
Validating the Utility of Supervised Clustering Algorithm for
Precise [11C]DPA-713 PET Brain Image Quantification

Youjin Lee1,2, Thanh D. Nguyen3, Yong Du4, Jennifer M. Coughlin5, Sara A. Zein3, Nicolas A. Karakatsanis3,
Sadek Nehmeh3, Martin G. Pomper4, Susan A. Gauthier*3,6, and Yeona Kang*2,7

1Department of Mathematics, Pusan National University, Busan, Republic of Korea; 2Laboratory of Neuroimaging, National Institute
on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; 3Department of Radiology, Weill Cornell
Medicine, New York, New York; 4Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University
School of Medicine, Baltimore, Maryland; 5Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of
Medicine, Baltimore, Maryland; 6Department of Neurology, Weill Cornell Medical College, New York, New York; and 7Department of
Mathematics, Howard University, Washington, DC

The reliance of quantitative PET imaging on the arterial input function
makes brain PET challenging to perform in certain populations, limit-
ing the sample size. To address this challenge, a supervised clustering
algorithm (SVCA) has been introduced as an alternative. Our objective
was to validate SVCA’s performance for brain PET with [11C]DPA-713
that targets a putative marker of brain injury and repair.Methods: This
study included a composite dataset comprising 12 healthy volunteers
(HVs), with 6 participants from Weill Cornell Medicine and 6 partici-
pants from Johns Hopkins University School of Medicine. The mini-
mum number of subjects required to define kinetic classes was
identified. Next, the distribution volume ratio (DVR) was examined by
comparing pseudoreference time–activity curves derived from SVCA
(SVCA-DVR) with the conventional arterial input function–based DVR
(AIF-DVR). Test–retest analysis was conducted to evaluate repeatabil-
ity, considering volumes of interest (VOIs) of various sizes. Lastly, the
research investigated differences in DVR values between the HVs and
patients with multiple sclerosis. Results: The number of subjects nec-
essary for the kinetic classes, which are critical to SVCA, was reduced
to 7 from the existing minimum requirement of 10. This allowed for a
more substantial independent validation within a defined dataset. Cor-
relative analysis between SVCA-DVR and AIF-DVR demonstrated a
strong relationship, with correlation coefficients of 0.86 for white mat-
ter and 0.95 for the thalamus. Furthermore, we noted a marked
decline in absolute test–retest variability for SVCA-DVR, with reduc-
tions from 1.31% to 1.18% in white matter and 3.51% to 2.32% in the
thalamus, relative to AIF-DVR. This pattern of reduced variability per-
sisted across VOIs of disparate sizes, with the absolute test–retest
variability remaining below 5% for SVCA-DVR, even in small VOIs
(both high and low binding at 0.065 cm3). Analysis revealed a pro-
nounced disparity in SVCA-DVR values of the thalamus when compar-
ing HVs and patients with multiple sclerosis. Conclusion: The findings
substantiate the pseudoreference time–activity curves derived from
SVCA as a dependable and practical substitute for the quantification
of [11C]DPA-713 PET scans of the brain.
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Neuroinflammation plays a pivotal role in the progression of
neurodegenerative diseases, primarily through the activation of
microglia and astrocytes (1,2). These cells, when activated, may
adopt proinflammatory phenotypes that can contribute to the pathol-
ogy of diseases such as Alzheimer, Parkinson, and multiple sclerosis
(MS) (2,3).
The 18 kDa translocator protein (TSPO) is expressed on the

outer mitochondrial membrane of glial (microglia and astrocytes)
and vascular endothelial cells (4,5). Elevated levels of TSPO in
distinct brain regions have been observed in select subtypes or
stages of various neurologic conditions (6). Imaging TSPO with
PET-based radiopharmaceuticals requires arterial blood sampling
to determine the arterial input function (AIF), yet arterial cathe-
terization is not always feasible (7,8). Consequently, there is
growing interest in noninvasive approaches to estimate radio-
pharmaceutical binding to the target without arterial blood sam-
pling. Several alternative approaches have been proposed, including
the use of reference tissue methods, which eliminate the need
for arterial blood sampling (9). However, these methods rely on
the presence of an appropriate reference region devoid of speci-
fic binding sites, which may not be a feasible option for many
neuroinflammatory or neurodegenerative diseases. In this con-
text, advanced computational techniques such as the supervised
clustering algorithm (SVCA) have been proposed for use in
TSPO PET (10,11). These algorithms identify brain voxels with
signs of negligible specific binding that can be used as a pseudore-
ference region.
[11C]DPA-713 has been applied in various central nervous sys-

tem diseases (5). [11C]DPA-713 has been found to have advan-
tages relative to other TSPO-targeting radiotracers that may
position it to detect group differences in TSPO with more sensitiv-
ity (12–15). Although the application of the SVCA has been
applied to PET data acquired using the first-generation ([11C]-(R)-
PK11195 (10,16)) or select second-generation ([11C]PBR28 (17)
and [18F]DPA-714 (18)) radiotracers for imaging TSPO, the
SVCA has yet to be applied to data generated using PET with the
second-generation TSPO radiotracer [11C]DPA-713.
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This work aimed to assess the feasibility of the SVCA for quanti-
fying regional TSPO levels in the human brain using [11C]DPA-713
PET data. Our objectives included measures of data efficiency,
including a minimization of required sample size that was not consid-
ered in prior published studies of the SVCA method. The effective-
ness of the SVCA was evaluated through comparative quantification
analyses using the AIF and test–retest variability (TRV). The poten-
tial applicability of the SVCA for smaller regional and lesion-based
analyses was also evaluated, through the examination of different
volumes of interest (VOIs) and the addition of data from individuals
with MS.

MATERIALS AND METHODS

Human Subjects
The study used a multi-institutional dataset, comprising 12 healthy

volunteers (HVs) from Weill Cornell Medicine (WCM) and Johns
Hopkins Medical Institutions (JHMI) (Supplemental Table 1; supple-
mental materials are available at http://jnm.snmjournals.org). At WCM,
6 HVs underwent brain MRI and 2 [11C]DPA-713 PET scans in a test–
retest design with a 2-h interval. Meanwhile, 6 HVs from JHMI under-
went a brain MRI and 1 [11C]DPA-713 PET scan. Additionally,
10 patients with MS from WCM underwent a brain MRI and
1 [11C]DPA-713 PET scan. The institutional review board of WCM
and JHMI approved all procedures, and all subjects gave written
informed consent. Patient characteristics and clinical data were
obtained within 1 mo of the individual’s brain MRI and [11C]DPA-
713 PET scan (Supplemental Table 1). Subjects were genotyped for
TSPO (rs6971), only considering mixed-affinity binders and high-
affinity binders in the study.

[11C]DPA-713 Administration
For the PET studies, 526.4 6 73.6 MBq (14.2 6 1.9 mCi) of

[11C]DPA-713 was administered through bolus intravenous injection,
followed by flushing with 10–15 mL of saline solution.

Image Acquisition and Processing
PET data acquisition began immediately after injection, lasting

90 min on the HRRT scanner (Siemens) at JHMI and the Biograph
mCT (Siemens) at WCM. For HVs from WCM, the PET data were
reconstructed into 32 frames (6 frames of 10 s each, then 4 3 30 s,
3 3 60 s, 2 3 120 s, 5 3 240 s, and 12 3 300 s) for a total scan time
of 90 min. Meanwhile, for HVs from JHMI, the PET data were recon-
structed into 30 frames (4 frames of 15 s each, then 4 3 30 s, 3 3 60 s,
2 3 120 s, 5 3 240 s, and 12 3 300 s) for a total scan time of 90 min.
Data were reconstructed using the ordinary Poisson ordered-subsets
expectation-maximization algorithm. JHMI used 6 iterations, 16 subsets,
and 2-mm gaussian filtering, whereas WCM used 4 iterations, 21 sub-
sets, and 4-mm gaussian filtering, with corrections for decay, dead time,
attenuation, scatter, and randoms.

Arterial Blood Sampling
Continuous arterial sampling was performed at 15-s intervals for

the first 10 min using an automated fraction collector, followed by
samples at 20, 30, 45, 60, and 90 min. Each of the blood samples was
weighed, counted using a Wizard automatic g-counter (PerkinElmer),
and the activity concentration was calculated. Blood samples drawn at
5, 10, 20, 30, 45, 60, and 90 min after injection were used to estimate
plasma metabolite fractions via centrifugation and high-performance
liquid chromatography. The blood time–activity curves were then cor-
rected for metabolites and decay, producing a metabolite and decay-
corrected AIF.

MRI and Preprocessing
Each subject underwent a T1-weighted MRI scan. Interframe head

motion correction was achieved by rigidly coregistering the individual
dynamic PET frames to the last 10-min image set using PMOD (ver-
sion 3.8; PMOD Technologies Ltd. (19)). The resulting dynamic
image set was then rigidly registered to the T1-MR image set.

SVCA
The SVCA method is a noninvasive approach that identifies pseu-

doreference regions in the brain with minimal specific binding, ideal
for studies lacking invasive procedures or preliminary binding infor-
mation (10,11). It operates in 2 primary phases. The first step involves
defining kinetic classes from HVs. In our study, 4 regions of kinetics
classes were considered: low-binding gray matter (GM), white matter
(WM), blood, and high-binding GM (e.g., thalamus). Using PMOD
software, dynamic PET scans were normalized, and extracted time–
activity curves for each class of masks were obtained from FreeSurfer
(20). The normalization process involves subtracting the framewise
average and then dividing by the SD within a brain mask at the indi-
vidual level. For the blood class, image-derived input function was
used by summing the initial frames of the dynamic PET imaging and
manually identifying the carotid artery to obtain the time–activity
curves on PMOD.

In the second step, pseudoreference curves were extracted. For sub-
jects independent of kinetic class development, each voxel in the nor-
malized PET scan was evaluated for similarity to the GM kinetic
profile. Following prior work (11), the GM ratio was calculated as
the weight of GM relative to all kinetic classes. Voxels with a GM
ratio greater than 0.9 were selected, forming the pseudoreference
region. Pseudoreference curves were then derived by averaging
the time–activity curves of these voxels from the original dynamic
PET images.

Sensitivity Analysis of Kinetic Class Composite Number
Schubert et al. (11) recommended at least 10 HVs to develop

kinetic classes. To minimize the number of HVs for development, we
compared kinetic classes derived from various subject counts, ran-
domly selecting N of 12 (group N), as described in Figure 1. Group 10
served as the benchmark. ANOVA tests assessed differences between
groups, and correlation coefficients were calculated against group 10.
Using leave-1-out validation, we generated kinetic classes for groups
7 and 10 with 11 subjects, examining the robustness and accuracy of
pseudoreference curves (Fig. 2).

VOIs
Automated brain segmentation was performed on the MPRAGE

MRI data using FreeSurfer version 8.0 (20). Standard FreeSurfer cere-
bral VOIs, including the thalamus, GM, and WM, were used for further
analysis with PET images. For the patients with MS, normal-appearing
WM masks were generated and replaced WM for patients with MS. To
assess the influence of VOIs on parameter estimates, VOI masks of
0.065, 0.15, and 0.29 cm3 were generated, reflecting MS lesion sizes
for evaluating the potential of the SVCA in lesion analysis.

Measurement of Distribution Volume Ratio (DVR)
The reference Logan graphical model (LGM) (21) was used to cal-

culate DVRs for each VOI with an equilibration time of 18 min using
the SVCA-derived pseudoreference curve, which is denoted as SVCA-
DVR. Meanwhile, the LGM (22) was used to calculate the total distri-
bution volume for each VOI with a equilibration time of 18 min and a
constant blood volume fraction of 0.05. Then AIF-DVR(GM) was
defined as the ratio of LGM distribution volume of the VOI to that of
the whole GM, and AIF-DVR(SVCA) was defined as the ratio of
LGM distribution volume of the target to that of the pseudoreference
curve. All kinetic analyses were performed using PMOD 3.5 (19).
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Statistical Analysis
To compare SVCA-DVR and AIF-DVR, the correlation coefficient,

the intraclass correlation coefficient (23), and the Bland–Altman plot
(24,25) were used. To assess the reproducibility of each method, the
TRVs of SVCA-DVR and AIF-DVR were calculated for each subject,
that is,

TRV 5 1003
T2RT
T 1 RTð Þ

2

( )
, Eq. 1

where T and RT refer to values from the test
and retest scans, respectively. Additionally,
absolute TRV (aTRV) is determined by taking
the absolute value of the TRV. The reliability
coefficient (RC) values were calculated as using
the following equation (26).

%RC 5 1003 2:773

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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N
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j51
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vuut ,

Eq. 2

The %RC score accounts for random and
systematic errors, indicating real change with
a greater than 95% probability (26). Statisti-
cal analyses were performed in MATLAB
(R2021b; MathWorks) with significance set
at a P value of less than 0.05.

RESULTS

Optimization of Subject Number
Requirements for Kinetic Classes
An ANOVA test comparing kinetic clas-

ses (GM, WM, thalamus, blood) among
groups 7–10 found no significant differ-
ences. Correlation analysis between group
7 and group 10 showed high coefficients,
0.992 (GM), 0.977 (WM), 0.982 (thala-
mus), and 0.976 (blood), indicating that
kinetic classes constructed with 7 subjects
are comparable to those with 10.
We assessed the robustness and accu-

racy of pseudoreference curves. Curves
from group 7 and group 10 showed similar
trends (mean difference, 20.019 to 0.009
kBq; Fig. 2). This indicates that 7 subjects
are sufficient to establish kinetic classes,
formed by randomly selecting 3 subjects
from WCM and 4 from JHMI, resulting in
4 classes: GM, WM, thalamus, and blood
(Fig. 3).

Comparison of SVCA-DVR with AIF-DVR
Five subjects that were excluded in the

development of kinetic classes were used for
validation (2 from JHMI and 3 from WCM).
We first compared AIF-DVR(GM) and AIF-
DVR(SVCA). The correlation coefficients
were 0.95 for WM and 0.98 for the thalamus,
indicating strong agreement. Bland–Altman
analysis further confirmed a high correlation
between the 2 reference-based DVR values
(Supplemental Fig. 1). In the subsequent
analysis, we focused on AIF-DVR(GM).

Table 1 shows SVCA-DVR and AIF-DVR(GM) values for WM
and the thalamus. The correlation coefficients were 0.86 for WM
and 0.95 for the thalamus, with consistent results across geno-
types (mixed-affinity binders and high-affinity binders). Mixed-
affinity binders demonstrated better agreement in both regions
(Table 1). Intraclass correlation coefficient values between 2 DVR
values were 0.82 for WM and 0.96 for the thalamus, indicating
strong concordance between methods (Figs. 4A and 4B). Bland–
Altman analysis (Figs. 4C and 4D) revealed a mean bias of

FIGURE 1. Comparison of pseudoreference curves generated from group 7 (orange) and group 10
(green). TAC5 time–activity curve.
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2.214% (WM) and 20.330% (thalamus), with all data within
agreement limits, demonstrating robust method consistency for
both regions.

Test–Retest Variability of SVCA-DVR
To assess the SVCA repeatability in [11C]DPA-713 PET scans,

we calculated SVCA-DVR and AIF-DVR(GM) values from test–
retest scans of 3 validation subjects from WCM. The mean and
SD of DVR values for WM, GM, and the thalamus are in Table 2
(DVR values for each subject are in Supplemental Table 2). Abso-
lute variability decreased from 1.31% to 1.18% in WM and from
3.51% to 2.32% in the thalamus, indicating improved repeatability
with SVCA. The %RC values for both regions were no greater
than 7%, demonstrating robust repeatability. SVCA-DVR had
even lower %RC, highlighting its reliability. Intraclass correlation
coefficient values (0.98 for WM, 0.86 for the thalamus) confirm
strong test–retest consistency.

DVR Comparison with Various VOI Sizes
The impact of VOI sizes on DVR values were investigated. The

average size of WM and the thalamus and the size of VOIs are

provided in Table 3. For each VOI,
SVCA-DVR data of both test and retest
scans are calculated from DVR parametric
map using the SVCA. Smaller VOIs increased
the DVR values in high-activity regions (thala-
mus) and decreased them in low-activity
regions (WM). However, the smallest WM
VOI (WM3) showed higher noise sensitivity,
partial-volume effects, and location-specific
variability. aTRV and the TRV were com-
puted to examine the reliability, suggesting
that smaller VOIs tended to show greater vari-
ability, though the relationship was not
strongly linear. In the test–retest study, the
smallest VOIs (0.065 cm3) had aTRVs of
2.43% (thalamus) and 3.23% (WM). Intraclass
correlation coefficient values exceeded 0.90
for all regions. The highest %RC values were
7.16% for the thalamus and 11.46% for WM,
confirming repeatability for small VOIs in
both high- and low-uptake regions, supporting
their use in lesion analysis.

DVR Comparison with HVs and Patients with MS
To evaluate the SVCA’s ability to differentiate HVs (n 5 6)

from patients with MS (n 5 10), SVCA-DVR values were com-
pared across GM, WM, and the thalamus. SVCA-derived pseudor-
eference curves showed no significant difference between patients
with MS and HVs, except for 6 early time points before peak
activity (Supplemental Fig. 2). Mean DVRs for HVs were 0.988
(WM), 0.993 (GM), and 1.276 (thalamus) and those for patients
with MS were 0.996 (normal-appearing WM), 1.008 (GM), and
1.335 (thalamus). Significant differences were found only in the
thalamus (P 5 0.049), whereas WM and GM showed no significant
differences (P 5 0.693 and 0.126, respectively) (Fig. 5; Supplemen-
tal Table 3).

DISCUSSION

TSPO expression in microglia and astrocytes increases in
response to neurologic events such as trauma, infection, or condi-
tions such as MS. PET imaging with radioligands ([11C]-(R)-
PK11195, [11C]PBR28, [18F]DPA-714, and [11C]DPA-713) is
commonly used to assess TSPO expression (27–29). However,
its widespread brain distribution complicates the identification
of a reference region, and blood sampling, often required for
quantification, is not always feasible in clinical settings. To
address this, the SVCA offers a noninvasive method for quanti-
fying TSPO with PET imaging. This study is the first to apply
the SVCA to human [11C]DPA-713 brain PET data from 2
research facilities.
The SVCA relies on predefined kinetic classes, typically devel-

oped using VOIs from at least 10 HVs (11). However, our findings
demonstrate that kinetic classes from 7 subjects closely match
those derived from 10, offering a viable alternative when fewer
HVs are available (Fig. 2). This aligns with the [18F]DPA-714
study (18), which also used 7 subjects for kinetic classes, highlight-
ing the SVCA’s effectiveness even with small cohorts.
To validate the SVCA, we assessed its efficiency by comparing

test–retest variability against that of AIF-derived PET quantifica-
tion, a recognized gold standard. Previous studies have used GM
as a pseudoreference to quantify TSPO PET brain image includingFIGURE 3. Developed kinetic classes based on 7 subjects.

FIGURE 2. Comparison of pseudoreference curves for the left-out subject on leave-1-out valida-
tion. Full range of 10 pseudoreference time–activity curves using group 7 with mean of group 10 (A).
Mean difference (group 72 mean of group 10) is dotted with SD (B).
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[11C]DPA-713 (17,18). In this study, we generated AIF-DVR
values using 2 reference curves: GM and the SVCA pseudorefer-
ence. AIF-DVR(GM) and AIF-DVR(SVCA) showed strong agree-
ment with a correlation coefficient greater than 0.9 for both WM and
the thalamus (Supplemental Fig. 1). For consistency and benchmark-
ing, we primarily used GM-based AIF-DVR to compare our SVCA-
DVR values with established standards.
In past validation studies of the SVCA, the common practice

involved using a leave-1-out strategy. For more rigorous valida-
tion, it is recommended that the validation set be entirely separate
from the data used to develop the predefined kinetic classes. This
ensures the robustness of the validation process. Previous method-
ologies (17,18) often incorporated mixed data usage, potentially
leading to an overestimation of the method’s efficacy. In contrast,
our study assessed the SVCA using an independent validation
dataset, thereby enabling a rigorous evaluation of its generalization
capabilities, distinctly separate from the dataset used for kinetic
class creation.
Accurately assessing TSPO expression via PET requires deter-

mining radiotracer binding in brain VOIs, through either an AIF
or a reference region. This study evaluated partial-volume effects

and statistical influences on radiotracer binding in lesion-sized
VOIs. VOI analysis revealed that smaller high-activity VOIs
increased SVCA-DVR values with stable statistical uncertainty,
whereas low-activity VOIs showed decreased SVCA-DVR values
and higher uncertainty (Table 3). These findings align with [11C]-
(R)-PK11195 studies (30), but [11C]DPA-713 demonstrated superior
repeatability. For lesion-sized VOIs (�7 cm3), [11C]-(R)-PK11195
had mean aTRVs of 18.62% (WM) and 3.21% (thalamus) (30),
whereas [11C]DPA-713 achieved aTRVs of 4.73% (WM) and
2.35% (thalamus) on smaller VOIs (0.15 cm3). Test–retest analysis
of SVCA-DVR showed improved repeatability and less variability
compared with AIF-DVR(GM), with aTRVs below 5% even for
VOIs under 1 cm3 (Table 3). These results highlight SVCA-DVR as
a reliable, noninvasive method for longitudinal TSPO studies using
the reference LGM.
From the comparative study of SVCA-DVR in patients with

MS and HVs, we found that the thalamus of patients with MS
showed a DVR significantly higher than that of HVs (Fig. 5; Sup-
plemental Table 3). These results are consistent with numerous
TSPO studies wherein the thalamus is the most consistent brain
region to have elevated levels in patients with MS relative to con-
trols (5). Moreover, the studies align with our results, showing no
significance in GM. Although the studies reported a significant dif-
ference in WM between patients with MS and controls, we did not
observe this difference, which likely relates to our small sample
size. Additionally, there were significant differences of SVCA
pseudoreference curves between patients with MS and HVs at
early times. However, since the linearization in graphical analysis
is applied at later time points during quantification, the difference
at early time point has minimal effects on quantification.
This study validated the SVCA as a reliable and noninvasive

method for quantifying [11C]DPA-713 PET imaging, though it has
limitations. The assumption that kinetic classes from 10 subjects
serve as a gold standard remains untested against larger datasets
(e.g., 20–30 subjects). Data from 2 institutions, using different
scanners and reconstruction methods, introduced potential bias.
The limited data posed a constraint. Alternatively, we generated
kinetic class libraries from mixed (primary), WCM (6 subjects),
and JHMI (6 subjects) datasets. DVR values calculated using
SVCA pseudoreference curves showed no significant differences
across libraries with high nonsignificant levels (P . 0.85), sug-
gesting minimal impact from scanner variability or lack of harmo-
nization (Supplemental Table 4). These findings also align with
those of Garc�ıa-Lorenzo et al. ([18F]DPA-714) (18). Although the
SVCA has shown promise as a noninvasive method for quantifying
TSPO, its limitations remain underexplored. Studies by Plav�en-

FIGURE 4. Correlation plot (A and B) and Bland–Altman plot (C and D) for
DVR values from AIF- and SVCA-derived pseudoreference curves (n5 5).

TABLE 1
Comparison of AIF-DVR(GM) and SVCA-DVR (n 5 5)

WM Thalamus

Parameter AIF-DVR(GM) SVCA-DVR r ICC AIF-DVR(GM) SVCA-DVR r ICC

All 1.03 6 0.05 1.00 6 0.05 0.86 0.82 1.28 6 0.10 1.29 6 0.09 0.95 0.96

MAB 1.04 6 0.06 1.03 6 0.04 1.00 0.88 1.25 6 0.16 1.25 6 0.12 1.00 0.96

HAB 1.02 6 0.06 0.99 6 0.05 0.85 0.82 1.31 6 0.07 1.31 6 0.09 0.97 0.94

r 5 correlation coefficient; ICC 5 intraclass correlation coefficient; MAB 5 mixed-affinity binder; HAB 5 high-affinity binder.
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Sigray et al. (16) and Zanotti-Fregonara et al. (17) indicate that
pseudoreference curves may still be contaminated by TSPO expres-
sion or overexpression, reducing sensitivity to subtle changes in
tracer binding. This limitation could affect the technique’s accuracy
in detecting small variations in TSPO levels. Blood–brain barrier
disruption, observed in diseases such as MS, may contribute to
increased tracer uptake including an early time point of reference
curves in the patient cohort, warranting further investigation in
future studies.

CONCLUSION

This study confirms the SVCA’s effectiveness for [11C]DPA-713
PET quantification, offering data-efficient results. SVCA-generated
pseudoreference curves present a reliable and noninvasive substitute
for arterial blood sampling, enhancing the clinical applicability
of TSPO imaging across a wide spectrum of neurodegenerative
diseases. Furthermore, given its consistent variability across VOIs
of different sizes, this method shows promise for broadening the
clinical translation of TSPO to lesion-based studies of diseases
such as MS.
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Thalamus 1.30 6 0.07 1.31 6 0.06 3.51 6 0.80 7.00 0.65 1.29 6 0.06 1.31 6 0.05 2.32 6 1.69 5.30 0.86

ICC 5 intraclass correlation coefficient.
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KEY POINTS

QUESTION: Can SVCA-derived pseudoreference curves serve as
a reliable and noninvasive input function for [11C]DPA-713 PET?
Can this be implemented efficiently?

PERTINENT FINDINGS: SVCA-DVR shows a strong correlation
with AIF-DVR in regional analysis and improved test–retest
repeatability. It reliably distinguishes thalamic uptake between
HVs and patients with MS, even in smaller VOIs.

IMPLICATIONS FOR PATIENT CARE: Analysis of VOIs and
discrepancies between HVs and patients with MS underscores the
potential of small region or lesion analysis in clinical applications.
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