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Homeobox 13 (HOXB13) is an oncogenic transcription factor that
directly regulates expression of folate hydrolase 1, which encodes
prostate-specific membrane antigen (PSMA). HOXB13 is expressed
in primary and metastatic prostate cancers (PCs) and promotes
androgen-independent PC growth. Since HOXB13 promotes resis-
tance to androgen receptor (AR)–targeted therapies and regulates
the expression of folate hydrolase 1, we investigated whether SUVs
on PSMA PET would correlate with HOXB13 expression. Methods:
We analyzed 2 independent PC patient cohorts who underwent
PSMA PET/CT for initial staging or for biochemical recurrence. In the
discovery cohort, we examined the relationship between HOXB13,
PSMA, and AR messenger RNA (mRNA) expression in prostate
biopsy specimens from 179 patients who underwent PSMA PET/CT
with 18F-piflufolastat. In the validation cohort, we confirmed the rela-
tionship between HOXB13, PSMA, and AR by comparing protein
expression in prostatectomy and lymph node (LN) sections from 19
patients enrolled in 18F-rhPSMA-7.3 PET clinical trials. Correlation and
association analyses were also used to confirm the relationship
between the markers, LN positivity, and PSMA PET SUVs.Results:We
observed a significant correlation between PSMA and HOXB13 mRNA
(P , 0.01). The association between HOXB13 and 18F-piflufolastat
SUVs was also significant (SUVmax, P5 0.0005; SUVpeak, P5 0.0006).
Likewise, the PSMA SUVmax was significantly associated with the
expression of HOXB13 protein in the 18F-rhPSMA-7.3 PET cohort
(P 5 0.008). Treatment-naïve patients with LN metastases demon-
strated elevated HOXB13 and PSMA levels in their tumors as well as
higher PSMA tracer uptake and low AR expression. Conclusion: Our
findings demonstrate that HOXB13 correlates with PSMA expression
and PSMA PET SUVs at the mRNA and protein levels. Our study sug-
gests that the PSMA PET findings may reflect oncogenic HOXB13
transcriptional activity in PC, thus potentially serving as an imaging
biomarker for more aggressive disease.
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Biomarkers that can predict aggressive prostate cancers (PCs)
early in development are critical to improve patient outcomes
(1–4). One important biomarker of PC is prostate-specific mem-
brane antigen (PSMA), which is overexpressed in most PCs (5,6);
its higher expression is associated with castration-resistant disease
(7,8) and inferior metastasis-free survival (9–11). Recently, the
Society for Nuclear Medicine and Molecular Imaging and the
National Comprehensive Cancer Network have recommended
PSMA PET for the initial staging of patients with unfavorable
intermediate-, high-, and very high–risk clinically localized PC, as
well as for patients with biochemically recurrent PC (12,13).
Thus, higher-risk patients may benefit from undergoing PSMA
PET for treatment planning, with consideration of extended pelvic
nodal dissection, pelvic nodal radiation, or the addition of chemo-
hormonal agents (12).
PC demonstrates intra- and intertumor heterogeneity, which

may increase in response to androgen deprivation (1,14). PSMA
expression also demonstrates heterogeneity at the intra- and inter-
tumoral levels (15–17). Although PSMA PET/CT has improved
the detection of nonlocalized, recurrent, and metastatic PCs (18),
understanding the molecular relationships associated with PSMA
PET findings may enable improved selection of treatments to
improve overall survival outcomes.
We and others have previously demonstrated that homeobox 13

(HOXB13) promotes androgen-independent growth of PC as a
pioneer transcription factor and as a regulator of critical PC target
genes including the androgen receptor (AR) and folate hydrolase 1
that encodes PSMA (3,13,19–23). Moreover, HOXB13 expression
is increased in response to enzalutamide in PC cell lines, and its
depletion increases enzalutamide sensitivity (3,22). As such, ours
and other studies have reported the association of HOXB13 with
more aggressive disease, specifically, in AR-negative castration-
resistant PC (CRPC) and in some neuroendocrine PCs (3,21–26).
To improve the understanding between clinical tools and molecu-
lar drivers of PC progression, we sought to evaluate the correlation
between HOXB13, PSMA expression, and PSMA PET findings,
as well as their association with lymph node (LN) metastasis.
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MATERIALS AND METHODS

Study Design and Patient Demographics
The current study involving existing data was conducted under insti-

tutional review board approval with waiver of consent. We studied 2
independent subsets of patients imaged with 2 different PSMA radio-
pharmaceuticals. Group 1 was the discovery cohort, which included
179 patients who underwent PET/CT with
18F-piflufolastat (PyL) (Lantheus), and group
2 was the validation cohort, which included
19 patients who underwent PET/CT with
18F-rhPSMA-7.3 (Blue Earth Diagnostics)
(Fig. 1). We performed a retrospective analy-
sis of clinically obtained pathologic speci-
mens (prostate biopsies before PSMA PET
for group 1 and radical prostatectomy and LN
sections after PSMA PET for group 2). Histo-
pathologic examination was performed as a
part of the standard clinical workflow for group
1 and group 2 specimens by board-certified
genitourinary pathologists.

For the discovery cohort, messenger RNA
(mRNA) expression profiling was performed
using the Decipher GRID platform (Vera-
cyte) (27). Normalized gene expression was
obtained for all patients. For the validation
cohort, deidentified formalin-fixed, paraffin-
embedded (FFPE) radical prostatectomy and
LN sections were used for immunohisto-
chemical staining.

Immunohistochemical Staining and
Quantification

Two FFPE radical prostatectomy sections
from each patient were selected for immuno-
histochemical staining and were sufficient
for quantification. FFPE tissue sections were
stained with hematoxylin and eosin and
with specific antibodies for HOXB13, folate
hydrolase 1, and AR. The hematoxylin and

eosin–stained and immunohistochemical-stained slides were digitally
scanned at 320 magnification using an Aperio whole-slide scanner,
and digital quantitation was performed with Aperio ImageScope soft-
ware (Leica Biosystems). An Aperio Positive Pixel Count algorithm
(version 9; Leica Biosystems) was used to perform the analysis (28).
Average positivity of immunohistochemical staining was obtained as
the ratio of the number of positive pixels divided by the total number
of positive plus negative pixels. The immunohistochemical slides were
also manually analyzed by a board-certified genitourinary pathologist
using the following formula: quick score 5 P 3 I, where P represents
the percentage of positive cells (0, 11 [10%–25%], 21 [25%–50%],
31 [50%–75%], or 41 [.75%]) and given as ordinal numbers and I
represents intensity, scored as 1 (weak), 2 (moderate), or 3 (strong). More
details are provided in the supplemental materials (supplemental mate-
rials are available at http://jnmt.snmjournals.org).

PSMA PET Imaging and Quantification
Group 1 patients underwent PSMA PET/CT after intravenous injec-

tion of 333 MBq 6 20% of PyL. Imaging was performed with a Bio-
graph 40HD or an mCT PET/CT scanner (Siemens Healthineers).
Group 2 patients underwent PSMA PET/CT with 296 MBq 6 20% of
18F-rhPSMA-7.3 on a Siemens Biograph Vision 600 PET/CT scanner.
The PSMA PET images were evaluated semiquantitatively by deter-
mination of SUVmax and SUVpeak of the most tracer-avid lesions iden-
tified on the scans (up to 3 foci in the prostate, if still present; up to 5
LN foci; and up to 2 osseous foci). In patients with multiple lesions in
the prostate, the lesion with highest SUVmax was taken as the index
lesion for correlation with mRNA or immunohistochemical analyses.
For correlation of PSMA PET results with immunohistochemical
results, the pathologist-defined lesion with the strongest (PSMA) or

FIGURE 1. Study design of PSMA PET/CT and biomarker expression pro-
filing in PC patients. Schematic diagram of patient stratification for retro-
spective analysis is shown. ADT 5 androgen-deprivation therapy; IHC 5

immunohistochemical; RP5 radical prostatectomy; RT5 radiation therapy.
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FIGURE 2. Association among HOXB13, PSMA, and AR with PSMA SUVs in PyL cohort. (A) Corre-
lation among HOXB13, PSMA, and AR mRNA expression for each patient (n 5 179). Lines represent
linear regression. (B and C) Correlation among HOXB13, PSMA, and AR mRNA expression vs. pros-
tate PSMA SUVmax (B) or prostate PSMA SUVpeak (C) for measurable lesions. Line represents linear
regression (note logarithmic scale) (n 5 105; initial staging PSMA PET–positive, n 5 94; biochemical
recurrence, n5 11).
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median (AR and HOXB13) pixel positivity was plotted against PSMA
SUVmax or SUVpeak. The PSMA PET and immunohistochemical para-
meters were correlated on a per-patient and per-lesion basis.

Statistical Analysis
Unpaired t tests were used to compare mRNA and protein expres-

sion of genes between normal tissue and tumors. To compare patient
and tumor characteristics between PET negative and PET positive and
lymph node or bone metastasis versus no metastasis, Wilcoxon rank
sum test was used for continuous characteristics, whereas a Fisher
exact test was used for categoric ones. A linear regression model was
fit on HOXB13 mRNA gene expression on PSMA PET results (based
on SUVmax or SUVpeak) and mRNA expression levels of AR, folate
hydrolase 1, and prostate-specific antigen, adjusting for patient charac-
teristics (age at scan, tumor stage, prostate-specific antigen level at
scan, primary Gleason score, and time from radical prostatectomy).
Pearson (parametric) and Spearman rank (nonparametric) correlation
coefficients were calculated between 2 variables to quantify their
correlation with P values reported testing the estimated correlation
against 0. GraphaPad Prism (version 9.0) and R (version 4.4.0,

http://cran.r-project.org) were used for data
analyses. P values of less than 0.05 were
considered statistically significant.

RESULTS

Clinicopathologic Outcomes and
Patient Stratification by Treatment
A summary of the clinicopathologic

variables of the PyL (group 1) and
18F-rhPSMA-7.3 (group 2) subjects is
shown in Supplemental Tables 1 and 2.
In group 1, of the 55.3% (99/179)
treatment-naïve patients with newly diag-
nosed unfavorable intermediate-, high-,
or very high–risk PC, according to the
National Comprehensive Cancer Net-
work, 93.9% (93/99) had positive PSMA
PET results. Likewise, of the 44.6%
(80/179) group 1 patients with biochemi-
cally recurrent PC, 47.5% (38/80) had pos-
itive PSMA PET results (Supplemental
Table 1); group 2 consisted of 19 patients
enrolled in the 18F-rhPSMA-7.3 clinical
trials, for whom FFPE was available.
PSMA PET revealed metastasis in 46%
(6/13) of the treatment-naïve patients
(2 bone and 4 LN metastases). In patients
with biochemical recurrence, 66.6% (4/6)
had PSMA PET–positive LNs (Supple-
mental Table 2). Pathologically positive
LNs were found at radical prostatectomy
or pelvic LN dissection in 46% (6/13) of
treatment-naïve patients.

Association of HOXB13 Expression with
PSMA Tracer Uptake
Correlation analysis for PSMA,

HOXB13, and AR mRNA expression in
group 1 demonstrated strong correlation
among each patient in this group (Fig.
2A). A significant correlation was also
observed for the above 3 markers with the

kallikrein genes KLK2 and KLK3, encoding hexokinase 2 and
prostate-specific antigen, respectively, according to the National
Comprehensive Cancer Network guidelines on prostate-specific
antigen serine proteases (Supplemental Figs. 1A–1C). In addition,
PSMA and HOXB13 at mRNA levels (Spearman correlation
[r] 5 0.391; P , 0.0001) (Fig. 2A) and HOXB13 mRNA and PyL
uptake showed significant correlations (P 5 0.0005 and 0.0006 for
SUVmax and SUVpeak, respectively) (Figs. 2B and 2C). This corre-
lation observation was also noted for AR (P , 0.0001 for SUVmax

and SUVpeak) and PSMA (P 5 0.006 and 0.005 for SUVmax and
SUVpeak, respectively) (Figs. 2B and 2C). Linear regression analy-
sis of HOXB13 against the covariates indicated association with
the Gleason subpattern 5 versus 3 (P 5 0.048), AR (P 5 0.018),
and PSMA (P5 0.022) mRNA expression (Supplemental Table 3).

Coexpression of HOXB13 and PSMA in Primary PC and
LN Metastases
PSMA, HOXB13, and AR protein expression was analyzed in

group 2 FFPE specimens obtained from the prostate and LNs

FIGURE 3. Correlation of HOXB13, PSMA, and AR protein expression in advanced PC. (A) Immuno-
histochemical (IHC) analysis shows representative normal and prostate tumor sections from individual
FFPE patient specimens stained for AR, HOXB13, and PSMA. Digital quantification (DQ) analysis of
marker expression is given below each panel. Scale bar 5 200mm. (B) Expression of HOXB13, AR,
and PSMA in normal vs. tumor sections obtained by IHC and DQ determination was compared by
Student t test (****P, 0.0001; n5 19). (C) Correlation analysis compares expression of each marker
by IHC and DQ determination. Line represents linear regression, and r indicates Pearson correlation
coefficient. H&E 5 hematoxylin and eosin;1 5 positive; (-)ve5 negative.
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(Fig. 3A). Validation of the antibodies used for immunohisto-
chemical analysis is provided in Supplemental Figures 2A and 2B.
Digital quantification results of HOXB13, PSMA, and AR staining
in these specimens are provided in Supplemental Table 4. All
patient specimens had expression of the 3 targets with some degree
of intra- and intertumoral heterogeneity (Supplemental Figs. 3A–3C).
All 3 markers showed statistically significant differences between
normal prostate and tumor, indicating increased protein expression
overall in the tumor (Fig. 3B). Pearson correlation analysis compar-
ing the expression of each marker in normal prostate and in tumor
revealed a significant correlation between HOXB13 and PSMA for
normal prostate (r 5 0.684, P 5 0.001) and tumor (r 5 0.501, P 5

0.028) (Fig. 3C; Supplemental Fig. 4A). This trend was maintained
between AR and HOXB13, although slightly reduced in tumor
(normal prostate: r 5 0.804, P 5 ,0.0001; tumor: r 5 0.598,
P 5 0.006), and between PSMA and AR (normal prostate:

r 5 0.878, P , 0.0001; tumor: r 5
0.458, P 5 0.048) (Fig. 3C; Supple-
mental Figs. 4B and 4C).
Among the patients in group 2 who

had biochemical recurrence, sustained
AR, HOXB13, and PSMA expression
levels were identified despite prior radia-
tion and androgen-deprivation therapy
(Fig. 4A). Kruskal–Wallis testing that
compared the treatment-naïve patients
with the biochemical-recurrence patients
revealed a significant difference for both
AR (P , 0.00001) and HOXB13 (P ,
0.00001) (Supplemental Fig. 5). Analysis
of LN FFPE sections from treatment-
naïve PC patients with PSMA PET–
positive LNs revealed coexpression of
HOXB13 and PSMA. However, AR
expression was variable among these
PSMA PET–positive LNs, with some dis-
playing low levels of AR expression
(Fig. 4B). Pearson correlation analysis
revealed a significant correlation between
HOXB13 and PSMA (r 5 0.583, P 5
0.014) but not between AR and HOXB13
(r 5 0.243, P 5 0.402) or PSMA and
AR (r 5 0.002, P 5 0.992) in LN metas-
tasis (Fig. 4C).

HOXB13 and PSMA Expression and
Correlation with PSMA SUVs
Analysis pipeline and corresponding

immunohistochemical images of the
PSMA PET scans for 2 representative
cases are shown in Figures 5A and 5B.
We observed statistically significant cor-
relations for prostate tumor SUVpeak with
immunohistochemical staining and digital
quantitation for PSMA (r 5 0.737, P 5
0.004), HOXB13 (r 5 0.702, P 5 0.007),
and AR (r5 0.659, P5 0.014) in the pros-
tate lesions (Fig. 5C) or SUVmax with
immunohistochemical staining and digital
quantitation for PSMA (r 5 0.806, P 5

0.001), HOXB13 (r 5 0.697, P 5 0.008), and AR (r 5 0.743,
P 5 0.003) in the prostate lesions (Fig. 5D; Supplemental Table 5).

DISCUSSION

In this study, we found a significant relationship between
HOXB13 and PSMA in PC. PC uptake of the PSMA tracers PyL
and 18F-rhPSMA-7.3 was significantly associated with tissue-level
HOXB13 expression, suggesting that PSMA PET findings may be
an important prognostic biomarker for potentially lethal (i.e., cas-
tration-resistant) PC. An earlier study reported PSMA response
heterogeneity in SUVmax in hormone-sensitive PC, whereas all
men with metastatic CRPC showed an increase in SUVmax com-
pared with that at baseline (17). In addition, for patients with
advanced PC started on abiraterone and enzalutamide, a change in
PyL uptake in PC lesions or development of new lesions was prog-
nostic of time-to-therapy change and overall survival (29). This
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difference in PSMA response may be partially attributable to
heterogeneous HOXB13 and AR expression as their levels sig-
nificantly change in CRPCs compared with hormone-naïve PCs
(26,30).
Our study findings are consistent with prior publications that

have demonstrated PSMA expression positively correlating with
higher Gleason scores (P , 0.0001 in biopsy specimens and
P 5 0.007 in prostatectomy samples) (31), with LN involvement
(P 5 0.007) (32) and reduced recurrence-free survival (P ,
0.001) (33). In a treatment scenario, hormone-naïve men treated
with androgen-deprivation therapy showed a reduction in PSMA
tracer uptake initially on treatment, with a subsequent rise at some
tumor sites (17,34). Furthermore, PSMA levels and 68Ga-PSMA-
11 uptake are increased in men with metastatic CRPC treated with

enzalutamide (7,17,35,36). Thus, the clinical
importance of PSMA PET imaging lies in its
ability to redefine staging via its sensitivity to
detect metastatic disease in patients with pre-
viously diagnosed nonmetastatic CRPC (37).
Most importantly, the future of PC treatment
will likely include 177Lu-PSMA therapy, as it
has demonstrated high response rates, low
toxicity, and improved quality of life for men
diagnosed with metastatic CRPC, despite
prior treatment with docetaxel, cabazitaxel,
or a second AR pathway antagonist, abirater-
one, after enzalutamide (38,39).
This relatively novel description of the

strong relationship between expression of
HOXB13 and PSMA with the results of
PSMA PET has several potential clinical
implications. For example, HOXB13
expression in biopsy specimens might be
useful to guide the appropriateness of
PSMA PET for initial staging. Currently,
the National Comprehensive Cancer Net-
work’s risk categories are used to determine
who may benefit from PSMA PET, which is
not personalized to an individual patient’s
PC biology. With HOXB13 expression and
activity linked to castration-independent
behavior (21,22,24,25,40), patients with
high HOXB13 and PSMA expression may
benefit from primary treatments that do not
rely on androgen-deprivation therapy or cas-
tration to be therapeutically effective. Fur-
thermore, HOXB13 and PSMA expression
may be useful as a biomarker to better select
patients for earlier use of PSMA-targeted
radiopharmaceutical therapy, such as 177Lu-
PSMA-617 (41–43). In the currently ongo-
ing trial PSMAddition (NCT04720157),
which is comparing 177Lu-PSMA-617 ther-
apy plus the standard of care with the stan-
dard of care alone in newly diagnosed
metastatic hormone-sensitive PC, secondary
analysis of diagnostic prostate biopsy tissue
for HOXB13 expression may reveal which
patients are better suited for upfront PSMA-
targeted radiopharmaceutical therapy.

The use of different PSMA tracers could be considered a limita-
tion of our study. However, this is reflective of clinical practice, and
in this study, the correlation with HOBX13 was maintained, irre-
spective of the specific tracer used. The LN studies are underpow-
ered, and thus the significance of the finding remains to be
determined. Technical limitations may have impacted colocalization
between FFPE tissue samples and PET activity. However, the signif-
icant positive correlation we observed between markers in
pathologist-confirmed lesions and PSMA PET findings in our large
cohort suggests that we were able to overcome this limitation.
The correlations between HOXB13 and PSMA expression are sta-

tistically significant, but the magnitude of correlation is limited in the
discovery cohort (group 1). This limited correlation may be due
to gene expression methodology performed with Decipher GRID
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(Decipher Bioscience). Previously, we reported a strong correlation
between PSMA and HOXB13 expression in The Cancer Genome
Atlas Prostate Adenocarcinoma (n 5 492, r 5 0.51, P 5 2.2 3
10–37) and the Stand Up to Cancer–Prostate Cancer Foundation (n
5 444, r 5 0.54, P 5 3.66 3 10–10) datasets, which are based
on RNA sequencing (3). Compared with RNA sequencing, the
Decipher GRID microarray hybridization technology may have
limited gene-expression measurements because of the background
signal at the low end and signal saturation at the high end (.105

for RNA sequence vs. 103 for arrays).

CONCLUSION

HOXB13 expression at both mRNA and protein levels corre-
lates significantly with clinical PSMA PET findings, underscoring
the likely mechanistic relationship between HOXB13 and PSMA
expression in PC. Our findings of PSMA PET association with
HOXB13 could pave the way for future studies incorporating
HOXB13 and PSMA testing at earlier stages of PC diagnosis,
which could then guide personalized PC care.
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KEY POINTS

QUESTION: Does the uptake of PSMA-targeted radiopharmaceuticals
correlate with HOXB13 expression in PC lesions to enable improved
molecular profiling of PC?

PERTINENT FINDINGS: Prostate tumor SUVs of PyL
and 18F-rhPSMA-7.3 were significantly associated with
HOXB13 expression as assessed by mRNA analysis or by
immunohistochemical staining.

IMPLICATIONS FOR PATIENT CARE: Combining PSMA PET
with HOXB13 RNA or protein expression profiling of biopsy
specimens or resected tumors may enable early improved
profiling of high-risk PC in the clinical setting.
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