
LETTERS TO THE EDITOR

LETTER TO THE EDITOR

In their recent paper, Wood and Levitt (1) have done us a service by demonstrating the suitability of ¹²⁵I and ⁵¹Cr for simultaneous measurement of redcell and plasma volumes. Simultaneous measurement of the two compartments is surely to be desired in certain patients but appears to be little practiced perhaps because of unfavorable experiences with the ¹³¹I-⁵¹Cr combination. It would be unfortunate if this were the reason, because ¹³¹I and ⁵¹Cr with their similar gamma-energies are one of the most difficult pairs to separate by scintillation counting, whereas ¹²⁵I and ⁵¹Cr are particularly easy to assay together. Indeed, I hope to show in this letter that ¹²⁵I and ⁵¹Cr can be handled together with negligible sacrifice of convenience or accuracy compared with single-isotope measurements.

It would seem that Wood and Levitt have not made the most of the inherent advantages of ¹²⁵I and ⁵¹Cr in combination. They use two counting windows which they refer to as condition (1), all pulses accepted above zero pulse-height and condition (2), all pulses accepted above 70 keV. This choice must have been dictated by available instrumentation rather than optimum performance. Its main weakness is the large chromium interference in the ¹²⁵I channel.

I have found the best counting channels to be two narrow windows centered on the iodine and chromium photopeaks (see parallel-hatched areas in Figure 1). These have the following advantages: (a) each isotope is counted in a balanced window and small drifts of gain do not affect the count rates (b) the count rate

GAMMA SPECTRA FROM AN Na! WELL CRYSTAL

Pulse height

Fig. 1. Gamma Spectra of 51 Cr, 125 I and 131 I taken with a well-crystal. Note low countrate and absence of peaks from 51 Cr in the 125 I channel.

LETTERS TO THE EDITOR

in the ¹²⁵I channel due to chromium is very small (seven per cent of the value in the ⁵¹Cr channel is typical) and it too is insensitive to small drifts. In most simultaneous assays of two gamma emitters neither (a) nor (b) can be realised. Iodine-131 and ⁵¹Cr are a particularly bad example—see dot-hatched areas of Figure 1.

The curves in Figure 1 were obtained with a Harshaw well crystal feeding a conventional pulse-analyser, ratemeter and recorder¹. The energy scale is the same for all three isotopes. One should note the very low Compton continuum, devoid of low-energy peaks, in the chromium spectrum. This property, which contrasts with ¹³¹I, is due to the absence of photons above about 6 keV in the

TABLE I

STABILITY OF MIXED-ISOTOPE COUNTING EFFECT OF 0.4% SHIFT OF PHOTOMULTIPLIER VOLTAGE

Isotope Counted	Change of Count-Rate in Channels Indicated Below Per Cent of Pre-Shift Value	Change of Channels-Ratio R Per Cent of Pre-Shift Value
--------------------	--	---

A. ¹²⁵I-⁵¹Cr COMBINATION. Channels as parallel-hatched in Figure 1

	⁵¹Cr channel 284–360 keV	¹²⁵ I channel 25–40 keV	
⁵¹ Cr	+ 2%	-2%	-4%
125 J		-3%	

B. ¹³¹I-⁵¹Cr COMBINATION. Channels as dot-hatched in Figure 1

	⁵¹ Cr channel 284–324 keV	¹³¹ I channel 364–420 keV	
⁵¹ Cr	+ 17%	-55%	-60%
131 I	+ 48%	+ 19%	+80%

¹Harshaw integral line assembly type 7SF8: well crystal $1\frac{1}{4}$ " x 2" with 5 ml nominal capacity well; thickness of crystal one-half inch at sides and below well; Packard model 41OAS scaler with sliding-channel pulse-height analyser: Packard model 280 ratemeter and recorder.

718

lower part of the chromium spectrum. Even the 88 keV lead x-ray which often appears in gamma spectra taken with lead-shielded detectors is not apparent. It is the low, flat nature of the spectrum in the 20-50 keV region, which makes ⁵¹Cr particularly acceptable in combination with iodine-125.

The statement made above about freedom from the effects of drift is illustrated by part A of Table I, which summarises the effects of a deliberate 0.4% shift of the photomultiplier voltage, when counting ¹²⁵I and ⁵¹Cr together. This is contrasted with ¹³¹I and ⁵¹Cr in part B. The channels are those indicated in the figure. Channels-ratio R is defined as:

$$R(X/Y) = \frac{\text{Count-rate due to X in channel set to suit Y}}{\text{Count-rate due to X in channel set to suit X}}$$

X and Y denoting any two isotopes. This makes R $(^{125}I/^{51}Cr)$ as just defined the same as K³ of Wood and Levitt, and R $(^{51}Cr/^{125}I)$ the same as $1/K_4$.

The improvement in stability resulting from balanced channels is overwhelming. Indeed the ¹²⁵I - ⁵¹Cr pair are counted with stability equal to that of the system when dealing with either isotope separately. The only likely practical limitations are that the pulse-height-analyser used to define the ¹²⁵I channel must be stable at the rather low energy settings used, and that this channel must not be subject to spurious pulses arriving via the power mains. In addition, if only a single-channel instrument is available its pulse-analyser should be reliably resettable between the ¹²⁵I and ⁵¹Cr channels. Modern apparatus should meet all these requirements.

REFERENCES

1. WOOD, G. A. AND LEVITT, S. H.: Simultaneous Red Cell Mass and Plasma Volume Determinations Using ⁵¹Cr Tagged Red Cells and ¹²⁵I labeled Albumin. J. Nucl. Med. 6:433, 1965.

D. PAIX, M.Sc. Hospital Physicist, The Prince Henry Hospital, Little Bay, N.S.W., Australia

Mark your calendar now to attend the 14th Annual Meeting of the Society of Nuclear Medicine to be held at the Olympic Hotel, Seattle, Washington, on June 20 to 23, 1967. Please note First Call for Papers on page 727.