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The standard Patlak plot, a simple yet efficient model, is widely used
to describe irreversible tracer kinetics for dynamic PET imaging. Its
widespread application to whole-body parametric imaging remains
constrained because of the need for a full-time-course input function
(e.g., 1 h). In this paper, we demonstrate the relative Patlak (RP)
plot, which eliminates the need for the early-time input function, for
total-body parametric imaging and its application to 20-min clinical
scans acquired in list mode. Methods: We conducted a theoretic
analysis to indicate that the RP intercept b9 is equivalent to a ratio
of the SUV relative to the plasma concentration, whereas the RP
slope Ki9 is equal to the standard Patlak Ki (net influx rate) multiplied by
a global scaling factor for each subject. One challenge in applying RP
to a short scan duration (e.g., 20 min) is the resulting high noise in the
parametric images. We applied a self-supervised deep-kernel method
for noise reduction. Using the standard Patlak plot as the reference,
the RP method was evaluated for lesion quantification, lesion-to-
background contrast, and myocardial visualization in total-body para-
metric imaging in 22 human subjects (12 healthy subjects and 10
cancer patients) who underwent a 1-h dynamic 18F-FDG scan. The
RP method was also applied to the dynamic data reconstructed from
a clinical standard 20-min list-mode scan either at 1 or 2 h after injec-
tion for 2 cancer patients.Results:We demonstrated that it is feasible
to obtain high-quality parametric images from 20-min scans using
RP parametric imaging with a self-supervised deep-kernel noise-
reduction strategy. The RP slope Ki9 was highly correlated with the
standard Patlak Ki in lesions and major organs, demonstrating its
quantitative potential across subjects. Compared with conven-
tional SUVs, the Ki9 images significantly improved lesion contrast
and enabled visualization of the myocardium for potential cardiac
assessment. The application of the RP parametric imaging to the
2 clinical scans also showed similar benefits. Conclusion: Using
total-body PET with the RP approach, it is feasible to generate
parametric images using data from a 20-min clinical list-mode
scan.
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Dynamic 18F-FDG PET with tracer kinetic modeling enables
multiparametric imaging and provides more accurate metabolic

information as compared with static imaging (1,2). Among various
kinetic modeling approaches, the Patlak graphical plot (3) is a
commonly used linear kinetic model to describe 18F-FDG kinetics.
The slope parameter of the standard Patlak plot, Ki, represents the
18F-FDG net influx rate and has demonstrated advantages beyond
the SUV images, for example, for improving tumor detection and
discrimination (4–6), monitoring response to treatment (7,8), and
evaluating the prognostic outcome (9,10).
Whole-body parametric imaging with the standard Patlak plot

has been implemented on conventional PET scanners with a
short axial field of view (AFOV) ranging from 15 to 30 cm
using a multibed and multipass acquisition strategy (6,11). The
advent of long-AFOV and total-body PET scanners with a
much longer AFOV (.1 m), such as the UIH uEXPLORER
(United Imaging) (12,13) and the Siemens Quadra (Siemens
Healthineers) (14), has further simplified and improved the imple-
mentation of Patlak parametric imaging because of the much-
improved detection sensitivity and simultaneous coverage of
multiple organs. However, all these methods require a full-time-
course dynamic scan (e.g., 1 h) to obtain an image-derived input
function, which limits their broad use. Although a population-based
input function (PIF) may be used (15,16), it is challenging to
adapt the approach to individual patients, particularly for those
with diabetes or impaired renal function (17) and for pediatric
patients (18).
The relative Patlak (RP) plot (19), which does not require the

early-time input function but only the late-time input function, is
another solution to streamline the parametric imaging process.
This method has been recently deployed on commercial short-
AFOV scanners for whole-body parametric imaging (11). The RP
slope Ki9 is equivalent to the standard Patlak Ki multiplied by a
global scaling factor, thus providing comparable performance for
lesion detection (19). However, its potential for absolute quantita-
tion has not been demonstrated. Early implementation of the RP
plot also commonly used a scan duration of 30 min or more (11),
requiring data acquisition longer than a typical clinical scan dura-
tion (commonly up to 20 min) (20).
This paper aims to develop and evaluate the potential of the RP

plot for total-body parametric imaging from the dynamic data of a
clinical 20-min scan. This method will add a new ability on top of
standard clinical imaging to generate parametric images from the
same acquired list-mode data. One challenge here is that the noise
level in the resulting parametric images will be higher because of
the use of a shorter scan duration. We thus propose a self-
supervised deep-kernel method to improve the quality of RP para-
metric imaging. The proposed total-body RP approach has the
unique advantage of being usable for delayed scans (e.g., a 20-min
scan at 1–2 h after injection) and for pediatric patients, for whom
it is difficult to obtain a PIF.
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MATERIALS AND METHODS

Standard and RP Plots
The standard Patlak plot (3) describes the linear relationship

between the normalized tissue concentration and normalized integral
of input function after an equilibrium time t*:

CT tð Þ
Cp tð Þ 5Ki �

Ð t
0 Cp sð Þds
Cp tð Þ 1 b t. t�ð Þ, Eq. 1

where CT(t) denotes the 18F-FDG concentration in a tissue region at the
time t. Cp(t), also called input function, represents the 18F-FDG concentra-
tion in the plasma at the time t. Ki is a slope parameter representing the
18F-FDG net influx rate. b is an intercept parameter representing a mixture
of blood volume and free-state 18F-FDG volume of distribution in tissue
(3). The 2 parameters can be estimated via linear regression. The common
choice of t* for total-body Patlak parametric imaging is greater than or
equal to 30 min (21). Note that although only the time–activity data of later
than t* is required for CT(t), the plot still requires a full-time-course input
function from the injection time to the end of the scan for Cp(t).

The RP plot (19) was proposed as formulated in the following
equation:

CT tð Þ
Cp tð Þ 5K9i �

Ð t
t� Cp sð Þds
Cp tð Þ 1 b9 t. t�ð Þ, Eq. 2

where Ki9 and b9 are the new RP slope and intercept. Unlike the standard
Patlak plot, the RP plot eliminates the need for the early-time input func-
tion from 0 to t* and only requires the late-time input function from t* to
the end of the scan, thus potentially providing a more efficient approach
for parametric imaging.

Theoretic Interpretation of RP Plot
Our earlier study (19) demonstrated that the RP slope Ki9 is equiva-

lent to the standard Patlak Ki multiplied by a global scaling factor a in
each subject:

K9i 5aKi, Eq. 3

leading to an equivalent spatial distribution between the parametric images
of the two slopes.

The interpretation of the RP intercept b9, however, remains under-
explored in previous studies. We note that Equation 2 leads to the fol-
lowing equation by setting t equal to t*:

CT t�ð Þ
Cp t�ð Þ 5K9i �

Ð t�
t� Cp sð Þds5 0

Cp tð Þ 1 b95 b9, Eq. 4

which indicates that the intercept b9 is equivalent to the SUV ratio (SUVr)
relative to the plasma input function at time t*:

b95SUVr t�ð Þ � CT t�ð Þ
Cp t�ð Þ : Eq. 5

This equivalence suggests the RP intercept b9 is not arbitrary but
has a physiologic interpretation, further expanding theoretic aspects of
the RP plot.

RP Parametric Imaging with Self-Supervised Deep-Kernel
Denoising

One potential application of the RP plot is to shorten the scan dura-
tion for parametric imaging by increasing t*. Our preliminary analysis
shown in Supplemental Figure 1 suggests that the noise level of Ki9
image will be higher if the scan duration is shortened (supplemental
materials are available at http://jnm.snmjournals.org). We thus applied
the deep-kernel method (22) to overcome the noise issue.

A denoised image xdenoised can be modeled using a generalized kernel
representation:

xdenoised5K h;Zð Þxnoise, Eq. 6

which may also be explained as a type of nonlocal mean denoising. xnoise
is a noisy image. K h;Zð Þ is a kernel matrix built on the image prior data
Z with h including any parameters that determine the kernel representation.
Unlike the conventional kernel method (23) that uses an empirically
defined he, the deep-kernel method (22) enables an optimized and learned
kernel matrix by extending the kernel representation (Eq. 6) into trainable
neural networks. The kernel matrix Kl hl;Zð Þ now includes the trainable
parameter hl and will be trained using a simplified self-supervised strategy
for deep-kernel learning through a denoising autoencoder framework. The
model parameter set h is estimated using the following least-square formu-
lation to minimize the differences between noisy frames and their labels:

bh l5argminhl
Xnz
m51

za2Kl hl;Zð Þzm
�� ���� ��2, Eq. 7

where Z5fzmgnzm51 consists of nz dynamic frames. za is the corresponding
mean image of all the frames, considered as the clean training label. In this
work, nz54 and each zm was thus a 5-min frame. All the training settings
(neighborhood number, 200; training iteration, 300; learning rate, 1 3

1023) were the same as used previously (22). Once bh l is trained, Klðbh l;ZÞ
is then used on both dynamic activity images and parametric images for
noise reduction.

Total-Body Dynamic PET Data Acquisition for Validation
Twenty-two subjects, including 12 healthy volunteers and 10

patients with immunotherapy-naïve, metastatic genitourinary cancer,
were included in this study and scanned using the uEXPLORER total-
body PET scanner. Prior Ethics Committee and Institution Review
Board approval and written informed consent were obtained. After a
total-body CT scan, each participant underwent a 1-h dynamic scan
with an injection of approximately 370 MBq of 18F-FDG. The result-
ing list-mode data were reconstructed into 29 frames of dynamic
images (6 3 10 s, 2 3 30 s, 6 3 60 s, 5 3 120 s, 4 3 180 s, and 6 3

300 s) using vendor-implemented time-of-flight ordered-subset expec-
tation maximization (OSEM) algorithm with 4 iterations and 20 sub-
sets (13). The random correction, scatter correction, attenuation
correction, deadtime correction, and decay correction were all applied.
The image size of each frame was 150 3 150 3 486, and the voxel
size was 4 3 4 3 4 mm3.

The RP plot was implemented on the late 20-min data of each 1-h
dynamic scan (i.e., t* 5 40 min) with an image-derived input function
from a region of interest (ROI) placed in the ascending aorta (24). The
standard Patlak plot was also applied to the same 20-min dynamic
data but with a full 1-h blood input function. The SUV image was cal-
culated using the last 5-min data. In total, 26 lesions were identified
in genitourinary cancer patients. An ROI was also placed in major
organs, including the liver, lungs, spleen, muscle, gray matter, and
bone marrow of the spine and pelvis, leading to 154 organ ROIs in all
subjects. The ROI locations of bone marrow and muscle are provided
in supplemental materials. All the ROI delineation was performed
using AMIDE software (25).

Demonstration of RP Parametric Imaging with Deep-Kernel
Noise Reduction

The RP parametric imaging derived from the OSEM reconstruction
was considered the nondenoising reference. Different postreconstruc-
tion denoising methods, including the conventional kernel method (23),
the 4-dimensional deep image prior (4D-DIP) method (26), and the
deep-kernel denoising method, were compared for evaluation of the RP
parametric Ki9 imaging. They are all learning-based methods based on
single subjects and do not require population-based pretraining. The
implementations of the conventional kernel and 4D-DIP methods are
provided in the supplemental materials. Different approaches were
compared using the trade-off of lesion contrast recovery (Ki9 value) ver-
sus the liver noise level calculated as the SD divided by the mean.
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To understand how denoising methods affect the lesion ROI quanti-
fication accuracy of RP Ki9, we calculated the percentage difference in
Ki9 between each denoising method and the nondenoising OSEM refer-
ence (DKi9 5 (ROIdenoised 2 ROIref)/ROIref) for all lesions.

With the deep-kernel noise-reduction approach, we then verified the
total-body global-scaling relationship between the RP slope Ki9 image
and the standard Patlak slope Ki image, as well as the equivalence
between the RP intercept b9 and the SUVr at t* using the scatter plots
of all image voxels between the 2 methods. Linear regression was
used to evaluate the correlation.

Comparison of Total-Body Ki9 Images with Ki and SUV for
Lesion Contrast and Myocardial Visualization in
Cancer Patients

To demonstrate the potential benefit of total-body RP parametric
imaging for lesion detection, the parametric images of Ki9 were com-
pared with SUV images using the standard Patlak Ki images (derived
using the full 1-h input function) as the reference. We computed the
lesion-to-liver contrast ratio (CR), defined as ROIlesion/ROIliver, for Ki9,
SUV, and Ki for all 26 lesions from 10 cancer patients. The paired t
test and Wilcoxon signed-rank test were used to evaluate their statisti-
cal differences. P values of less than 0.05 were considered statistically
significant. The CR difference between Ki9 and SUV, defined as
(CRK9

i
2CRSUVÞ=CRSUV3100%, was calculated for each lesion. A

positive value means the better contrast provided by Ki9. In addition,
parametric imaging has the advantage of better visualizing the myo-
cardium than the SUV does, as shown in our early work (27). Thus,
the 3 images were also compared for their ability to visualize the myo-
cardium in cancer patients. Note that the SUVr images provide the
same spatial appearance and lesion contrast as SUV does and are
therefore not included in the comparison.

Evaluation of Quantitative Potential of Ki9 Using Ki

as Reference
Because there is a global scaling factor between the parametric

image of RP Ki9 and that of the standard Patlak Ki in each subject, it
was unclear whether the RP Ki9 can be quantitative across subjects.
We conducted a linear correlation analysis
between Ki9 and Ki using the data of 154
organ ROIs and 26 lesion ROIs from the 22
subjects. The 95% CI and prediction interval
of the linear fitting were also included. The
coefficient of variation, defined as the ratio
of the SD to the mean, was used to measure
how discretely this global scaling factor a is
between different subjects. In addition, we esti-
mated the global scaling factor from 12 healthy
subjects and then applied it to the Ki9 images of
10 cancer patients for calibration. The differ-
ence in all 26 lesion ROIs between the cali-
brated RP Ki and standard Patlak Ki (reference)
was quantified using the Bland–Altman plot.

We also compared the RP method with the
PIF method. Following reference (16), the
PIF was determined from the 12 healthy sub-
jects and then applied to the 10 cancer
patients in our study to generate the PIF-based
Ki images. Again, the difference in lesions
between PIF-based Ki and standard Patlak Ki

was evaluated using the Bland–Altman plot.

Application to Clinical List-Mode Scans
We further applied the RP parametric imag-

ing approach to 2 clinical 20-min list-mode

18F-FDG PET scans to demonstrate the potential of the method. One
was for a lymphoma patient scanned from 60 to 80 min after injection,
and the other was for a lung cancer patient scanned from 120 to 140 min
after injection. The list-mode raw data of each scan were reprocessed to
generate 4 5-min frames of dynamic data. Implementation details and
reconstruction settings were the same as those used in the aforemen-
tioned validation study. Because there is no early-time input function
data available, the standard Patlak plot was not applicable. Thirteen
lesions (8 from the lymphoma patient and 5 from the lung cancer
patient) were identified and used to evaluate the lesion contrast for Ki9

and SUV. The paired t test was used to indicate statistical significance.
All human subjects’ basic characteristics are summarized in Supplemen-
tal Table 1.

RESULTS

Total-Body RP Parametric Imaging Using Deep-Kernel
Noise Reduction
Figure 1 shows the total-body parametric image of the RP slope

Ki9 (mL/min/cm3) generated from a 20-min dynamic scan for a
healthy subject and a cancer patient using the standard OSEM
reconstruction method (without denoising) and the deep-kernel
noise-reduction method. Without postreconstruction noise reduc-
tion, the standard OSEM yielded a noisy Ki9 image. The deep-
kernel method substantially improved the Ki9 image quality with
lower noise and clearer lesion visualization.
Comparisons of the deep-kernel method with the conventional

kernel, and 4D-DIP noise-reduction methods are presented in Sup-
plemental Figures 2 and 3. Although the latter 2 methods both
suppressed the noise as compared with the nondenoising OSEM
reference (Supplemental Fig. 3A), they also significantly reduced
lesion contrast and introduced relatively large ROI quantification
differences (mean 6 SD: conventional kernel, 216.9% 6 12.1%;
4D-DIP, 240.7% 6 17.72%). The deep-kernel method achieved a
similar high lesion contrast as the OSEM reference did but also a
much lower background noise as the 4D-DIP had (Supplemental

FIGURE 1. Total-body RP Ki9 images from 20-min dynamic 18F-FDG scan (40–60 min after injec-
tion) based on standard OSEM reconstruction and deep-kernel noise-reduction method for healthy
subject (A) and cancer patient (genitourinary cancer patient 3) (B). Images are shown in maximum-
intensity projection.
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Figs. 2C and 2D). The deep-kernel method also provided an equiv-
alent ROI quantification of Ki9, as indicated by the small differ-
ences (mean 6 SD: 22.3% 6 2.7%) as compared with the
nondenoising reference (Supplemental Fig. 3A), which holds for
different lesion sizes (Supplemental Fig. 3B) in our study.
Of note, all subsequent parametric image visualizations and

ROI analyses are based on the deep-kernel method.

Demonstration of the Theoretic Aspects of Total-Body RP
Parametric Imaging
Figure 2 shows the comparison between the standard Patlak slope

Ki and RP slope Ki9 images for a cancer patient. These 2 images
were visually identical, though their absolute values are different.
Their correlation plot verified that Ki9 is equivalent to Ki multiplied by
a global scaling factor, that is, a 5 1.3 for this subject. The y-intercept
of the fitted line was nearly zero.
Figure 3 shows the comparison between the SUVr (t* 5 40

min) and RP intercept b9 images for the same subject. The b9
image was closely equivalent to the SUVr image with an excellent
fitting by the identity line. The linear correlation was statistically
significant with a high correlation coefficient R (close to 1) and a
minimal P value (,0.0001).
Tests on other subjects also showed similar results. These data

together verified the theoretic relationships of the RP slope Ki9 and
intercept b9 with respect to the standard Patlak slope and SUVr,
respectively.

Comparison of RP Ki9 with SUV for Lesion Contrast and
Myocardial Visualization
Figure 4A shows the image comparison between SUV, Ki, and

Ki9 for a cancer patient. A follow-up contrast CT image was
included to confirm a lung metastasis indicated by the arrow. The
lesions were clearly identified in both Ki and Ki9 images, whereas
the signal was much weaker in the SUV image. The Ki9 image
showed a lesion-to-liver contrast of 2.5, which is the same as Ki pro-
vided but much higher than the 0.59 provided by the SUV image.
Figure 4B further shows a group comparison of the lesion-to-

liver CR of all 26 lesions in the 10 cancer patients. Ki9 had a nearly
4-fold higher lesion contrast than SUV, with a median value of
4.85 versus 1.22. As indicated by the horizontal paired lines, Ki

and Ki9 had exactly the same contrast results because the global
scaling effect does not change the contrast.
The CR difference between Ki9 and SUV for each individual

lesion is further shown in Figure 4C. In 25 of the 26 lesions, the
Ki9 demonstrated a higher contrast, whereas the remaining one
showed a slightly lower contrast than did the SUV.

The top row of Figure 5 shows the SUV images of 3 cancer
patients with a view of the heart region. The following 2 rows
show their corresponding standard Patlak Ki and RP Ki9 images.
Even though with different intensity ranges, both Ki and Ki9 images
demonstrated a clear visualization of the myocardium (especially
for the left ventricular myocardium), whereas the SUV images
could not. This result suggests that RP parametric imaging can
visualize and potentially characterize the myocardium in cancer
patients.

Quantitative Potential of RP Ki9 Across Different Subjects
Figure 6A shows the correlation plot for 154 organ ROIs from

all 22 subjects. The intersubject correlation between Ki and Ki9 was
strong, as indicated by a high correlation coefficient (R . 0.99), a
minimal P value (,0.0001), and a narrow CI. Patient-wise the
scaling factor was 1.47 6 0.12 across these 22 subjects. Further
analysis for each organ ROI (Supplemental Fig. 4) also indicated
this strong correlation behavior (all R $ 0.95 and P , 0.0001).
Organ-wise the scaling factor was 1.51 6 0.03 across different
organs.
Figure 6B shows the correlation between Ki and Ki9 for ROI

quantification of 26 lesions in 10 cancer patients. Again, the inter-
subject correlation between Ki and Ki9 was statistically significant
with a high correlation coefficient (R 5 0.99) and a narrow CI.
Figure 6C shows the Bland–Altman plot of the calibrated Ki

from Ki9 as compared with the standard Patlak Ki. The mean differ-
ence (solid line) was close to 0 (8.7 3 1025) and the difference of
the 2 measures was within the limits of agreement (dashed line)
for lesion ROIs (20.0017 to 0.0019). Figure 6D further shows the
parametric images of the standard Patlak Ki and calibrated Ki for a
cancer patient, as well as the difference image in absolute, demon-
strating a minimal difference.
The difference in all lesions between PIF Ki and standard Patlak

Ki is presented in Supplemental Figure 5A. Both the RP method
(after calibration) and PIF method indicated strong agreement with
the standard Patlak method for lesion quantification. The RP
approach exhibited a slightly better performance than the PIF
method, as demonstrated by the narrower limit of agreement. A
specific example of Ki image is further provided in Supplemental
Figure 5B, showing the PIF method overestimated the lesions,
whereas the RP method stayed close to the reference.

Application of RP Parametric Imaging to Clinical
20-Minute Scans
Figure 7 shows the total-body RP parametric images generated

from 2 clinical 20-min 18F-FDG scans, 1 for a lymphoma patient

FIGURE 2. Demonstration of relationship between standard Patlak Ki

and RP Ki9 for cancer patient (genitourinary cancer patient 3). From left to
right: total-body Ki image, total-body Ki9 image; correlation plot of all image
voxels. Global scaling factor was approximately 1.3. RMSE 5 root mean
square error.

FIGURE 3. Demonstration of equivalence between SUVr (t* 5 40 min)
and RP intercept b9 in cancer patient (genitourinary cancer patient 3).
From left to right: total-body SUVr image; total-body b9 image; correlation
plot of all image voxels. Fitting line was almost identical to identity line.
RMSE5 root mean square error.
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scanned from 60 to 80 min and the other for a lung cancer patient
scanned from 120 to 140 min. Their SUV images are also shown
for comparison. Although the RP b9 image exhibited information
comparable to that of the SUV image, the Ki9 images showed
improved lesion contrast and better visualization of the myocar-
dium. Table 1 further shows a quantitative comparison of lesion-
to-liver contrast for 13 lesions in the 2 patients. The lesion contrast
improvement was statistically significant (P 5 0.001).

DISCUSSION

In this work, we demonstrated an efficient total-body parametric
imaging approach using the RP plot that can be generated from
a standard clinical acquisition and does not need the early-time
input function. With the deep-kernel noise-reduction strategy, it
becomes feasible to generate RP parametric images from a 20-min
scan (Fig. 1; Supplemental Fig. 2). Compared with earlier work
(19), this paper also demonstrated that the RP intercept b9 is

equivalent to SUVr at the time t* (Eq. 5; Fig. 3), which offers a
better understanding of the theoretic aspects of the RP plot.
The results of total-body parametric images from this work fur-

ther verified that the RP slope Ki9 image is equivalent to the stan-
dard Patlak Ki image multiplied by a global scaling factor in each
subject. This equivalence makes Ki9 equal in utility to Ki for those
tasks that are generally not affected by a global factor, such as lesion
detection and tumor volume segmentation. Compared with SUVs, a
vital benefit of Ki9 (and Ki) was the improved lesion contrast (Fig. 4).
Additionally, whereas the SUV images acquired at 1 h after injection
were unable to show the myocardium clearly in 3 of 10 in our cancer
cohort, the Ki9 image enabled better visualization of the myocardium
for potential cardiac assessment (Fig. 5), which has the potential to
assess cardiotoxicity in cancer treatments (e.g., chemotherapy or
immunotherapy). The influence of motion on accurate quantification
of total-body parametric imaging, particularly in the heart and lung, is
a significant consideration (28). We will investigate methods for miti-
gating motion for total-body RP parametric imaging in the future (29).

FIGURE 4. (A) Image comparison of lesion contrast between SUV, Ki, and Ki9 for cancer patient (genitourinary cancer patient 7). Fused images with CT
are shown in transverse and coronal planes. Arrow points to lung metastasis as confirmed by follow-up contrast CT. (B) Boxplot comparison of lesion-
to-liver CR for all 26 lesions for SUV, Ki, and Ki9. Paired lines, P values of paired t test (PT), and Wilcoxon signed-rank test (PW) are included. (C) Bar plot
of percentage difference of CR between Ki9 and SUV for each lesion. Note that CR difference between Ki9 and Ki is zero for each lesion and not shown.
HU5 Hounsfield unit.
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Furthermore, our pilot study of 22 subjects demonstrated a
strong correlation between Ki and Ki9 across subjects for ROI
quantification of lesions and major organs (Fig. 6). The coefficient
of variation of the scaling factor was relatively small (8.3%) in

this cohort. These results suggest the potential to use RP Ki9 as a
quantitative metric and warrant a future study with a large sample
size to assess the test–retest performance and evaluate the potential
of Ki9 for tumor staging and therapeutic response assessment.
We further demonstrated the feasibility and benefits of applying

the proposed total-body RP parametric imaging approach to stan-
dard clinical scans (Fig. 7). The improved lesion contrast and
myocardial visualization may facilitate the potential integration of
this efficient parametric imaging approach into standard clinical
workflows. Of note, the RP Ki9 is not aiming to replace SUVs but
rather provides additional useful information without adding imag-
ing time and scan costs.
Not limited to total-body PET, the RP parametric imaging

method can also be extended to conventional shorter scanners
using a multibed and multipass strategy (6,11). The noise in the
parametric images may be a challenge but could be overcome by
advanced reconstruction methods (30). Another application of the
proposed approach would be for pediatric parametric imaging
because a long (e.g., 1 h) dynamic scan is generally impractical for
pediatric patients. A short scan with a PIF method may be used but
is challenging because of the lack of a representative dataset for
this population. In contrast, the RP can be a feasible solution and
will be explored in the future.
There are limitations with this work. The scan duration of

dynamic data was 20 min with 5 min for each frame. There is a
growing trend toward shorter clinical scans, such as 10 min or less
(31). A recent study demonstrated the feasibility of applying the
standard Patlak plot to a 10-min scan through direct reconstruction
and the PIF (32). Our future work will extend the RP method for
scans of 10 min or shorter and also evaluate the best possible
framing protocol. Concurrently, the consideration of motion cor-
rection is also warranted. The use of advanced noise-reduction

algorithms may potentially introduce tex-
ture patterns in RP parametric images. It is
thus worth further assessing the reliability
of the generated images, such as for quan-
titative lesion detectability using a physi-
cian observer in future studies. The lesion
CR was calculated using the liver as the
background, not regional backgrounds that
are more specific to the lesions, though the
latter approach has its own limitations. In
addition, this study indicates a relatively
small variation in the scaling factor a
across subjects, thus demonstrating the
quantitative potential of RP Ki9. However,
this was limited to a single center and did
not include a test–retest component. The
variation may become larger in multicen-
ter studies in which the injection protocols
could be different. A future study would
be needed to explore more in this
direction.
Technically, both RP and PIF methods

may introduce quantification bias com-
pared with the standard Patlak plot
because of the absence or mismatch of the
early-phase input function. However, as
shown by the reasonably good correlation
between RP Ki9 and standard Patlak Ki

across subjects (Fig. 6; R 5 0.99), the RP

FIGURE 5. Comparison of parametric images with SUV images to visu-
alize myocardium in 3 cancer patients (genitourinary cancer patients 1, 4,
and 7). From top to bottom: SUV, standard Patlak Ki, and RP Ki9 images.
All images were superimposed on CT. Arrows point to myocardium
regions.

FIGURE 6. Demonstration of quantitative potential of RP Ki9 compared with standard Patlak Ki. (A)
Correlation plot between standard Ki and RP Ki9 for 154 organ ROIs in 22 subjects. (B) Correlation
plot between standard Ki and RP Ki9 for ROI quantification of 26 lesions. CI, prediction interval, R,
and P values are also included. (C) Bland–Altman plot of lesion ROI quantification between reference
Ki from standard Patlak and calibrated Ki from RP Ki9. (D) Parametric images of reference Ki and cali-
brated Ki for cancer patient, as well as their absolute difference image (genitourinary cancer patient 3).
PI5 prediction interval.
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Ki9 may have potential to offer intersubject quantification even
though they are not equal to the standard Patlak slope. The results
demonstrated in this paper warrant a future study with a large sam-
ple size. We are investigating potential clinical value of the RP
approach in addition to SUV on a larger lymphoma cohort which
includes both adult and pediatric patients. We plan to evaluate the
sensitivity and specificity of the RP approach for differentiation
between benign and malignant lesions and the performance of
quantification for tumor staging.

CONCLUSION

In this paper, we have developed and implemented an efficient
total-body parametric imaging approach using the RP plot and

self-supervised deep-kernel noise reduction for dynamic 18F-FDG
scans of 20-min duration acquired on the uEXPLORER total-body
PET scanner. The RP Ki9 was highly correlated with standard
Patlak Ki for ROI quantification across subjects, demonstrating a
strong quantitative potential. The method can be used to enable
parametric imaging from routine clinical scans and has the poten-
tial to be applied to late-time scans and to produce parametric
images for pediatric patients who cannot tolerate a long dynamic
scan duration.
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FIGURE 7. Total-body RP parametric imaging for 2 clinical scans and comparison to SUV images. (A) Lymphoma patient scanned from 60 to 80 min
after injection. (B) Lung cancer patient scanned from 120 to 140 min after injection. Images in top row are shown with maximum-intensity projection.
More detailed comparison for lesions or myocardium is shown in bottom row. Solid arrows (left, lymph node; right, pleural nodule) indicate improved
lesion contrast by Ki9, and dashed arrows demonstrate ability of Ki9 for better myocardium visualization.

TABLE 1
Comparison of Lesion Contrast for 13 Lesions in Two

Patients Between SUV and Ki9

Contrast SUV K9i PT

Lesion 3.0 6 1.9 11.0 6 8.9 0.001

PT 5 P value of paired t test.
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KEY POINTS

QUESTION: Current parametric imaging with dynamic 18F-FDG
PET commonly uses a scan duration of 30–60 min. Is there a way
to achieve total-body parametric imaging from clinical scans that
acquire data for only 20 min starting 1–2 h after tracer injection?

PERTINENT FINDINGS: The RP plot, in combination with a
deep-kernel noise-reduction method, was shown to be capable of
generating high-quality parametric images from a 20-min clinical
scan and showed benefits over the standard SUV images.

IMPLICATIONS FOR PATIENT CARE: The proposed method
offers a new solution to achieve parametric imaging from a scan
duration that is similar to current clinical static scans. It has the
potential to apply to late-time scans and for parametric imaging
of pediatric patients who cannot tolerate a long dynamic scan
duration.

REFERENCES

1. Wang G, Rahmim A, Gunn RN. PET parametric imaging: past, present, and future.
IEEE Trans Radiat Plasma Med Sci. 2020;4:663–675.

2. Rahmim A, Lodge MA, Karakatsanis NA, et al. Dynamic whole-body PET imaging:
principles, potentials and applications. Eur J Nucl Med Mol Imaging. 2019;46:501–518.

3. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants
from multiple-time uptake data: generalizations. J Cereb Blood Flow Metab. 1985;
5:584–590.

4. Zaker N, Kotasidis F, Garibotto V, Zaidi H. Assessment of lesion detectability in
dynamic whole-body PET imaging using compartmental and Patlak parametric
mapping. Clin Nucl Med. 2020;45:E221–E231.

5. Kaneko K, Nagao M, Yamamoto A, et al. Patlak reconstruction using dynamic
18F-FDG PET imaging for evaluation of malignant liver tumors: a comparison of
HCC, ICC, and metastatic liver tumors. Clin Nucl Med. 2024;49:116–123.

6. Dias AH, Pedersen MF, Danielsen H, Munk OL, Gormsen LC. Clinical feasibility
and impact of fully automated multiparametric PET imaging using direct Patlak
reconstruction: evaluation of 103 dynamic whole-body 18F-FDG PET/CT scans.
Eur J Nucl Med Mol Imaging. 2021;48:837–850.

7. Cheebsumon P, Velasquez LM, Hoekstra CJ, et al. Measuring response to therapy
using FDG PET: semi-quantitative and full kinetic analysis. Eur J Nucl Med Mol
Imaging. 2011;38:832–842.

8. De Geus-Oei LF, Van Der Heijden HFM, Visser EP, et al. Chemotherapy response
evaluation with 18F-FDG PET in patients with non-small cell lung cancer. J Nucl
Med. 2007;48:1592–1598.

9. Sharma A, Mohan A, Bhalla AS, et al. Role of various metabolic parameters
derived from baseline 18F-FDG PET/CT as prognostic markers in non-small cell
lung cancer patients undergoing platinum-based chemotherapy. Clin Nucl Med.
2018;43:e8–e17.

10. Hoekstra CJ, Stroobants SC, Smit EF, et al. Prognostic relevance of response eval-
uation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in
patients with locally advanced non-small-cell lung cancer. J Clin Oncol. 2005;23:
8362–8370.

11. Maurer A, Kotasidis F, Deibel A, Burger IA, Huellner MW. Whole-body 18F-FDG
PET/CT Patlak parametric imaging of hepatic alveolar echinococcosis. Clin Nucl
Med. 2023;48:1089–1090.

12. Badawi RD, Shi H, Hu P, et al. First human imaging studies with the explorer
total-body PET scanner. J Nucl Med. 2019;60:299–303.

13. Spencer BA, Berg E, Schmall JP, et al. Performance evaluation of the uEX-
PLORER total-body PET/CT scanner based on NEMA NU 2-2018 with additional
tests to characterize PET scanners with a long axial field of view. J Nucl Med.
2021;62:861–870.

14. Alberts I, H€unermund JN, Prenosil G, et al. Clinical performance of long axial field
of view PET/CT: a head-to-head intra-individual comparison of the Biograph
Vision Quadra with the Biograph Vision PET/CT. Eur J Nucl Med Mol Imaging.
2021;48:2395–2404.

15. Dias AH, Smith AM, Shah V, Pigg D, Gormsen LC, Munk OL. Clinical validation
of a population-based input function for 20-min dynamic whole-body 18F-FDG
multiparametric PET imaging. EJNMMI Phys. 2022;9:60.

16. van Sluis J, Yaqub M, Brouwers AH, Dierckx RAJO, Noordzij W, Boellaard R.
Use of population input functions for reduced scan duration whole-body Patlak
18F-FDG PET imaging. EJNMMI Phys. 2021;8:11.

17. Fraum TJ, Sari H, Dias AH, et al. Whole-body multiparametric PET in clinical
oncology: current status, challenges, and opportunities. AJR. 2024;223:e2431712.

18. Nardo L, Schmall JP, Werner T, Malogolowkin M, Badawi RD, Alavi A. Potential
roles of total-body PET/computed tomography in pediatric imaging. PET Clin.
2021;15:271–279.

19. Zuo Y, Qi J, Wang G. Relative Patlak plot for dynamic PET parametric imag-
ing without the need for early-time input function. Phys Med Biol. 2018;63:
165004.

20. Boellaard R, Delgado-Bolton R, Oyen WJG, et al.; European Association of
Nuclear Medicine (EANM). FDG PET/CT: EANM procedure guidelines for
tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–354.

21. Zhang X, Xie Z, Berg E, et al. Total-body dynamic reconstruction and parametric
imaging on the uexplorer. J Nucl Med. 2020;61:285–291.

22. Li S, Wang G. Deep kernel representation for image reconstruction in PET. IEEE
Trans Med Imaging. 2022;41:3029–3038.

23. Wang G, Qi J. PET image reconstruction using kernel method. IEEE Trans Med
Imaging. 2015;34:61–71.

24. Providência L, van der Weijden CWJ, Mohr P, et al. Can internal carotid arteries
be used for noninvasive quantification of brain PET studies? J Nucl Med. 2024;65:
600–606.

25. Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical
image analysis.Mol Imaging. 2003;2:131–137.

26. Hashimoto F, Ohba H, Ote K, Kakimoto A, Tsukada H, Ouchi Y. 4D deep image
prior: dynamic PET image denoising using an unsupervised four-dimensional
branch convolutional neural network. Phys Med Biol. 2021;66:015006.

27. Wang G, Nardo L, Parikh M, et al. Total-body PET multiparametric imaging of
cancer using a voxel-wise strategy of compartmental modeling. J Nucl Med. 2022;
63:1274–1281.

28. Sun T, Wu Y, Wei W, et al. Motion correction and its impact on quantification in
dynamic total-body 18F-fluorodeoxyglucose PET. EJNMMI Phys. 2022;9:62.

29. Sundar LKS, Lassen ML, Gutschmayer S, et al. Fully automated, fast motion cor-
rection of dynamic whole-body and total-body PET/CT imaging studies. J Nucl
Med. 2023;64:1145–1153.

30. Hashimoto F, Onishi Y, Ote K, Tashima H, Reader AJ, Yamaya T. Deep learning-
based PET image denoising and reconstruction: a review. Radiol Phys Technol.
2024;17:24–46.

31. Hu P, Zhang Y, Yu H, et al. Total-body 18F-FDG PET/CT scan in oncology
patients: how fast could it be? Eur J Nucl Med Mol Imaging. 2021;48:2384–
2394.

32. Sluis JV, Snick JHV, Glaudemans AWJM, et al. Ultrashort oncologic whole-
body [18F]FDG Patlak imaging using LAFOV PET. J Nucl Med. 2024;65:
1652–1657.

TOTAL-BODY PARAMETRIC IMAGING � Li et al. 661


