choline/NAA index.

MRS can aid in the differential diagnosis of brain tumors. About two thirds of meningiomas show an alanine resonance at 1.5 ppm, which is specific for meningiomas. Metastases tend to have low NAA resonances while showing a high lipid peak, and choline can be elevated. Metabolite concentrations in the peritumoral region can help in differentiating glioblastomas from metastases and lymphomas.

MRS can also image other nuclei besides protons. One of these so-called X-nuclei is 13C, enabling the use of 13C-labeled agents such as 13C-pyruvate for imaging. Hyperpolarized 13C-pyruvate was used during radiotherapy in an animal model of glioma tumor and showed a reduction of 13C-lactate production within 72 h of radiotherapy. In a lymphoma model, this technique of evaluating the pyruvate–lactate flux showed results comparable to those of 18F-FDG PET during chemotherapy. This technique offers new possibilities for assessing physiologic and pathophysiologic changes in tumors noninvasively, but the technique is experimental and not available for clinical use yet. In addition, hyperpolarization is technically difficult to achieve, and the short half-life of the hyperpolarized state also limits the applicability of the technique.

DWI. DWI is a probing of the microscopic motion of water molecules within tissue; this motion is driven by temperature, following the Brownian law, and is influenced by tissue structure. Infiltration of healthy brain by tumorous tissue causes alterations of water diffusion assessable by DWI (Fig. 1). An increase in cellular density, reduction of extracellular space, and increase in viscosity, for example, generate a decrease of Brownian motion of water molecules and a decrease of the calculated and (commonly accepted as a measure of water diffusion) apparent diffu-

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Peak position (ppm)</th>
<th>Echo time used</th>
<th>Interpretation</th>
<th>Found in normal tissue?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choline</td>
<td>3.2</td>
<td>Short and long</td>
<td>Membrane turnover</td>
<td>Yes</td>
</tr>
<tr>
<td>Creatine/phosphocreatine</td>
<td>3.02, 3.8</td>
<td>Short and long</td>
<td>Energy metabolism</td>
<td>Yes</td>
</tr>
<tr>
<td>NAA</td>
<td>2.01, 2.6</td>
<td>Short and long</td>
<td>Neural tissue integrity</td>
<td>Yes</td>
</tr>
<tr>
<td>Lipids</td>
<td>0-2</td>
<td>Short and long</td>
<td>Tissue necrosis</td>
<td>Only as contamination</td>
</tr>
<tr>
<td>Lactate</td>
<td>1.33</td>
<td>Short and long</td>
<td>Anaerobic glycolysis</td>
<td>No</td>
</tr>
<tr>
<td>Taurine</td>
<td>3.36</td>
<td>Short</td>
<td>Pediatric tumors</td>
<td>Below sensitivity</td>
</tr>
<tr>
<td>Myoinositol</td>
<td>3.56, 4.06</td>
<td>Short</td>
<td>Glial activation</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Clinically used echo times are 20–30 ms (short), 135–144 ms (long), or 270 ms.

TABLE 2 Main Metabolites Detected by MRS, Their Chemical Shift Position, and Interpretation

FIGURE 4. Patient with new seizure onset and small left frontal signal elevation on T2-weighted MRI. 1H-MR spectroscopy (echo time, 30 ms; repetition time, 1,500 ms; 2-dimensional chemical shift imaging) shows normal spectrum on right side (A) and slight choline elevation with NAA reduction of lesion on left side (B). Low-grade glioma was found on stereotactic biopsy. Red line represents curve fit of analysis software; area under curve, which corresponds to metabolite concentrations, is given by numbers at peaks. Ins = inositol; Cho = choline; Cr = creatine; NAA = N-acetylaspartate.
sion coefficient (ADC, mm²/s). ADC values are quantifiable and quickly measurable with a suitable resolution. Low values in ADC maps of solid gliomas are correlated with a higher grade (76). But, as a limitation, coexistent edema may superimpose measurements of ADC values, resulting in a decreased accuracy in separation of low- and high-grade gliomas. In children, medulloblastomas and atypical rhadroid-teratoid tumors of the posterior fossa show significantly lower ADC values than do ependymomas and pilocytic astrocytomas (77,78). Central neurocytomas also show low ADC values (79).

Of special interest are more sophisticated higher-order diffusion techniques such as diffusion kurtosis imaging, enabling a more profound characterization of microstructural changes (80). First results are promising regarding grading and differential diagnosis of brain tumors (81).

Perfusion-Weighted Imaging. In comparison to healthy brain tissue, high-grade gliomas develop an increased macro- and microvasculature. The relative cerebral blood volume (rCBV) is increased, predominantly as a result, and correlates with aggressive tumor growth (Fig. 1).

At present, the preferred technique to measure brain perfusion is tracking of a well-defined bolus of contrast medium with a dynamic MRI sequence sensitive to T2* effects. The area under the signal curve is an estimate of rCBV. Extravasations of contrast medium caused by disruption of the BBB affect the calculation of rCBV in high-grade gliomas and have to be adjusted for by sophisticated mathematic models (82). The application of a pre-loading dose of contrast medium is another possibility to minimize the effects of leakage (83,84). The increase of permeability in capillaries of high-grade gliomas can be estimated by dynamic T1-weighted contrast-enhanced MRI. Of special interest is the so-called transport constant (85), which describes the exchange of contrast medium from intra- to extravascular space. The transport constant is a quantifiable value and can be calculated on the basis of compartmental model estimations. This technique is quite complex and has been available so far only in advanced imaging centers.

Cao et al. proposed a special short T2*-weighted MRI sequence measuring perfusion parameters and permeability at the same time (86). Careful interpretation of data achieved by T1- or T2*-based MRI techniques is mandatory during therapy with corticosteroids or VEGF-specific antibodies (see the section on monitoring treatment effects.

FIGURE 5. Patient with headache and no neurologic deficit despite paresthesia of left arm. At top, MRI metabolite maps of inositol (Ins) and choline (Cho) show inhomogeneity of high-grade glioma. At bottom, disrupted BBB is demonstrated by T1-weighted contrast-enhanced MR image (T1+CM), elevation of rCBV in same area. Spectra from area with highest choline elevation contain lipid resonances indicating necrosis (arrows).
with MRI). T2*-weighted perfusion techniques are widely available, but as a shortcoming the results are barely comparable because of a lack of standardized protocols and different postprocessing algorithms dependent on the manufacturers of MRI devices or third-party software packages. Only large and solid parts of a glioma should be evaluated, and because of the limitations mentioned before, identical postprocessing parameters have to be applied to detect local dedifferentiation of gliomas or therapeutic effects by radiochemotherapy.

Perfusion-weighted imaging data can be used for tumor grading, since high-grade tumors tend to show higher rCBV values (87–89) than does normal-appearing contralateral tissue. Law et al. found a threshold of 1.75 for determining a high-grade glioma (87). Oligodendrogliomas differ from astrocytomas with respect to their rCBV cutoff for the difference between low and high grade. This cutoff tends to be higher for oligodendrogliomas, at a ratio of about 2.14 (90).

Higher-grade gliomas also tend to show higher capillary leakage, although the correlation with grading was found to be weaker than for rCBV measurements (91,92).

Blood Oxygen Level–Dependent and T2* Imaging. Blood oxygen level–dependent imaging refers to the contrast effect between oxygenated and deoxygenated hemoglobin. Deoxygenated hemoglobin does have a paramagnetic effect and causes a slight signal loss in susceptibility sensitive sequences (T2*, echo-planar imaging), whereas oxygenated hemoglobin has diamagnetic characteristics with no signal loss in these sequences. This blood oxygen level–dependent effect is the technical basis of functional MRI, as well as for parts of susceptibility weighting and T2* imaging. Low T2’ values are thought to represent areas with high oxygen consumption or high oxygen extraction fraction (93,94). The T2’ values can be influenced by confounding factors such as microcalcifications, hemorrhage, and microvasculature. Saitta et al. (93) found a significant T2’ difference between low- and high-grade gliomas; high-grade gliomas showed lower T2’ values indicating higher oxygen extraction, possibly caused by a higher metabolic state.

Imaging of Tumor Inhomogeneities

A specific and important application of PET tracers is the detection of especially active compartments in a tumor or of residual tumor after resection. Gliomas are often heterogeneous and may contain regions of different histologic grades. The areas of higher malignancy might not show contrast enhancement on conventional MRI or CT, but they define the prognosis and must be included in the material sampled for diagnosis in biopsy. Stereotactic biopsy based on coregistered 18F-FDG PET and MRI therefore improved the assessment of tumor grade (95). Chemical shift spectroscopic imaging can also be used for guidance of stereotactic biopsies (69) based on choline information that indicates areas with higher cell membrane turnover. In a comparison of 11C-MET PET and 2-dimensional chemical shift imaging, the spectroscopic technique could even show tumor areas of increased proliferation rate when PET showed negative or nonspecific tracer uptake while the maximum changes in both techniques correlated well (96). Perfusion-weighted imaging data can also be used to characterize spatial heterogeneity in high-grade gliomas (97).

With regard to tumor extent and infiltration into surrounding tissue, assessment of 11C-MET uptake is superior to measurement of glucose consumption (98,99) and to conventional contrast-enhanced MRI (100,101) or MRS (102), and 11C-MET PET detects solid parts of tumors as well as the infiltration zone with high sensitivity and specificity (103).

Effects on Surrounding and Remote Brain Areas

PET

Brain tumors are often space-occupying and infiltrating lesions and therefore affect the surrounding tissue but also remote brain areas. Especially in malignant tumors, there is a wide rim of reduced glucose metabolism that might be partly due to edema formation and to functional inactivation by the infiltrating tumor (19). This impairment of glucose metabolism in the brain outside the tumor is related to prognosis (20). Patients with brain tumors have decreased metabolism in the contralateral cortex, and the degree of decrease correlates with tumor size. This phenomenon may partly be caused by corticosteroids, but a functional inactivation of the contralateral hemisphere cannot be excluded (104), and this inactivation is also observed in the contralateral cerebellum.

The function of the brain outside the tumor and the effect of the lesion on eloquent areas can be studied by functional imaging such as activation PET or functional MRI. 15O-water is the most frequently used cerebral blood flow tracer for this purpose, allowing up to 12 measurements under different conditions, but 18F-FDG has also been used to record functional changes. Coregistration and fusion image display with 3-dimensional MRI are necessary for accurate anatomic localization (105). The location of functionally activated areas may be altered by several effects of the tumor: the new mass can displace the primary cortical centers, infiltrations can reduce the activation and impair the function of a specific area, or functional activations can occur at atypical locations, even in the contralateral hemisphere, as an indication of the reorganization of functional networks (106). Exact localization of eloquent areas is an important clinical goal for planning tailored surgery, and infiltrated tissue may sometimes still be functional.

Motor activity usually leads to significant activation in respective areas of contralateral motor cortex, in the supplementary motor area, and in the ipsilateral cerebellum. In patients with brain tumors, functionally activated areas along the precentral gyrus that exceed displacement due to mass effects have been observed. When cortical lesions causing contralateral spastic paresis abolish activation of motor cortex, more intense activation of secondary motor areas and of motor cortex ipsilateral to the paretic limbs is observed (107).
The functional activation of language is lateralized to the left hemisphere in most right-handers, whereas in left-handers it may be represented in either hemisphere or even bilaterally (108). The localization of sensory and motor language areas is of interest for surgical planning in patients with tumors in inferior frontal and temporoparietal areas. Active semantic or language production tasks provide clearly lateralized activations, in particular in the inferior frontal cortex of the dominant hemisphere, in the superior temporal cortex, in the anterior cingulated cortex and the adjacent supplementary language area, and in the contra-lateral cerebellum. In patients with brain tumors in the dominant hemisphere, a considerable reorganization of the language-related network is observed (109), dependent on the speed of the development of the brain lesion: a verb generation paradigm increased the activation area beyond the primary language regions to the left frontal medial gyrus, the orbital inferior frontal gyrus, the anterior insula, and the left cerebellum (Figs. 6A and 6B). Unlike the healthy volunteers, two thirds of the right-handed patients also showed activation of the right inferior frontal gyrus, the area homologous to the Broca area (Fig. 6C). In 18% of patients, a reversed dominance was observed (110); successful resection of a left frontotemporal tumor improved aphasia and restored left hemisphere dominance, suggesting a reversible disinhibition by removal of the primary functional damage (Fig. 6D). These studies support a hierarchical organization of the language network for speech performance and recovery and stress the importance of left-sided areas around the primary language centers; contralateral areas activated by reduced transcallosal inhibition can only partially compensate for damage of left-sided centers (106,111). The hierarchy of the functional network in an individual patient should be considered in planning surgical interventions.

MRI

Morphologic imaging does show signs of edema and mass effect. Functional or physiologic imaging, such as functional MRI using the blood oxygen level–dependent effect, can be applied to demonstrate eloquent brain areas before surgery as well as functional plasticity of the brain after therapy. Functional MRI data can easily be referenced to 3-dimensional anatomic datasets for neuronavigational purposes, since functional data and anatomic data are acquired within the same session without patient repositioning. Language examinations and motor tasks for functional MRI can be performed within 20–30 min, and language functional MRI has replaced the Wada test for probing of language lateralization (112). Diffusion tensor imaging, a DWI technique applying mathematic models to calculate and visualize white matter tracts, can show displacement or disruption of fiber tracts caused by a brain tumor (Fig. 7). This information can help the neurosurgeon to plan and guide an approach to a tumor and the resection.

DWI has also been used to delineate tumor margins. Compared with the lower fractional anisotropy values of the tissue around metastases, higher peritumoral fractional anisotropy, a marker of directed diffusion of water molecules, indicates peritumoral spread of neoplastic cells (113).

PROGNOSIS

PET

In most patients with malignant brain tumors, glucose consumption in the surrounding brain is reduced, and this reduction correlates with prognosis (20). Especially in low-grade gliomas, amino acid uptake is related to prognosis and survival (34,35).
Morphologic imaging can indicate tumor progression by increasing mass effect and increasing areas of elevated T2 signal intensities, as well as increasing or new contrast enhancement in untreated brain tumors. Prognostic information can be derived only by physiologic imaging techniques.

In untreated low-grade brain tumors, an elevated rCBV (114,115) or a near-normal or elevated creatine level (66) indicate a short progression-free survival time and poorer prognosis. rCBV elevations can precede malignant transformation and new contrast enhancement by up to 12 mo (116). In children, the percentage change of choline or NAA combined with perfusion measurements in serial MRI examinations was found to be useful in predicting tumor progression (117). Before antiangiogenic therapy, ADC analysis of gliomas tended to predict progression-free survival in recurrent glioblastoma multiforme patients (118).

MONITORING TREATMENT EFFECTS

PET

Because of the high cortical background activity, 18F-FDG is limited in the detection of residual tumor after therapy (119). The effects of radiation and chemotherapy can be shown only after a few weeks of treatment (120), and recurrent tumor or malignant transformation is marked by newly occurring hypermetabolism (121). Hypermetabolism after radiotherapy, however, can also be mimicked by infiltration of macrophages. With these limitations, 18F-FDG PET is not the preferred method for the assessment of therapeutic effects (122). For this application, amino acid and nucleoid tracers are better suited (123–127). Several studies suggested that outcomes are better for patients in whom 11C-MET or 18F-FET PET coregistered to MRI are applied for treatment planning and follow-up than for patients diagnosed by MRI alone (123–126,128). In the follow-up and for the management of patients with brain tumor, the differentiation between recurrent tumor as a sign of treatment failure and necrosis as an indicator of success is essential. For that application, 11C-MET PET coregistered to MRI has high sensitivity and specificity (~75%) (129–132). Malignant progression in nontreated and treated patients was detected with high sensitivity and specificity by 11C-MET PET (Fig. 8). The increase in 11C-MET uptake during malignant progression was also reflected by an increase in angiogenesis-promoting markers such as VEGF (133). The volume of metabolically active tumor in recurrent glioblastoma multiforme was underestimated by gadolinium–diethylenetriaminepentaacetic acid–enhanced MRI (134). The additional information supplied by 11C-MET PET changed management in half the cases (135).

Responses after chemotherapy can be detected by amino acid PET early in the course (136–138), suggesting that deactivation of amino acid transport is an early sign of response to chemotherapy. 18F-FET PET coregistered to MRI detected the effects of a multimodal treatment more sensitively than did conventional MRI alone (139) and reached a sensitivity of more than 80% and a specificity of close to 100% (140). With 18F-FLT PET, a distinction between responders and nonresponders to a combination therapy was possible: 18F-FLT PET at 2 and 6 wk predicted survival better than did MRI (141). Multimodal imaging, including various PET and MRI modalities, will have a great impact on the development of new therapeutic strategies, such as targeting to proliferating cells (142) or applying gene therapy vectors (143).

MRI

Classic MRI techniques are still the basis for follow-up studies, but after modern therapies such as combined radiochemotherapy or antiangiogenic therapy, the so-called pseudoprogression and pseudoresponse limit the usefulness of the classic McDonald criteria (144,145) during early follow-up examinations. Therefore, physiologic MRI might be helpful in these situations.

Monitoring of response to radiochemotherapy by ADC measurements can be recommended because changes in proton diffusion during the first weeks after onset of therapy are indicators of the intended antitumorous effect and therefore a prognostic marker for sufficient response to radiochemotherapy (146,147). In addition, DWI values of gliomas before treatment correlated with the probability of response to therapy with bevacizumab in a study performed by Pope et al. (118). Functional diffusion maps show promise as a way of providing an early surrogate marker for

FIGURE 8. Decrease of 11C-MET uptake on PET demonstrates response to chemotherapy and favorable prognosis, whereas increase in amino acid uptake is related to no response to chemotherapy and unfavorable outcome. Gd-DTPA = gadolinium-diethylenetriaminepentaacetic acid; TMZ = temozolomide.
treatment response as well (146,148,149). During radiotherapy, early changes of rCBV can indicate response to treatment and correlate with survival (150). Especially, the use of voxel-by-voxel parametric response maps at 3 wk after radiotherapy can help to predict overall survival (151).

Anti-VEGF chemotherapy leads to new problems in assessing tumor response using conventional MRI. The contrast enhancement as the major factor of the McDonald criteria cannot be used since the therapy leads to a marked reduction of BBB disruption. In solid gliomas, this therapy may induce lesions resembling ischemic brain, with high DWI and low ADC values (152,153). Nevertheless, changes in ADC histogram analysis may be predictive of response in the anti-VEGF treatment of recurrent high-grade gliomas (154). It has been observed that primary brain tumors might change their behavior under anti-VEGF therapy from a necrotizing growth to a more infiltrative growth, which can best be observed on fluid-attenuated inversion recovery images (155).

RESIDUAL TUMOR AND RECURRENCES

PET

The capacity of PET to identify tumor compartments that differ in activity is especially important for the detection of residual or recurrent tumor after resection and for differentiation between treatment-induced changes such as necrosis and active proliferating tissue. Actually, in individual cases, necrotic and active tissue can be found next to each other or may even overlap (156), and 18F-FDG in macrophages that infiltrate tissue after radiotherapy may impair diagnostic accuracy. However, a newly detected hypermetabolism weeks after resection or treatment indicates a recurrent tumor or progression from low-grade to high-grade glioma (121,157,158). With a sensitivity of 75% and a specificity of 81%, 18F-FDG combined to MRI can distinguish recurrent tumor from radiation necrosis (159). Again, 11C-MET PET is more sensitive than 18F-FDG PET for differentiating between recurrent tumor and radiation necrosis (Fig. 9) (130,132), despite limitations in tumor grading (160), and is especially effective in combination with MRI (161). Even in brain lesions that did not show increased uptake on 18F-FDG PET, a sensitivity of between 89% (tumors) and 92% (gliomas) and a specificity of 100% was obtained (162,163).

MRI

Early postsurgical imaging within 24–72 h is advised for the detection of residual contrast-enhancing tumor masses using conventional techniques. After 72 h, the amount of postsurgical granulation tissue is increasing, confounding the interpretation regarding residual tumor. Within the first 24 h after surgery, contrast enhancement can be caused by the surgical procedure itself; therefore, imaging should be avoided during this period.

It is important to characterize biologic changes in the tissue to be able to separate therapy-induced necrosis or changes from recurrence (Fig. 10). Signs of newly increased cell membrane turnover, new disruptions of BBB, new angiogenesis, and increased perfusion can indicate tumor recurrence. Histopathologically, radiation necrosis is characterized by endothelial damage and fibrinoid necrosis, whereas recurrent tumor contains increased microvasculature, as do primary high-grade brain tumors. One study found rCBV measure-
ments to be equivalent to 11C-MET PET in the follow-up of patients with high-grade gliomas (164). In a recent 12-patient study assessing progression of gliomas after resection and radiochemotherapy, MRS was more accurate in low-grade gliomas and 18F-FDG PET was more accurate in high-grade gliomas (165).

A comprehensive review of multimodal imaging for the assessment of treatment response in gliomas was published recently (166).

New, evolving MRI techniques such as imaging of endogenous proteins and peptides might further help in the differentiation of glioma and radiation necrosis. In an animal model, detection of amide protons by a new technique called amide proton transfer MRI was shown to provide a biomarker for tissue characterization in this situation (167). Amide proton transfer MRI is based on a contrast mechanism called chemical exchange–dependent saturation transfer (168) and can easily be incorporated into routine clinical examination without the use of exogenous contrast material (169).

THE FUTURE: HYBRID PET/MRI SYSTEMS

The results of coregistration of PET and MRI data prove the added value of multimodality imaging, but this value is affected by the necessity of positioning the patient in different scanners, often in different physiological conditions and at different times. These problems are solved by hybrid PET/MRI systems that combine the excellent soft-tissue contrast at high resolution of MRI and its additional imaging options such as spectroscopy, functional MRI, diffusion- and perfusion-weighted imaging with the molecular, biochemical, and functional information obtained by PET. In contrast to PET/CT, in which the modalities are used sequentially and the subsequent results fused, data acquisition in a hybrid PET/MRI system takes place simultaneously, since the specially constructed PET detectors (170) are placed within the MRI scanner. The PET detectors must be invisible to the MRI scanner and must not interfere with the field gradients or MR radiofrequency pulses. The MRI scanner must be adapted to accommodate the PET detectors, with radiofrequency coils built for minimal interference with the PET electronics (171). Additionally, completely new strategies for PET attenuation correction based on MRI information had to be developed (172). After the feasibility of simultaneous PET/MRI was demonstrated (2), a series of dedicated brain PET/MRI scanners was installed and some of the many promising applications (173) were tested. The high resolving power of the hybrid system was reported in the first clinical studies (174), which demonstrated simultaneous structural, functional, and molecular imaging in patients with brain tumors. The combination of PET and MRI into a single system allows for better MRI-based motion correction of PET data. The results can be used to define biopsy targets and to better separate tumor tissue from scarring, inflammation, and necrosis. Further development is directed toward a fully integrated whole-body PET/MRI system that will use the manifold properties of simultaneous multimodal imaging (175) in general oncology.

SUMMARY

Conventional MRI is the preferred basis for diagnosis and follow-up of brain tumors. Dedicated PET and elaborate MRI procedures, which can be used to analyze physiologic and metabolic changes in healthy and pathologic tissue, are valuable complementary tools enabling better grading of brain tumors, monitoring of treatment effects, and detection of recurrences. Fully integrated whole-body PET/MRI systems will soon be available to combine the advantages of both techniques in a single step.

ACKNOWLEDGMENT

This work was supported in part by a grant from the WDH Foundation, Cologne.

REFERENCES

70. Hattingen E, Raab P, Franz K, Zanella FE, Lanfermann H, Pilatus U. Myo-
radiotherapy of gliomas: an application of 1H MRSI. J Magn Reson Imaging.
differentiating glioblastomas from primary cerebral lymphomas and brain
tumors to radiotherapy using hyperpolarized [1-13C]pyruvate and 13C magnetic
74. Wilney TH, Kettunen MI, Day SE, et al. A comparison between radiolabeled
fluorodeoxyglucose uptake and hyperpolarized 13C-labeled pyruvate utiliza-
ation as methods for detecting tumor response to treatment. Neoplasia 2009;11:
574–582.
75. Le Bihan D. Molecular diffusion, tissue microdynamics and microstructure.
76. Raab P, Hattingen E, Franz K, Zanella FE, Lanfermann H. Cerebral gliomas:
diffusional kurtosis imaging analysis of microstructural differences. Radiology.
232.
78. Hattingen E, Raab P, Franz K, Zanella FE, Lanfermann H. Cerebral gliomas:
diffusional kurtosis imaging analysis of microstructural differences. Radiology.
79. Cao Y, Shen Z, Chenevert TL, Ewing JR. Estimate of vascular permeability and
T2*-weighted MRI. J Magn Reson Imag-

