Assessment of Interobserver Reproducibility in Quantitative 18F-FDG PET and CT Measurements of Tumor Response to Therapy

Heather A. Jacene1, Sophie Leboulleux2, Shingo Baba3, Daniel Chatzifotiadis1, Behnaz Goudarzi1, Oleg Teytelbaum1, Karen M. Horton1, Ihab Kamel1, Katarzyna J. Macura1, Hua-Ling Tsai4, Jeanne Kowalski4, and Richard L. Wahl1,3

1Divisions of Nuclear Medicine and Body CT, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland; 2Department of Nuclear Medicine and Endocrine Oncology, Institut Gustave Roussy, University Paris Sud-XI, Villejuif, France; 3Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; 4Division of Oncology Biostatistics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland; and 5Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland

Our goal was to estimate and compare across different readers the reproducibility of the 18F-FDG PET standardized uptake value (SUV) and CT size measurements, and changes in those measurements, in malignant tumors before and after therapy.

Methods: Fifty-two tumors in 25 patients were evaluated on 18F-FDG PET/CT scans. Maximum SUVs (SUV_{bw} max) and CT size measurements were determined for each tumor independently on pre- and posttreatment scans by 8 different readers (4 PET, 4 CT) using routine nonautomated clinical methods. Percentage changes in SUV$_{bw}$ max and CT size between pre- and posttreatment scans were calculated. Interobserver reproducibility of SUV$_{bw}$ max, CT size, and changes in these values were described by intraclass correlation coefficients (ICCs) and estimates of variance.

Results: The ICC was higher for the pretreatment, posttreatment, and percentage change in SUV$_{bw}$ max than the ICC for the longest CT size and the 2-dimensional CT size (before treatment, 0.93, 0.72, and 0.61, respectively; after treatment, 0.91, 0.85, and 0.45, respectively; and percentage change, 0.94, 0.70, and 0.33, respectively). The variability of SUV$_{bw}$ max was significantly lower than the variability of the longest CT size and the 2-dimensional CT size (mean ± SD before treatment, 6.3% ± 14.2%, 16.2% ± 17.8%, and 27.5% ± 26.7%, respectively, $P < 0.001$; and after treatment, 18.4% ± 26.8%, 35.1% ± 47.5%, and 50.9% ± 51.4%, respectively, $P < 0.02$). The variability of percentage change in SUV$_{bw}$ max (16.7% ± 36.2%) was significantly lower than that for percentage change in the longest CT size (156.3% ± 157.3%, $P < 0.0001$) and the 2-dimensional CT size (178.4% ± 546.5%, $P < 0.0001$).

Conclusion: The interobserver reproducibility of SUV$_{bw}$ max for both untreated and treated tumors and percentage change in SUV$_{bw}$ max are substantially higher than measurements of CT size and percentage change in CT size. Measurements of tumor metabolism by PET should be included in trials to assess response to therapy.

Although PET reproducibility was high, the variability observed in analyses of identical image sets by 4 readers indicates that automated analytic tools to assess response might be helpful to further enhance reproducibility.

Key Words: reproducibility; SUV; 18F-FDG PET; CT; variability

Measurement of tumor response is an essential component of most anticancer therapy clinical trials. Standardized and reproducible assessments of response are required for meaningful comparisons and conclusions across multiple trials. Presently, the major response criteria for solid tumors, Response Evaluation Criteria in Solid Tumors (RECIST) (1) and the World Health Organization criteria (2), primarily rely on changes in tumor size on anatomic imaging. Although several studies have demonstrated reasonably good intra- and interobserver reproducibility of tumor size measurements (3,4), others have demonstrated that inconsistent tumor size measurements can lead to incorrect interpretations of tumor response (5,6).

Functional imaging with 18F-FDG PET is being applied with growing frequency in cancer treatment response trials because of the ability of this modality to predict the response of a tumor to therapy and outcomes (7,8). As a result, 18F-FDG PET is being applied with growing frequency in cancer treatment response trials. A visual assessment of 18F-FDG PET images has been incorporated into the revised International Workshop Criteria for monitoring response of lymphoma to therapy (9), and 18F-FDG PET has also been included in a recent update of RECIST (RECIST 1.1) (10).

Investigators have begun to focus on developing standardized metabolic response criteria, and the methods used
to quantify 18F-FDG uptake in tumors are being carefully scrutinized. PET is intrinsically quantitative, and a commonly used parameter is the standardized uptake value (SUV), defined as concentration of radioactivity in tissue normalized to injected dose and body mass, lean body mass, or surface area (11). Although a considerable range of approaches to SUV determination has been used, maximum SUV in a single voxel is widely used because of its simplicity (12).

Despite the relative ease of SUV determination, compared with other quantitative parameters, such as Patlak analysis or full kinetic approaches, numerous patient- and technique-related factors can affect SUV (12–18). For repeated tumor measurements, the technique for obtaining the 18F-FDG PET study and SUV should be the same in all institutions and SUV must be highly reproducible so that data obtained in multicenter trials can be compiled for the evaluation of large patient populations. This is particularly true for trials of therapy assessment when small changes in tumor metabolism are being evaluated.

A limited number of test–retest studies have shown that SUV is a reproducible parameter, with intrasubject variability of tumor SUV ranging from 3% to 14% (12,15,18–22). However, most of these studies were performed in carefully controlled settings to best optimize the precision of the SUV measurement, and untreated tumors of substantial size and high tumor metabolism only were evaluated. Data on interobserver reproducibility of SUV are more limited but reported to be high in untreated tumors (12,21,23). To the best of our knowledge, just 1 recent study has evaluated the interobserver reproducibility of SUV in the posttherapy setting (23).

The reproducibility of SUV measurements has not been directly compared with the reproducibility of quantitative measurements of CT size, the current standard for assessing tumor response to therapy (1,2), in the same patient. We hypothesized that SUV is more reproducible for pre- versus posttherapy studies and more reproducible than measurements of CT size on anatomic imaging. Our purpose was to estimate and compare the interobserver reproducibility of SUV and CT size measurements, and changes in those measurements, in malignant tumors before and after treatment using readily available clinical methodologies.

MATERIALS AND METHODS

Patients

Retrospective data compilation and image review were approved by the Johns Hopkins Institutional Review Board. Between April 2003 and April 2005, 25 patients (6 men, 19 women; mean age, 51 ± 14 y; 16 with primary breast carcinoma, 9 with primary lung carcinoma) were identified as having a pretreatment 18F-FDG PET/CT scan and a posttreatment scan soon after treatment was begun. Nineteen patients had untreated primary disease, and 6 patients had untreated recurrent malignancy. Interval therapy consisted of chemotherapy ($n = 21$), hormonal therapy ($n = 1$), chemotherapy and hormonal therapy ($n = 1$), chemotherapy and biologic therapy ($n = 1$), or chemotherapy and radiation therapy ($n = 1$).

18F-FDG PET/CT Scans

Patients fasted for a minimum of 4 h and had blood glucose levels less than or equal to 200 mg/dL just before the intravenous injection of 18F-FDG (8.14 MBq/kg [0.22 mCi/kg]). Oral, but not intravenous, contrast was administered for the CT portion of the study.

After an approximately 60-min uptake phase, combined whole-body PET/CT (Discovery LS; GE Healthcare) was performed. Whole-body CT was performed first with a 4-slice multidetector helical scanner and the following parameters: 140 kV, weight-based amperage (range, 80–160 mA), 0.8 s per CT rotation, pitch of 6, table speed of 22.5 mm/s, 722.5-mm coverage, and 31.9-s acquisition time. A CT transmission map was generated for image fusion. PET emission data were acquired for 5 min at each bed position, with the patient in the same position as for the CT portion of the study. PET images were reconstructed using the ordered-subset expectation maximization algorithm (2 iterations, 28 subsets), an 8-mm gaussian filter with a 128×128 matrix, and non–contrast-enhanced CT attenuation correction.

Image Analysis

Fifty-two tumors (up to 3 per patient) were identified for analysis by 1 author and indicated to the readers as the reference tumors by location and transaxial image number on the pretreatment scan. For the posttreatment study, readers independently identified the tumors to be analyzed by comparing the posttreatment with the pretreatment scan. In patients with multiple tumors, the largest tumors, greater than 10 mm in at least 1 dimension, were chosen for analysis. Median tumor size was 22 mm (range, 10–58 mm) by 15 mm (range, 7–41 mm).

PET images were reviewed on a Xeleris workstation (GE Healthcare) by 4 nuclear medicine physicians or nuclear radiologists with experience in 18F-FDG PET/CT. Images were viewed on a single split screen displaying PET, CT, and fused PET/CT images. Readers were asked to manually determine the single voxel SUV$_{bw}$ maximum (SUV$_{bw}$ max) of each tumor on the pre- and posttreatment PET scans using the SUV tools on the Xeleris software. If a tumor completely resolved on the posttreatment scan, readers were instructed to record the single voxel value SUV$_{bw}$ max of background tissues in the area of the previous tumor. No further instructions regarding the exact method to determine SUV$_{bw}$ max were specified.

CT images were reviewed with Emageon UltraVisual software (UltraVisual Medical Systems Inc.) by 4 board-certified radiologists with extensive CT experience. The longest and perpendicular sizes of each tumor were determined with the UltraVisual measuring tool, with the PET images available for comparison. Readers were instructed to record the CT size as zero (0) millimeters if the tumor completely resolved on the posttreatment scan. The 2-dimensional size of each tumor was determined by multiplying the longest and perpendicular dimensions.

The longest and 2-dimensional CT sizes chosen for evaluation as response assessments were based on changes in these parameters by the major response criteria in clinical trials, RECIST and World Health Organization criteria, respectively (1,2).

Statistical Analyses

For all analyses, the individual tumors were considered independently. Generalized estimating equations (24) were used to

SUV AND CT MEASUREMENT REPRODUCIBILITY • Jacene et al. 1761

jnm063321-pm ■ 10/13/09
model mean SUV_{bw} max and CT size results. A minimum of 3 readers was required to measure an individual lesion for the lesion to be included in the analyses for both SUV_{bw} max and CT size. A \chi^2 statistic was used to test the hypotheses of mean differences among the readers and between pre- and posttreatment scans for SUV_{bw} max and both CT size parameters.

Percentage declines in SUV_{bw} max and CT size for each lesion between the pre- and posttreatment scans were calculated using the following equation:

\[
\text{Percentage decline} = \left(\frac{\text{pretreatment} - \text{posttreatment}}{\text{pretreatment}}\right) \times 100.
\]

Differences in percentage change between PET and CT parameters were tested with a \chi^2 statistic.

We used 2 methods to assess interobserver agreement for the various parameters. Intraobserver correlation coefficients (ICCs) were estimated as a direct measure of agreement among the raters (reproducibility) and were calculated using variance estimates obtained through ANOVA (25). The ICC ranges between 0.00 and 1.00, with values closer to 1.00 representing better reproducibility. Interpretation of ICC was categorized according to Landis and Koch (26) (<0.00, no reproducibility; 0.00–0.20, slight reproducibility; 0.21–0.40, fair reproducibility; 0.41–0.60, moderate reproducibility; 0.61–0.80, substantial reproducibility; and 0.81–1.00, almost-perfect reproducibility). The reproducibility of the ICC estimates based on their precision (half the width of the 95% confidence interval [\text{CI}] \times 100%) was also determined.

Coefficients of variation (CV) were estimated to assess the percentage variability between SUV_{bw} max and CT size parameters among the readers. CV was calculated for each tumor by dividing the SD of 4 readers by the mean of 4 readers. The mean CV and SD across all tumors was then determined. Differences between CV of the various parameters were compared using t tests.

It is possible that interobserver reproducibility is dependent on the level of T_{18}F-FDG uptake in a tumor or tumor size. To test this, the same analyses described above were repeated for the tumors with the highest and lowest average SUV_{bw} max (n = 20, each) and the largest and smallest average CT size (n = 20, each) on the pretreatment scan. The tumors with the highest and lowest average SUV_{bw} max were not necessarily the same tumors with the largest and smallest average CT size.

Statistical analyses were performed using R 2.6 online software and SAS 9.1 statistical software (SAS Institute). P values less than or equal to 0.05 were considered statistically significant.

RESULTS

The median time between the pretreatment and posttreatment T_{18}F-FDG PET/CT scans was 52 d (range, 8–175 d). On the basis of 2-tailed paired t tests, parameters known to affect SUV were not significantly different when comparing pre- versus posttreatment scans (serum glucose levels, 100 ± 16 mg/dL vs. 102 ± 18 mg/dL, P = 0.62; patient body weight, 76.3 ± 20.7 kg vs. 77.0 ± 20.6 kg, P = 0.57; injected activity of T_{18}F-FDG, 609 ± 145 MBq vs. 630 ± 164 MBq, P = 0.24; and T_{18}F-FDG uptake time, 64.4 ± 11.5 min vs. 62.2 ± 16.6 min, P = 0.62).

For pretreatment scans, SUV_{bw} max was determined by all 4 PET readers for all 52 tumors. SUV_{bw} max was also determined by all 4 PET readers for all 52 tumors (persistent or residual tumor or background tissue in the location of previous tumor) for posttreatment scans. In addition to absolute SUV_{bw} max determination, PET readers were asked to indicate whether the measurement was obtained in persistent or residual tumor or background tissues after treatment by visual assessment. For 39 of 52 tumors, all 4 PET readers agreed and determined SUV_{bw} max in 32 persistent or residual tumors and 7 background tissues. For the remaining 13 original tumor foci, there was not complete consensus and SUV_{bw} max was determined in residual or persistent tumor or background tissues in the region of the previously visualized tumor, depending on individual readers’ assessments.

Before treatment, CT size was determined by all 4 CT readers in 46 tumors, by 3 readers in 4 tumors, and by 2 and 1 readers for 1 tumor each. After therapy, CT size was determined by all 4 readers in 43 tumors, by 3 readers in 6 tumors, and by 2 readers in 3 tumors. The tumors not measured by all readers were not confidently seen or were considered to be unmeasurable because their edge was not clearly defined.

Table 1 summarizes the hypothesis-testing results of mean differences based on our model for the SUV_{bw} max and CT size parameters. No significant difference in mean SUV_{bw} max was found among the 4 readers on the pretreatment scan (reader 1, 9.4 ± 6.3; reader 2, 9.7 ± 6.5; reader 3, 9.8 ± 6.2; and reader 4, 9.3 ± 6.3, P = 0.98) or the posttreatment scan (reader 1, 4.4 ± 4.0; reader 2, 4.8 ± 4.2; reader 3, 4.7 ± 4.0; and reader 4, 4.5 ± 3.8, P = 0.96). On average, SUV_{bw} max was significantly higher on the pretreatment scan than on the posttreatment scan (9.6 ± 6.3 vs. 4.6 ± 4.0, P < 0.001).

Mean CT size measurements were not significantly different among the 4 readers before treatment for the longest CT size (reader 1, 25.5 ± 11.6 mm; reader 2, 25.9 ± 11.7 mm; reader 3, 23.5 ± 10.4 mm; and reader 4, 25.6 ± 14.8 mm, P = 0.75) but were significantly different after treatment (reader 1, 22.5 ± 13.4 mm; reader 2, 23.0 ± 12.9 mm; reader 3, 17.7 ± 11.6 mm; and reader 4, 17.4 ± 11.8 mm, P = 0.04). The 2-dimensional CT size was not significantly different among readers before treatment (reader 1, 564.6 ± 568.3 mm²; reader 2, 541.1 ± 448.3 mm²; reader 3, 453.1 ± 411.5 mm²; and reader 4, 614.1 ± 894.6 mm², P = 0.60) or after treatment (reader 1, 471.2 ± 568.7 mm²; reader 2, 440.3 ± 459.4 mm²; reader 3, 316.6 ± 366.4 mm²; and reader 4, 422.3 ± 990.0 mm², P = 0.65). CT size was, on average, significantly larger on the pretreatment scan than on the posttreatment scan (longest dimension, 25.1 ± 12.2 mm vs. 20.1 ± 12.6 mm, P < 0.001; 2-dimensional size, 541.8 ± 607.8 mm² vs. 410.7 ± 637.3 mm², P = 0.009).

The average percentage decline in SUV_{bw} max between the pretreatment and the posttreatment scans was 45% ±
Table 1. Summary of Hypothesis Testing of Mean Differences for PET and CT (Semi)Quantitative Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pretreatment scan</th>
<th>Posttreatment scan</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUVbw max</td>
<td></td>
<td></td>
<td>0.98/0.96*, <0.001†</td>
</tr>
<tr>
<td>Reader 1</td>
<td>9.4 ± 6.3 (7.6–11.1)</td>
<td>4.4 ± 4.0 (3.3–5.5)</td>
<td></td>
</tr>
<tr>
<td>Reader 2</td>
<td>9.7 ± 6.5 (7.9–11.5)</td>
<td>4.8 ± 4.2 (3.6–5.9)</td>
<td></td>
</tr>
<tr>
<td>Reader 3</td>
<td>9.8 ± 6.2 (8.0–11.5)</td>
<td>4.7 ± 4.0 (3.6–5.8)</td>
<td></td>
</tr>
<tr>
<td>Reader 4</td>
<td>9.3 ± 6.3 (7.6–11.1)</td>
<td>4.5 ± 3.8 (3.5–5.6)</td>
<td></td>
</tr>
<tr>
<td>All readers</td>
<td>9.6 ± 6.3 (8.7–10.4)</td>
<td>4.6 ± 4.0 (4.1–5.1)</td>
<td></td>
</tr>
<tr>
<td>Longest CT dimension (RECIST, mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reader 1</td>
<td>25.5 ± 11.6 (22.0–28.9)</td>
<td>22.5 ± 13.4 (18.5–26.5)</td>
<td>0.75/0.04*, <0.001†</td>
</tr>
<tr>
<td>Reader 2</td>
<td>25.9 ± 11.7 (22.7–29.2)</td>
<td>23.0 ± 12.9 (19.3–26.6)</td>
<td></td>
</tr>
<tr>
<td>Reader 3</td>
<td>23.5 ± 10.4 (20.6–26.4)</td>
<td>17.7 ± 11.6 (14.5–21.0)</td>
<td></td>
</tr>
<tr>
<td>Reader 4</td>
<td>25.6 ± 14.8 (21.4–29.8)</td>
<td>17.4 ± 11.8 (14.0–20.8)</td>
<td></td>
</tr>
<tr>
<td>All readers</td>
<td>25.1 ± 12.2 (23.4–26.8)</td>
<td>20.1 ± 12.6 (18.3–21.9)</td>
<td></td>
</tr>
<tr>
<td>Two-dimensional CT size (WHO, mm²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reader 1</td>
<td>564.6 ± 548.3 (395.8–733.3)</td>
<td>471.2 ± 505.9 (300.3–642.0)</td>
<td>0.60/0.65*, 0.009†</td>
</tr>
<tr>
<td>Reader 2</td>
<td>541.1 ± 448.3 (415.0–667.2)</td>
<td>440.3 ± 459.4 (311.1–569.5)</td>
<td></td>
</tr>
<tr>
<td>Reader 3</td>
<td>453.1 ± 411.5 (338.5–567.6)</td>
<td>316.6 ± 366.4 (213.6–419.7)</td>
<td></td>
</tr>
<tr>
<td>Reader 4</td>
<td>614.1 ± 894.6 (359.8–868.3)</td>
<td>422.3 ± 399.0 (137.9–706.6)</td>
<td></td>
</tr>
<tr>
<td>All readers</td>
<td>541.8 ± 607.8 (456.9–626.1)</td>
<td>410.7 ± 637.3 (320.9–500.5)</td>
<td></td>
</tr>
</tbody>
</table>

*Mean SUVbw max was not significantly different among PET readers (reader 1 vs. reader 2 vs. reader 3 vs. reader 4), irrespective of pre- or posttreatment scans. Means for longest CT size were not different among CT readers before treatment but were after treatment. Means for 2-dimensional CT size were not significantly different for 4 CT readers, irrespective of pre- or posttreatment scans.

†Mean differences between pre- and posttreatment scans were tested based on generalizing estimating equations model.

WHO = World Health Organization.

Data are mean ± SD, with 95% CIs in parentheses.

Table 2. Summary of Percentage Change in PET and CT Parameters Between Pretreatment and Posttreatment Scans

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Percentage change (observed mean ± SD)</th>
<th>P vs. SUVbw max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUVbw max</td>
<td>45% ± 35%</td>
<td></td>
</tr>
<tr>
<td>Longest CT dimension (RECIST)</td>
<td>20% ± 33%</td>
<td><0.001†</td>
</tr>
<tr>
<td>Two-dimensional CT size (WHO)</td>
<td>24% ± 56%</td>
<td>0.003</td>
</tr>
</tbody>
</table>

WHO = World Health Organization.

Table 3. This decline was significantly higher than both declines in the longest CT dimension (20% ± 33%, P < 0.001) and the 2-dimensional CT size (24% ± 56%, P = 0.003). A summary of the results for the ICC estimates and the reproducibility of the ICC estimates based on their precision are shown in Table 3. ICC was 0.93 (95% CI, 0.90–0.96; precision, ±3%) for pretreatment SUVbw max and 0.91 (95% CI, 0.86–0.94; precision, ±4%) for posttreatment SUVbw max, indicating almost-perfect reproducibility. Pretreatment CT size measurements were substantially reproducible, with an ICC of 0.72 (95% CI, 0.61–0.82; precision, ±11%) for the longest CT size and an ICC of 0.61 (95% CI, 0.48–0.74; precision, ±13%) for the 2-dimensional CT size. There was almost-perfect reproducibility for the longest CT size after treatment (ICC, 0.85; 95% CI, 0.77–0.91; precision, ±7%), but the 2-dimensional CT size was just moderately reproducible after treatment (ICC, 0.45; 95% CI, 0.30–0.61; precision, ±16%). The precision of the ICC estimate was highest for measurements of SUVbw max before and after treatment (Table 3). Individual SUVbw max and CT size measurement data points for each tumor and reader before and after treatment are shown in Figures 1 and 2.

There was almost-perfect reproducibility for percentage decline in SUVbw max among the 4 PET readers, with an ICC of 0.94 (95% CI, 0.90–0.96; precision, ±3%) (Table 3). Reproducibility among the 4 CT readers was substantial for percentage decline in the longest CT dimension (ICC, 0.70; 95% CI, 0.57–0.81; precision, ±12%) but just fair for the percentage decline in the 2-dimensional CT size (ICC, 0.33; 95% CI, 0.18–0.50; precision, ±16%). Reproducibility of percentage decline in SUVbw max was higher than that for percentage change in CT size measurements (Fig. 3).

A summary of the results for the percentage variability between SUVbw max and CT size parameters among the readers using CV is shown in Table 4. For the pretreatment scan, the CV of SUVbw max (mean ± SD, 6.3% ± 14.2%) was significantly lower than the CV of the longest CT size (16.2% ± 17.8%, P = 0.001) and the 2-dimensional CT size (27.5% ± 26.7%, P < 0.0001). The CV of SUVbw max (18.4% ± 26.8%) was also significantly lower than the CV of the longest CT dimension (35.1% ± 47.5%, P = 0.02) and the 2-dimensional CT size (50.9% ± 51.4%, P < 0.001) after treatment. The CV of the longest CT size was significantly lower than the CV of the 2-dimensional CT size.
size before treatment ($P = 0.007$) but not after treatment ($P = 0.06$). The CVs of SUV$_{bw}$ max and both CT size parameters were less on the pre- than on the posttreatment scans (Table 4).

Mean CV for percentage decline in SUV$_{bw}$ max (16.7% ± 36.2%) was significantly lower than mean CV for percentage decline in the longest CT size (156.3% ± 157.3%, $P < 0.0001$) and the 2-dimensional CT size (178.4% ± 546.5%, $P < 0.0001$) (Table 4).

For the 20 tumors with the highest and lowest SUV$_{bw}$ max on the pre- and posttreatment scans, there was almost-perfect reproducibility (ICC > 0.81) for both pre- and posttreatment scans (Supplemental Table 1). No significant differences in CV of SUV$_{bw}$ max for the 20 lesions with the highest versus the lowest metabolic rate were found within the pretreatment group.

For the 20 largest and 20 smallest tumors, pretreatment reproducibility of both CT size parameters was fair to moderate (ICC range, 0.36–0.43). After treatment, there was substantial reproducibility for the longest CT size (ICC range, 0.73–0.81), but reproducibility was fair to moderate for the 2-dimensional CT size (ICC range, 0.32–0.62). For both CT size parameters, no significant differences were found comparing CV for the largest 20 versus the smallest 20 lesions within pretreatment and posttreatment scans (Supplemental Table 2).

DISCUSSION

This study was designed to expand on previous studies evaluating SUV$_{bw}$ max interobserver reproducibility (12,15,19–23) and to compare the interobserver reproducibility of SUV and CT size measurements using clinically available software including posttreatment assessments. Regardless of the statistical method used (ICC and the precision of its estimate or CV), the reproducibility of SUV$_{bw}$ max measurements before and after therapy and percentage change were higher than the reproducibility for CT size measurements. The interobserver variability of SUV$_{bw}$ max was approximately 6% ± 14%—compared with approximately 16%–28% ± 18%–27%—for CT size parameters before therapy, and approximately 18% ± 27%—compared with approximately 35%–51% ± 48%–51%—for CT size parameters after therapy. Perhaps even more importantly, the percentage decline in SUV$_{bw}$ max was much less variable than the percentage decline in tumor size measurements on CT.

The higher variability observed for measurements of tumor size on CT agrees with our hypothesis. Although we applied a routine, vendor-supplied manual technique of region-of-interest (ROI) selection for SUV$_{bw}$ max determination in this study, obtaining tumor measurements on CT requires an even more manual and subjective approach because the reader has to precisely and accurately identify the edges of the tumor. Slightly different angles of measurement could result in greater variability of tumor measurements. The effect is magnified with the 2-dimensional CT size because of increasing error associated with multiplication of 2 uncertain numbers. Studies have demonstrated both good reproducibility and considerable variability of linear CT size measurements (3,4,27), and the results are difficult to compare with themselves and our study because of differing methodologies. Interobserver reproducibility of linear size measurements may be improved with semiautomated techniques and volumetric measurements of tumor size (28–32).

We found slightly lower interobserver reproducibility of SUV$_{bw}$ max than did previous studies of untreated and treated (20,21,23) tumors, 2 of which reported 100% agreement in SUV$_{bw}$ max between 2 readers (20,23). Prior studies focused on highly 18F-FDG–avid, typically solitary, tumors. Our tumor population was probably more variable in its characteristics. Our goal was to emulate SUV determination in the clinical setting and across various expertise levels as much as possible. Location and transaxial image number may not have been sufficient for the correct identification of reference tumors, particularly in patients with multiple tumors located in close proximity. On post-analysis rereview of our data, it was determined that at least 1 of the 4 PET readers likely measured a different lesion than the others for 4 tumors with substantial interobserver variability in pretreatment SUV$_{bw}$ max.

TABLE 3. Interobserver Reproducibility Using ICCs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pretreatment scan</th>
<th>Posttreatment scan</th>
<th>Percentage decline between pre- and posttreatment scans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICC</td>
<td>95% CI</td>
<td>Precision*</td>
</tr>
<tr>
<td>SUV$_{bw}$ max</td>
<td>0.93</td>
<td>0.90–0.96</td>
<td>± 3%</td>
</tr>
<tr>
<td>Longest CT size (RECIST)</td>
<td>0.72</td>
<td>0.61–0.82</td>
<td>± 11%</td>
</tr>
<tr>
<td>Two-dimensional CT size (WHO)</td>
<td>0.61</td>
<td>0.48–0.74</td>
<td>± 13%</td>
</tr>
<tr>
<td></td>
<td>0.91</td>
<td>0.86–0.94</td>
<td>± 4%</td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td>0.77–0.91</td>
<td>± 7%</td>
</tr>
<tr>
<td></td>
<td>0.61</td>
<td>0.30–0.61</td>
<td>± 16%</td>
</tr>
</tbody>
</table>

*Precision of ICC estimate is defined as one-half length of 95% CI (expressed as percentage) and is measure of reproducibility of ICC estimate. WHO = World Health Organization.
FIGURE 1. Data points for each individual tumor and reader before treatment are shown: $SUV_{\text{bw max}}$ (A), longest CT size (B), and 2-dimensional CT size (C). Before treatment, almost-perfect reproducibility of $SUV_{\text{bw max}}$ (ICC, 0.93) was better than substantial reproducibility of longest CT size (ICC, 0.72) and 2-dimensional CT size (ICC, 0.61). CT size was not measured by at least 3 readers for 2 tumors, and these tumors were excluded from ICC analysis (last 2 vertical lines). R1 = reader 1; R2 = reader 2; R3 = reader 3; R4 = reader 4.
FIGURE 2. Data points for each individual tumor and reader after treatment are shown: SUV\textsubscript{bw} max (A), longest CT size (B), and 2-dimensional CT size (C). After treatment, SUV\textsubscript{bw} max (ICC, 0.91) and longest CT size (ICC, 0.85) had almost-perfect reproducibility, although that for SUV\textsubscript{bw} max was higher. Reproducibility of 2-dimensional CT size was moderate (ICC, 0.45). CT size was not measured by at least 3 readers for 3 tumors, and these tumors were excluded from ICC analysis (last 3 vertical lines). R1 = reader 1; R2 = reader 2; R3 = reader 3; R4 = reader 4.
FIGURE 3. Data points for percentage change in each individual tumor for each reader are shown: SUV_{bw} max (A), longest CT size (B), and 2-dimensional CT size (C). Almost-perfect reproducibility of percentage change in SUV_{bw} max (ICC, 0.94) was better than substantial reproducibility of longest CT size (ICC, 0.70) and fair reproducibility of 2-dimensional CT size (ICC, 0.33). Percentage change in CT size was not determined by at least 3 readers for 3 tumors, and these tumors were excluded from ICC analysis (last 3 vertical lines). R1 = reader 1; R2 = reader 2; R3 = reader 3; R4 = reader 4.
The retrospective nature of the study is a possible limitation. We attempted to pick easily visualized tumors on the pretreatment scans for evaluation. The lack of intravenous contrast on CT is another potential limitation, particularly for the primary breast tumors, but these accounted for a minority of lesions (16/52). Increasingly, data suggest that there may be no benefit of obtaining a diagnostic CT scan in addition to an 18F-FDG PET/CT scan (36,37). Follow-up studies in differing tumor types and with differing uses of intravenous contrast may be helpful to better refine the precision of CT.

CONCLUSION

SUV_{bw} max is highly reproducible when determined by multiple readers with clinically available software from routine 18F-FDG PET scans before and after therapy and is more reproducible than CT size measurements, particularly 2-dimensional CT measurements. Percentage changes in tumor SUV were more highly reproducible than percentage changes in tumor size on CT and should be seriously considered for inclusion in the future establishment of criteria for trials to assess response to therapy. In fact, the
recently proposed PET Response Criteria in Solid Tumors (PERCIST), version 1.0, uses percentage change in peak SUV\textsubscript{lean} for assessing response after treatment (38). That some variability was seen in analyses of the identical image sets by 4 PET readers using clinical software also points to a need for standardized and specific SUV determinations performed by experienced PET readers for clinical trials and automated analytic tools to assess response and improve reproducibility.

ACKNOWLEDGMENT

This study was supported by a grant to the Imaging Response Assessment Teams in Cancer Center Supplement at Johns Hopkins University from the National Cancer Institute (P30 CA006973-43S2).

REFERENCES

