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INTRODUCFION

In modern biology the investigator often wants to know if his experimenta!
data behave according to some theoretical model. Usually a flow diagram of
the model is the first step in the analysis. This process focuses attention on the
mechanisms underlying the model. Since a flow diagram per se cannot be used
for the analysis of data, the model must be given in the form of a mathematical

equation. Simply writing an equation, however, does not complete the task. At
this point the equation is in a general form. To be of any real value, a particu
lar solution must be found that produces a good fit of the theoretical model
to the observed data. Also, the values of the parameters must be consistent
with the biological principles.

For simple statistical models such as straight lines, the familiar least squares
method can be applied directly to give estimates of the parameters of the equa
tion. As more sophisticated models are used to describe actual biologica! mecha
nisms, the equations become more invo!ved. Since straight lines cannot usu
ally be fitted to complex non-linear equations, the investigator often tries to
find some transformation which will linearize his equations.Â° After lineariza
tion, elementary methods can be used for the estimation of the parameters of
the transformed equation. In other instances where a simple transformation
cannot be found, graphical solutions give some estimates of the parameters in
question.
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Â°Perhaps the most commonly used transformation is the logarithm. If the data do not

give a straight line on linear graph paper, the investigator will often reach for similog paper.
Not uncommonly this is done without regard to the meaning of the log transformation on the
process under study. Other transformations such as probits, logits, etc. are all too often used
because they work, not because they are in any way related to the biological system.
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Unfortunately, both transformations and graphical methods have serious

limitations. One is never quite sure that assumptions made about the transformed
variable can be transferred to the original variable. Also, the same criticism
can be leveled against the calculated uncertainties about the parameters of the

transformed equations. Purely graphical methods may be confounded by unin

tentional bias. Although the investigator tries to be as objective as possible, he
may unconsciously draw the line to favor the desired result. Graphical methods

do not usually allow the estimation of the uncertainties for each of the calcu
lated parameters.

Ideally, an objective method which does not require transformations or
graphs, but which can be successfully used for complex non-linear equations,

would be of considerable value to the investigator. Toward this end a numerical
technique has been applied to the estimation of the parameters of three rather
complex equations. The selection of the equations for this paper was completely
arbitraryâ€”these equations are being studied in our laboratories.

The method, as described, is sufficiently general to be used for many differ
ent types of equations. The wide-spread availability of digital computers for cal
culations coupled with the simplicity of the method should give investigators a
tool which can be readily used for fitting models to data.

SAMPLE EQUATIONS

The equations for the curves have the following general forms:

y = (1 â€”x/$) az (la)
a

y=1â€”(1â€”e ) (2a)

y = a/(1 + 13/x) (3a)

In each equation the y's are functions of x, parametric in a and fi.

The firstequation(la)isused in hematology.Sincethe radioisotopeCr5'
is tightly bound to red blood cells, the disappearance of this label from the blood
providesan indexofthebiologicallossofredcellsfrom thecirculation.By sanip
ling venous blood at several time intervals, t, and then measuring the percent of

the isotope remaining, P, a curve is developed which may 1)e given by:

P(t) = (1 â€”t/L) e@T (lb)

Where L is the mean life span of the red cell population (days), K is the
coefficient of random isotope loss per day (1). For this equation K corresponds to

a and L to f3 in equation la.

The second equation (2a) is from radiobiology. A most important conse
quence of irradiation is that injured cells lose their al)ility to perform sustained
and repeated mitoses. This loss of reproductive integrity can l)e used to study

several of the effects of radiation (2). In the usual experiment (commonly per
formed with cultured mammalian cells such as HeLa and L cells), known numbers
of cells are seeded onto petri dishes. These dishes are given graded single doses
of X or â€˜y-radiation and the cells then allowed to grow long enough to produce
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macroscopic colonies (10 days to 2 weeks). The results are scored by determining
the surviving fraction (the ratio of the number of colonies on the irradiated plates
to the number of colonies on the non-irradiated control plates) as a function of
radiation dose.

The surviving fraction as a function of dose D rads is given by:

S(D) = 1 â€”(1 â€”e_D/D0)n (2b)

Where D0 is the reciprocal of the log-linear portion of the curve, n is the
extrapolation number (see Elkind and Sutton (3) for additional details). In equa

tion 2a n corresponds to a and D0 to @9of eq. 2a. This equation is almost always
solved by hand graphing. The points are plotted on semilog paper (see Fig. 3)

and the points connected. The log linear portion of the curve is then extrapolated
to the ordinate to give the extrapolation number n. The reciprocal of this log
linear portion is D0.

The third equation (ic) comes from biochemistry. In the more familiar form,
it is recognized as the i\Iichaelis-Menton equation (4). The equation gives the
velocity of reaction, V, (moles reacted/unit time) as a function of substrate
concentration (moles/unit volume).

V(S) = Vmax/(1 + Km/S) (3b)

Where Vmax is the maximal velocity of reaction and Km is the i\Iichaelis
constant (the substrate concentration which gives a velocity equal to 1/2 Vmax)@
For this equation V max corresponds to a and Km to $ of eq 3a.

Transformations of one form or another are usually used to solve this equa
tion. One very common technique uses the reciprocals of the variables S and V
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Fig. 1. 5Cr red cell survival data. The fit of equation lb to the measurements for itera
tions 1, 2, and 6 is shown
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(4); An example is the Lineweaver-Burk in which is plotted against to give a

straight line on linear graph paper. The parameter estimates are given by the

Y intercept of the curve which is equal to and the x intercept which is

equal to â€”.
K

A detailed study of the Lineweaver-Burk method (as well as other similar
methods) showed that using reciprocals can be a source of error per Se, even if the
curves are fitted to the reciprocals by least squares (5).

Therefore, the three equations are examples of equations which must be

fitted by some numerical method (eq. ib), equations which are commonly fitted
by graphical means (eq. 2b), and equations which require transformations for
linearization (eq. 3b).

This paper will show that these equations can all be fitted by the same basic
method. A small digital computer system was used for the calculations.

THE NUMERICAL METHOD

Since in the models just described the parameters enter non-linearly, gen
eral linear regression theory cannot be used to estimate them. However, one can
â€œlinearizeâ€•by expanding a Taylor's series about some initial set of guess esti
mates', truncating the higher order terms, estimating the corrections by least
squares, and then adjusting the guess estimates with the corrections. By repeat
ing the process until the corrections become zero (or as close to zero as desired
for the particular applications), a least squares fit of the model to the data is

achieved.
For ease of presentation the theory below will be for the case in which the

response variable (y) is a function of only one independent variable (x) with two
parameters (a, b). The general case follows in the same manner (6, 7). The Model:

= f (X@ : a, b) + e1 (4)

Where,
V1 = the response of the jt?@observation

X1 = the value of the @t@1measurement
a, b = the parameters to be estimated

e = the deviation of the P @1response from the model
f(x : a, b) = the particular model describing the biological process

and
i = 1, 2,... , n; where n is the number of observations on X and Y.

If the e are normally and independently distributed, the least squares esti
mates are the same as Maximum Likelihood Estimates (6). Using a0 and b, as

TThe initial estimates can be obtained a number of ways. We usually plot the data
on graph paper and then make a very rough visual estimate of the parameters. An alternate
method is to start with the best available graphical or transformation method and then use
the results of these calculations as the initial values. Our experience has been that the rough
visual estimates are almost always satisfactory.
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guess estimates of a and b, expanding f (x : a, b) al)out a, and b, in a Taylor's
series, and truncating after the first order terms we obtain:

f(x :a,b) @f(x:a,, b,) +(@+@ (5)

where,

(@t@and(@1@
\i9a/o \Ob/o

niean the partial derivative of f (x : a, b) with respect to the parameter evaluated

at a,,, b, and the particular value of X; f (x : a,,, b,) means the value of the func
tion evaluated at a,,, b, and the particular value of X.

Our model now becomes:

V1 = f(X1 : a,, b,) + + + e@ (6)

or, b rearrangenient

â€” f (X@ : a0, b0) =@ +@@ + e@

Which islinearin the corrections-yand Ã¶and which can be fittedby least
squares using standard linear regression theory.

Letting:

V = V â€” I (X1 : a,, b,)

= (@)

- (aj@

equation 6 then becomes

V1 =@yX1i+Ã´X12+e@

The value to be minimized is

(7)

The solution which minimizes equation 7 is in the matrix notation

B0 = (XX)@ X V

Where:

* * *

V, X@, X2,
V2 .V2, K,,

* [1 â€¢

,B o[@]@X : :
* * *

V0 X,, X,,



NON-LINEAR CURVE FIT METHOD 563

X' is the transpose of x and (X'X)' is the inverse of (X'X).
The new estimates of a and b then l)ecome

a, = a,,+ â€˜y
b1 = b0 + o

Using a, and b1 as new estimates the above process is repeated until -y and
Ã¶become as small as desired.

The variance of a, V (a), is estimated by C,,a2, V (b) by C@,a2where C,,,
C22 are the diagonal elements of the inverse matrix (X'X)â€”' and a2 is the residual
variance @e,2/(n-2) (that is, the variance of the deviations from the model).

NUMERICAL EXAMPLE

Equation lb will be used for purposes of demonstration.

Recall that this equation has the form:

P = (1 â€”t/L)ek' (8)

The necessary partial derivatives are then:

â€”kt 2 â€” I
= â€”Ic + I e k /L (9)

and

(@)=tc@t/L2 (10)
The deviation of the calculated values from the measured results are given

by (P1 â€”P3. The model in terms of the corrections becomes

(Pi_Pi)=(I@)+6(I@)+ei (11)

Where P1 and P1 mean the observed and the calculated fraction of Crâ€•

remaining at the jth observation; (@-@ and refer to the values of the
\Ã¤K /@ \9L I,

partial derivatives evaluated at the@ observation with the initial parameter
estimates, K, and L,,.

The observed values [taken from Marvin (9)] are entered in the first two

columns of Table 1. The values of â€˜1(@ â€˜@the diviations, and the squares
\aKI,,' \aL/,'

of the diviations are listed in the remaining columns. For the first iteration

L,, = 60, and K0 = 0.01. The necessary sum and the additional cross products are
included at the bottom of the table.

From equation 11 normal equations are constructed for the estimation of
â€˜yand Ã¶.These are formed by defining

G=E[(P@-P@) (aP)@(aP)]'

after differentiating ( with respect to -y and Ã¶and then setting the derivatives
equal to zero, the following are developed:
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â€” P3] = 7E(@_)2 + â€˜@@\Ã´KOLJ

f@i@@p\
=

after substituting the values obtained from Table I,

TABLE I

NUMERICAL EXAMPLE

(12)

(13)

L,,= 60.0
K,= 0.01

First Iteration
Days Observed
after Fct. Crâ€•

C'alcuiated
Fct. Cr5'

Inject. Remaining Remaining

(t) (Pi) (Pi) (Pi â€”Pi)(Pi â€”Pi)2(Ã¤P/Ã´K)0(aP/aL),,3.0.895.922â€”0.02692.00072â€”2.765770.000817.0.678.824â€”0.

14561.02120â€”5.765300.0018114.0.450.667â€”0.
21651.04688â€”9.331110.0033821.0.300.527â€”0.22688.05147â€”11.064480.0047328.0.206.397â€”0.

19708.03884â€”11.286370.0058835.0.138.294â€”0.
15562.02421â€”10.276700.0068542.0.084.194â€”0.11311.01279â€”8.278790.0076749.0.048.122â€”0.06431.00414â€”5.503430.0083456.0.034.038â€”0.00408.00002â€”2.

132510.0088963.0.016.0120.04263.001821.677670.00932

(P1 - Pi)] Pi)] = â€”0.005358

= 0.000413

= 0.20209(P1 - P1)'

TABLE II

= 10.638791

= 589.561440

= â€”0.345969
@:(apa@

\aK OL

NUMERICAL EXAMPLEâ€”SUMMARY

Iteration
No.

Std error Std error Residual
K L VarianceK L

1.01060.000.0091810.96003.025262.03164.211.004849.85763.001363.04179.096.

0036011.23441.000314.04280.513.0041016.28042.000295.04280.533.0041817.36419.000296.04280.534.0041817.37728.00029

L@K
2



565NON-LINEAR CURVE FiT METHOD

(10.638791) = â€˜y(589.561440) + Ã (́â€”0.345969)

(â€”0.005358) = -y (â€”0.345969) + Ã (́ 0.000413)

(14)

(15)

I0.
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Fig. 2. Irradiated L cell survival data. The fit of equation 2b is shown.
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Solution of equations 14 and 15 gives

= 0.02052 o = 4.21078

Therefore the new estimates of K and L are

K, = K, + y = 0.01 + 0.02052 = 0.03052

L1 = L0 + o = 60. + 4.21078 = 64.21078

The residualsum ofsquaresiscalculatedby summing thefifthcolumn inTable I.
The residualvariance,a2,isgivenby:

a2 =@ (P1 â€” P)2/(N â€” 2) = 0.20209 = 0.02526

Where n is the number of observations.
The variance of K, is calculated by:

= { (@p)2/[ (If@P)2 (a@)2 â€” [ (oPaP)]2]} (a2)

= (0.00333) (0.02526)

= 8.41158 X 10'

The standarderrorofK = @V(K)= 0.0092

--7
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Fig. 3. Michaelis.Menton kinetics data. The fit of equation 3b is shown.



567NON-LINEAR CURVE FIT METHOD

The variance of L is similarily calculated by:

17(L) = {@ (@)2/[@ (@I@)2@ (@)2 â€”[@ (@ @@]2]}(cr2)

= (4754.8749) (0.02526)

= 120.1221

The standard error of L = \IV(L) = 10.96003

The calculations are then repeated using K, and L, as the estimates of K and L.
The results of the successive iterations are given in@Table II. After the sixth

iteration, the correction factors -y and@ become as small as desired (less than 1
X 10â€”')and iterationusingthecomputer isabandoned.

RESULTS AND DISCUSSION

Figure 1 shows the fit of the model to the data given by equation lb on
iterations1,2 and 6.The actualparametervaluesarelistedinTable II.While
theinitialestiniatescausethecurveto missthepointsratherbadly,subsequent
iterations rapidly pulled the curve into place. Although six iterations were re
quired to reduce the correction below 1 X 10â€”',almost no difference can be seen
between iterations 3 and 6. Figure 2 (the computer output) lists the final fit of
the model to the data.

TABLE III

COMPUTER OUTPUT FOR â€œCRRED CELL SURVIVAL.

THE SIXTH (FINAL) ITERATION IS SHOWN.

RED BLOOD CELL CURVE

ITERATION NUMBER 6

Fct. Isotope Calculated Fct.
Time (Days) Remaining Isotope Remaining Deviation

3.0 .8950 .8500 .0450
7.0 .6780 .6826 â€”.0046

14.0 .4500 .4618 â€”.0118
21.0 .3000 .3089 â€”.0089
28.0 .2060 .2038 .0022
35.0 .1380 .1321 .0059
42.0 .0840 .0836 .0004
49.0 .0480 .0511 â€”.0031
56.0 .0340 .0297 .0043
63.0 .0160 .0159 .0001

Residual variance 0.0002916
K 0.042 L 80.533
Std error K 0.0042 Std error L 17.378
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Figure 3 shows the curve of equation 21) as fitted to some cultured cell data
from one of our laboratories. Figure 4 lists the calculated and observed post
irradiation surviving fractions for this experiment along with the residual variance
and the parameter standard errors. Figure 5 gives the final fit of equation 3b to
some data published by Wilkinson (8). Figure 6 contains the observed and the
calculated velocities of reaction together with the residual variance and the
standard errors.

These three somewhat diverse examples indicate that the same numerical
process can be effectively used for several different models.

Convergence of solution occurred for each of the examples just given. By

this we mean that with each succeeding iteration, the parameter estimates ap
proached some stable value and the residual variance approached a minimum.
The final iteration gives the best estimates of the parameters of the model (and
their associated standard errors) as fitted to the set of data being studied. Assum

ing that one has an adequate and proper model to describe the biological system,
a setof well-behaveddata,convergenceof thesolution,and a sufficientlysmall
residualvariance',the investigatorshouldhave grounds to statethathisdata
are fitted by the model.

On occasions non-convergence may occur. There are several possible causes
for non-convergence. Perhaps the most important reason is the wrong model.
Although an improper or incorrect model can cause non-convergence, initial non
convergence is not a priori evidence that the model is wrong. Such factors as

â€˜Exactlyhow small the residual variance needs to be is a question that must be an
swered by the individual investigator for his particular problem. Obviously, what is a good
fit for one investigator's problem may not be good enough for another. That is to say, goodness
of fit can only be satisfactorily evaluated in light of the biological process itself and the con
ditions under which the experiment is run.

TABLE IV

COMPUTER OUTPUT FOR L CELL DATA.

CELL SURVIVAL CURVE ITERATIVE METHOD

EXPERIMENT III L CELLS PE = 0.50 2/18/66

ITERATION NUMBER 14

Surviving Calculated Deviation
Dose (Rads) Fraction Surv. Fct. (Data-Calc)

0.00000 0.99990 1.00000 â€”0.00010
100.00000 0. 79000 0. 77025 0.01975
200.00000 0.36000 0. 39537 â€”0.03537
350.00000 0.15000 0.11278 0.03722
500.00000 0.03400 0.02948 0.00452

Residualvariance0.001013
N 2.8694 DO 109.4451
Std error of N 0.1955 Std error of DO 4.2614
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heterogenous data, insufficient computer accuracy, or vastly incorrect initial
estimates may cause non-convergence.

The lack of a sufficient number of experimental points to define the entire
structure of the curve is a frequent cause of non-convergence. Not uncommonly
we have found that while a given set of data produced non-convergence, a repeat
of the experiment with additional points gave convergence.

If repeated trials fail to result in convergence, the method described in this
paper cannot be used for estimating the model parameters and the investigator
must seek other avenues of analysis.

SUMMARY

A numerical method, applicable to some of the problem of non-linear curve
fitting as it occurs in biology and medicine is described. Three different equations,

theoretical considerations and a sample calculation are described. Given a proper
model to describe the biological system, well-behaved data, convergence of solu
tion and a sufficiently small residual variance, the investigator has objective
justification that his data have been fitted by the model.

TABLE V

COMPUTER OUTPUT FOR THE DATA OF FIGURE 3.

1\hIIcHAELIs@MENTON KINETICS

ITERATION NUMBER 3

Substrate Calculated
Concentration Velocity Velocity Deviation

0.13800 0.14800 0.12971 0.01829
0.22000 0.17100 0.18601 â€”0.01501
0.29100 0.23400 0.22636 0.00764
0. 56000 0.32400 0. 33429 â€”0.01029
0.76600 0.39000 0.38813 0.00187
1.46000 0.49300 0.49013 0.00287

Residual variance 0.000184
Kin 0.596535 Vmax 0.690393
Std error Km 0.068256 Std error Vniax 0.036824
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