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We aimed to investigate the effects of 18F-FDG PET voxel intensity
normalization on radiomic features of oropharyngeal squamous cell
carcinoma (OPSCC) and machine learning–generated radiomic bio-
markers. Methods: We extracted 1,037 18F-FDG PET radiomic fea-
tures quantifying the shape, intensity, and texture of 430 OPSCC
primary tumors. The reproducibility of individual features across 3
intensity-normalized images (body-weight SUV, reference tissue
activity ratio to lentiform nucleus of brain and cerebellum) and the raw
PET data was assessed using an intraclass correlation coefficient
(ICC). We investigated the effects of intensity normalization on the fea-
tures’ utility in predicting the human papillomavirus (HPV) status of
OPSCCs in univariate logistic regression, receiver-operating-
characteristic analysis, and extreme-gradient-boosting (XGBoost)
machine-learning classifiers. Results: Of 1,037 features, a high (ICC
$ 0.90), medium (0.90. ICC$ 0.75), and low (ICC, 0.75) degree of
reproducibility across normalization methods was attained in 356
(34.3%), 608 (58.6%), and 73 (7%) features, respectively. In univariate
analysis, features from the PET normalized to the lentiform nucleus
had the strongest association with HPV status, with 865 of 1,037
(83.4%) significant features after multiple testing corrections and a
median area under the receiver-operating-characteristic curve (AUC)
of 0.65 (interquartile range, 0.62–0.68). Similar tendencies were
observed in XGBoost models, with the lentiform nucleus–normalized
model achieving the numerically highest average AUC of 0.72 (SD,
0.07) in the cross validation within the training cohort. The model gen-
eralized well to the validation cohorts, attaining an AUC of 0.73 (95%
CI, 0.60–0.85) in independent validation and 0.76 (95% CI, 0.58–0.95)
in external validation. The AUCs of the XGBoost models were not sig-
nificantly different. Conclusion: Only one third of the features demon-
strated a high degree of reproducibility across intensity-normalization
techniques, making uniform normalization a prerequisite for interindi-
vidual comparability of radiomic markers. The choice of normalization
technique may affect the radiomic features’ predictive value with
respect to HPV. Our results show trends that normalization to the len-
tiform nucleus may improve model performance, although more evi-
dence is needed to draw a firm conclusion.
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In clinical 18F-FDG PET scans, voxel intensity values usually
represent 18F-FDG activity concentration in becquerels per milliliter.
Apart from reflecting the metabolic properties of tissues, the mea-
sured activity depends on the amount of intravenously administered
18F-FDG activity, distribution volume, and blood glucose level,
among numerous other factors (1). Thus, many investigators advo-
cate for voxel intensity value normalization to enable interindividu-
ally and interinstitutionally comparable quantitative PET assessment
(1). In clinical settings, normalization is commonly performed with
SUVs, with body-weight SUVs being widely used.
Radiomics can provide objective imaging biomarkers for quanti-

fying intensity, texture, and shape features of PET findings (2).
These biomarkers, whether assessed individually or incorporated
into sophisticated models, demonstrate potential in predicting prog-
nosis, treatment response, and molecular tumor traits, among other
end points (3).
Since most radiomic features are by extension derived from

voxel intensity values, the same factors impeding interindividual
comparability of PET activity concentrations are expected to affect
radiomic features. Consequently, and presumably because of its
widespread clinical use, SUV normalization is performed by many
groups before radiomic analysis (4–6). However, there is currently
no empiric evidence supporting any normalization technique for
PET radiomics specifically. Recent studies explored the impact of
PET imaging, reconstruction, delineation, and feature extraction–
associated parameters as well as image noise on radiomic features
using clinical and phantom data (7–10). Yet, the extent to which
voxel intensity normalization using the SUV or alternative techni-
ques affects radiomic features remains elusive.
PET is a mainstay of diagnostic work-up, treatment planning, and

surveillance for oropharyngeal squamous cell carcinoma (OPSCC).
Human papillomavirus (HPV)–associated OPSCC is recognized as
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a distinct entity with different etiopathogenetic, demographic, and
prognostic characteristics (11). Using amultiinstitutional andmultina-
tional OPSCC cohort, we investigated the radiomic features’ repro-
ducibility across several PET voxel intensity-normalization
techniques. To explore the impact of normalization on the radiomic
markers’ predictive capacity, we compared the performance of indi-
vidual features and machine-learning models in predicting HPV asso-
ciation after different normalization techniques were applied. Finally,
we probed into using feature reproducibility across normalization
techniques as a feature selection criterion for machine-learning
models.
In addition to the body-weight SUV, we normalized voxel

intensities by calculating standardized uptake ratios to reference
tissues, specifically the lentiform nucleus of the brain and the cere-
bellum (12–14). The lentiform nucleus and the cerebellum were
selected because of their stable 18F-FDG uptake, ease of localiza-
tion and measurement, feasibility based on prior studies, the ability
for imaging in the same bed position as the OPSCC primary, and
the more reliable inclusion in dedicated head-and-neck reconstruc-
tions than the liver or mediastinal blood pool (12–14).

MATERIALS AND METHODS

Data Acquisition and Allocation
For this multicentric retrospective study, we used a previously

reported dataset of 435 biopsy-proven nonrecurrent OPSCC patients
with available pretreatment 18F-FDG PET of the neck and known
HPV status (15). In compliance with the Health Insurance Portability
and Accountability Act, data were acquired from Yale School of Med-
icine and 4 publicly available collections in The Cancer Imaging
Archive (https://www.cancerimagingarchive.net/) (15–19). Data col-
lection from Yale School of Medicine was approved by the institu-
tional review board, and the need for written informed consent was
waived (15). After exclusion of 5 patients because of missing informa-
tion for PET normalization, we allocated separate training (n 5 325),
independent validation (n 5 79), and external validation cohorts
(n 5 26) for machine-learning analysis by retaining the HPV-stratified
randomization from a previous study (15).

PET Intensity Normalization
PET normalization was performed with the body-weight SUV and

by taking the standardized uptake ratio to the left lentiform nucleus
and the cerebellum (12,13,15); the raw intensities (i.e., voxels repre-
sent becquerels/milliliter) were additionally analyzed. Supplemental
Methods 1 provides a detailed description (supplemental materials are
available at http://jnm.snmjournals.org) (12,13,15,20,21).

Tumor Segmentation and Radiomic Feature Extraction
After manual segmentation of the primary tumors, the 3-dimensional

tumor masks and corresponding PET images (4 images from 4 types of
intensity normalization) were fed into a customized radiomics pipeline
for performing image preprocessing and radiomic extraction. Preproces-
sing included voxel dimension resampling and derivative image genera-
tion by Laplacian-of-gaussian filtering and via a coif-1 wavelet
transform. We applied a fixed-bin-width method for voxel intensity dis-
cretization, which was shown to be more appropriate for inter- and intra-
patient feature comparison in a clinical setting by Leijenaar et al. (6,22).
Supplemental Methods 2 and 3 and Supplemental Tables 1 and 2 detail
our segmentation and radiomics extraction pipeline, also specifying the
features’ compliance with the image biomarker standardization initiative
(6,15,20,22–24). Finally, the pipeline extracted 14 shapes, 198 first-
order features, and 825 texture features per patient per PET intensity–
normalization technique.

Reproducibility of Radiomic Features Across PET
Normalization Techniques

To investigate whether intensity normalization affects the values of
radiomic features, we used the entire patient cohort to calculate a
2-way mixed effects absolute agreement single-rater and measurement
intraclass correlation coefficient (ICC) (25) for each feature to quantify
its reproducibility across the 4 normalization techniques. Features with
ICC 5 1, 1 . ICC $ 0.999, 0.999 . ICC $ 0.90, 0.90 . ICC $

0.75, and ICC , 0.75 were considered to have perfect, nearly perfect,
high, medium, and low degrees of reproducibility, respectively. Cut-
offs were selected to obtain categories where normalization had no
impact (ICC 5 1) and no relevant impact (1 . ICC $ 0.999) on fea-
tures. The ICC less than 0.75 cutoff was selected to exclude low out-
liers, and the remaining cutoffs were used to divide all other features
into categories of similar feature counts on the basis of knowledge
from preliminary analyses. Shape features by design reflect tumor
morphology and size and therefore are not affected by voxel intensity
normalization (unless voxel intensity–based segmentation is applied).
We included them in our analyses as positive controls, expecting an
ICC of 1 for all shape features.

Univariate Association Analysis with HPV Status
To assess the impact of intensity normalization on the radiomic fea-

tures’ utility as predictors of clinically relevant outcomes, we conducted
univariate association analysis with HPV status in the total cohort. A
series of logistic regressions was performed with HPV as the dependent
variable and each feature from each intensity-normalized image type as
the independent variable. In addition, the area under the receiver-
operating-characteristic curve (AUC) was determined for each feature as
a measure of univariate predictive ability.

Finally, we plotted the AUC of the features against their ICC values
to investigate if the features’ reproducibility across PET normalization
methods impacts their association with HPV.

Machine-Learning Models for HPV Prediction
To determine the utility of the radiomic feature sets in differentiat-

ing the HPV status after PET intensity normalization, we devised,
optimized, and validated 4 separate machine-learning models using
features from a different intensity-normalized image type. An
extreme-gradient-boosting (XGBoost) classifier combined with a
minimum-redundancy-maximum-relevance (MRMR) feature selection
formed the backbone of our machine-learning pipeline. The training
cohort was used for model development on the basis of cross valida-
tion (CV) and Bayesian hyperparameter optimization (Supplemental
Table 3) (26); final models were validated in the independent and
external validation datasets. Notably, the machine-learning analyses
outlined above were conducted independently from features’ ICC
values, and a detailed description is provided in Supplemental Meth-
ods 4 (15,26–28).

As an alternative to uniform normalization of PET images before
machine learning, we investigated selective use of radiomic features
with high robustness against differences in PET normalization as indi-
cated by high ICC values. We designed an experiment based on the
above-introduced CV framework using MRMR feature selection and
the XGBoost classifier. We iteratively excluded the least robust fea-
tures from the feature sets until a small set of highly robust features
remained. Specifically, we iteratively excluded the 30 features with
the lowest ICC scores from each intensity-normalized feature set and
evaluated the retained features in the CV framework until fewer than
50 features remained. The MRMR algorithm was configured to select
a fixed 20 features in every iteration, and XGBoost hyperparameters
were set to the default recommendations. This study used a modified
version of a previously reported machine-learning pipeline (15).
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Statistical Analysis
Radiomic features were standardized before analysis by subtracting

the cohort mean and dividing by the SD. To preclude information leak-
age, we used the training-cohort mean and SD to standardize the train-
ing, independent validation, and external validation cohorts for
machine-learning analyses; in the CV experiments, the CV training data
mean and SD were used to standardize both the training and the test
data. The AUC quantified the XGBoost performance. The DeLong test
was used to compare AUC scores. P values of less than 0.05 ascertained
significance. Logistic regression P values corresponding to each
intensity-normalized image type were adjusted for multiple testing
using the Benjamini–Hochberg method (p.adjust function, stats
R-package; R Project for Statistical Computing (29)). All statistical and
machine-learning analyses were performed in R version 3.6.0 (29).

RESULTS

Patient Characteristics
Of the 430 patients included in this study, 73 (17.0%) were

female and 313 (72.8%) had HPV-associated OPSCC. Detailed
characteristics of patients and PET imagery are reported in Supple-
mental Table 4 and in previous works (15–19).

Reproducibility of Radiomic Features Across PET
Normalization Techniques
Of the 1,037 radiomic features, 14 (1.4%), 47 (4.5%), 295 (28.4%),

608 (58.6%), and 73 (7%) had perfect, nearly perfect, high, medium,
and low degrees of reproducibility across normalization techniques,
respectively. Figure 1 summarizes the ICC scores and corresponding
95% CI; Supplemental Table 5 provides a comprehensive list (19,22).
The 14 shape features achieved perfect reproducibility (ICC5 1), as
anticipated. All skewness and kurtosis first-order features attained
nearly perfect reproducibility (1. ICC$ 0.999), indicating that PET
intensity normalization had no relevant effect.
A breakdown of ICC values by image type (original, Laplacian-

of-gaussian filtering, wavelet decompositions) and radiomic feature
family shows that feature counts and fractions per reproducibility

category were generally similar across image types and feature fam-
ilies (Supplemental Table 6). Wavelet decomposition high-pass fil-
tering in 2 or more spatial directions led to slightly higher median
ICC values and narrower ICC distributions, whereas low-pass filter-
ing had the opposite effect, as compared with original image fea-
tures (Supplemental Fig. 1.1.). The Laplacian-of-gaussian filtering
sigma-value (3mm vs. 6mm) had no relevant effect on ICC distri-
butions (Supplemental Fig. 1.1), and ICC distributions were similar
across feature families (except shape features; Supplemental Fig.
1.2). Notably, the scatterplot reveals a cluster of 45 highly reproduc-
ible gray-level cooccurrence matrix features with an ICC greater
than 0.98 (Supplemental Fig. 1.2), among which we identified 11
correlation features, 10 inverse difference moment–normalized fea-
tures, and 10 inverse difference–normalized features.

Univariate Association Analysis with HPV Status
Features extracted from PET normalized to the lentiform

nucleus exhibited the strongest association with HPV in univariate
analysis (Table 1; Supplemental Figs. 2.1 and 2.2).
A breakdown by image type (original, Laplacian-of-gaussian fil-

tering, wavelet decompositions) and radiomic feature family
revealed that the effect of PET normalization on the features’ pre-
dictive value was highly consistent across image types and feature
families (Supplemental Figs. 2.3–2.6; Supplemental Table 7).
Plotting of the features’ AUC (measuring their univariate associa-

tion with HPV) against their ICC (measuring their reproducibility
across normalization methods) revealed no clear association visu-
ally, which is confirmed in Spearman correlation analysis showing
a trivial although statistically significant association (r 5 20.04,
P 5 0.005; Supplemental Figs. 3.1–3.3). Supplemental Figure 3.1
again reveals a stratification of AUC scores by the PET normaliza-
tion method.

Machine-Learning Models for HPV Prediction
Table 2 summarizes the optimized XGBoost classifiers’ perfor-

mance. The classifier using lentiform nucleus–normalized PET
features attained the numerically highest averaged CV AUC 6 SD
of 0.72 6 0.07. The AUC of all models in the independent and
external validation datasets was similar to their CV AUC (Table
2). We detected no significant differences among the models’
independent validation AUCs and among the models’ CV AUCs
(all P . 0.05; Supplemental Fig. 4 (30)). The P value from com-
paring the lentiform nucleus–normalized and SUV-normalized
models’ CV AUCs approached significance (P 5 0.052; Supple-
mental Fig. 4.2). Supplemental Table 8 depicts the feature impor-
tance scores for all XGBoost classifiers (19,22,26); notably, most
MRMR-selected features came from wavelet images.
Iterative exclusion of the features with the lowest ICC scores

(i.e., the least reproducible features across normalization techni-
ques) from models resulted in a convergence of XGBoost perfor-
mance (i.e., models trained with increasingly more reproducible
features yielded increasingly similar AUC values; Fig. 2). How-
ever, as the total number of features available to models decreased,
the model performance deteriorated steadily. In Figure 2, no pla-
teau providing a balance between classifier performance and fea-
ture reproducibility can be identified.

DISCUSSION

Despite the growing interest in quantitative radiomic analysis of
PET imagery, the effect of voxel intensity value normalization on
radiomic markers and machine-learning models has not been

FIGURE 1. Reproducibility of radiomic features across PET normaliza-
tion techniques. Each radiomic feature is represented by vertical bar, as
shown in inset, with red central marker representing its ICC value and
black vertical bar representing corresponding 95% CI. Features are
ordered from left to right by decreasing ICC score.
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studied before to the best of our knowledge. Using a dataset of
430 OPSCC patients with pretherapeutic 18F-FDG PET scans, we
investigated the reproducibility of radiomic features across PET
normalization techniques (SUV, standardized uptake ratio to lenti-
form nucleus and cerebellum, raw intensities). We demonstrated
that among 1,037 features extracted from OPSCC primary tumors,
only 356 (34.3%) attained at least a high degree of reproducibility
(ICC $ 0.90), suggesting that their values would be similar regard-
less of the normalization technique applied (Fig. 1). Given the lower
reproducibility of most features, we concluded that uniform normali-
zation or at least conversion of voxel intensities to identical units
(e.g., Bq/mL) is a prerequisite for extraction of interindividually
comparable radiomic features. We observed differential effects of
PET normalization on the reproducibility of individual features
(Supplemental Table 5). Highly voxel intensity–dependent features
attained low ICC scores, because intensity normalization directly
influences their feature value. For example, the 2 least reproducible
features were minimum features, measuring the minimum intensity

within the tumor. Most texture features, capturing patterns and rela-
tionships of intensity between adjacent voxels, were also markedly
and to varying degrees affected by normalization. Conversely, we
discovered features with mathematic definitions (22) that reduced or
nullified the effects of normalization constants applied to all voxel
values via multiplication and division. For instance, skewness and
kurtosis features attained an ICC between 0.999 and 1 because, on
the basis of their mathematic definitions, normalization constants
cancel out. Presumably, their ICC was slightly decreased because of
rounding in the complex feature extraction pipeline. Thus, the differ-
ential effects of normalization on feature values are partly explained
by mathematic feature definitions. In addition, the effects of PET
normalization on feature reproducibility are amplified or mitigated
by image filters (Supplemental Fig. 1.1).
In addition, we studied the effects of intensity normalization on

the features’ predictive value with respect to the HPV status.
Using the training cohort, we devised and optimized 4 XGBoost
classifiers, each using a MRMR-selected feature subset from a

TABLE 1
Univariate Association Analysis

PET normalization method

Parameter SUV None (raw intensities)
Reference tissue
(lentiform nucleus)

Reference tissue
(cerebellum)

Median of absolute
standardized
regression
coefficients*

0.27 (0.17–0.36) 0.45 (0.30–0.54) 0.51 (0.36–0.62) 0.38 (0.26–0.48)

Number of significant
features

Before adjustment for
multiple testing†

623 857 877 809

After adjustment for
multiple testing†

591 843 865 785

Median AUC‡ 0.59 (0.56–0.62) 0.62 (0.59–0.64) 0.65 (0.62–0.68) 0.63 (0.60–0.65)

*Standardized regression coefficients were converted to absolute values before median was calculated. Interquartile range is in
parentheses.

†Adjustment by Benjamini–Hochberg method.
‡AUC values , 0.5 were substituted with 1 – AUC before median and interquartile range were calculated. Interquartile range is in

parentheses.

TABLE 2
Machine-Learning Classifier Performance

PET normalization method

Parameter SUV None (raw intensities)
Reference tissue
(lentiform nucleus)

Reference tissue
(cerebellum)

CV AUC* 0.65 (0.08) 0.67 (0.08) 0.72 (0.07) 0.69 (0.07)

Independent validation AUC† 0.64 (0.49–0.79) 0.74 (0.62–0.87) 0.73 (0.60–0.85) 0.72 (0.58–0.87)

External validation AUC† 0.68 (0.47–0.89) 0.74 (0.54–0.94) 0.76 (0.58–0.95) 0.78 (0.60–0.96)

*Model performance was quantified by AUC in each CV test fold and averaged across all CV iterations. Data are median with SD in
parentheses.

†DeLong’s method was used to estimate 95% CIs. 95% CIs are in parentheses.
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different intensity-normalized image type. Considering that some
variability in XGBoost performance is expected, we concluded that
all machine-learning models generalized well to the independent and
external validation cohorts (Table 2). Notably, all but 1 of the
XGBoost validation AUCs lie within the range of 61 SD from the
corresponding CV AUC. The AUC differences between models
based on different intensity-normalization techniques were not signifi-
cant. However, tendencies from univariate analysis were generally

replicated in machine-learning analysis in the training cohort, with the
lentiform nucleus model attaining the numerically highest AUC in the
CV (Table 2), and the P value from comparing the lentiform nucleus–
and SUV-normalized models approached significance (P 5 0.052;
Supplemental Fig. 4.2). Notably, the model based on raw PET images
(i.e., voxel intensities indicate Bq/mL) achieved an AUC 6 SD of
0.676 0.08 in the CV and the numerically highest AUC in indepen-
dent validation. This finding suggests that machine learning–gener-
ated radiomic biomarkers are relatively robust even in the absence of
18F-FDG PET voxel intensity normalization. For exploratory
radiomics-based machine-learning research, it may therefore be
appropriate to forgo intensity normalization under certain circum-
stances (provided that voxel intensities are converted to identical
units, for example, Bq/mL).
Univariate association analysis with the HPV status revealed a

limited effect of intensity normalization on the predictive capacity
of individual features, with normalization to the lentiform nucleus
yielding the numerically highest median regression coefficient and
AUC score and the largest fraction of significant features in a
logistic regression analysis (Table 1; Supplemental Figs. 2.1–2.2).
This effect was pervasive across feature families and image types
(Supplemental Figs. 2.3–2.6; Supplemental Table 7). These ten-
dencies suggest that the choice of normalization technique may
affect the radiomic features’ predictive value with respect to HPV
and that normalizing 18F-FDG PET voxel intensities to the lenti-
form nucleus may be preferable for head-and-neck radiomics.
However, more evidence is needed to draw a firm conclusion,
including investigation of additional reference tissues and studies
with higher statistical power. We found no relevant impact of the
features’ reproducibility across normalization techniques on their
predictive capacity with respect to HPV (Supplemental Fig. 3).
We hypothesized that a measure of feature robustness against dif-

ferences in PET normalization could be a useful feature selection cri-
terion for machine-learning models. If models achieved good
performance with only features known to be highly robust, uniform
image normalization as a preprocessing step may be omitted. To
investigate this, we iteratively excluded features with the lowest ICC
scores from machine-learning models. We observed a steady decline
in XGBoost performance as the number of available candidate fea-
tures decreased, with no plateau identified that provided a satisfactory
balance between classifier performance and feature reproducibility
(Fig. 2). Consequently, we regarded the hypothesis as false.
The diversity of our dataset, which was acquired from multiple

institutions including Yale School of Medicine (15), comes with
inherent advantages and disadvantages. The variability in PET
scanners and in imaging and reconstruction protocols may bolster
the generalizability of our results, whereas the noise introduced by
this variability may reduce the granularity of some findings. Future
studies may gather larger, more homogeneous datasets—ideally
by following clinical practice guidelines designed to improve the
repeatability and reproducibility of oncologic PET (31)—to enable
a clearer understanding of the impact of PET normalization on
radiomic features. Future work should additionally investigate the
liver and mediastinal blood pool, given their widespread use as
18F-FDG uptake references. In addition, further tumor entities,
radiotracers, SUV variants, and segmentation techniques should be
considered. The extent to which normalization affects individual
feature values is partly inherent in the features’ mathematic defini-
tions. Therefore, the rank order of the features’ reproducibility

FIGURE 2. Iterative exclusion of least reproducible radiomic features
from machine-learning models. We iteratively excluded 30 radiomic fea-
tures with lowest ICC from radiomic feature sets and evaluated retained
features in CV framework, until ,50 features remained. On y-axis, median
and minimum ICC values of radiomic feature sets and models’ corre-
sponding averaged CV AUC scores are plotted, with x-axis showing num-
ber of retained features.
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across normalization techniques is generalizable to other reference
tissues, SUV variants, tissues of interest, or radiotracers, if similar
effects of image filtering are assumed. Notably, absolute ICC
values are more dependent on absolute voxel intensities and are
therefore less generalizable. We expect similar effects of PET nor-
malization on the features’ predictive value in future studies on
other cancers and tissues of interest, reference tissues, clinical end
points, and tracers. However, the generalizability of these analyses
depends on an array of additional factors, including the predictabil-
ity and steadiness of tracer uptake in new reference tissues, feature
selection for predictive models, and the dynamics and interaction of
radiotracer uptake in the reference tissue and tissues of interest,
which may include malignant and benign lesions or healthy tissue.
This complexity impedes prognoses and warrants further studies.

CONCLUSION

To the best of our knowledge, our study is the first to investigate
the effects of 18F-FDG PET voxel intensity normalization—using the
SUV and reference tissue–standardized uptake ratios—on radiomic
features and machine learning–generated radiomic biomarkers.
Although radiomics researchers thus far have converted PET imag-
ery to SUV maps, reasoning that a clinically established normaliza-
tion technique would be equally effective in radiomics pipelines, our
study is the first to our knowledge to provide data and empiric evi-
dence. We found that few features were reproducible across
intensity-normalization techniques, making uniform normalization
(or at least conversion to identical units, for example, Bq/mL) a
methodologic prerequisite for interindividual comparability of radio-
mic biomarkers. In machine-learning models and univariate associa-
tion analyses with the HPV status, we discovered trends suggesting
that the choice of normalization technique may affect the radiomic
features’ predictive values and that normalization to a central nervous
system reference, specifically the lentiform nucleus of the brain, may
be preferable. However, more evidence is needed before a definitive
recommendation can be made.

KEY POINTS

QUESTION: How does 18F-FDG PET voxel intensity value normal-
ization (SUV vs. reference tissue standardized uptake ratios vs.
raw intensities) affect the radiomic features of OPSCC and
machine learning–generated radiomic biomarkers?

PERTINENT FINDINGS: Using pretreatment 18F-FDG PET scans
of 430 OPSCC patients, we show that only approximately one
third of the 1,037 radiomic features attains a high degree of repro-
ducibility across normalization techniques, highlighting the neces-
sity for uniform intensity normalization to ensure interindividual
comparability of radiomic markers. In addition, normalization may
affect the features’ predictive value. We observed tendencies sug-
gesting that normalization to a neural reference tissue (lentiform
nucleus) may be preferable for HPV prediction in univariate and
XGBoost machine-learning analyses, but more evidence is needed
to support this conclusion.

IMPLICATIONS FOR PATIENT CARE: Our study begins to eluci-
date the impact of 18F-FDG PET intensity normalization on radio-
mic markers of OPSCC and machine learning–generated radiomic
biomarkers, potentially expediting the translation of exploratory
radiomic tools into clinical applications.
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Errata

In the article “177Lu-PSMA SPECT Quantitation at 6 Weeks (Dose 2) Predicts Short Progression-Free Survival for Patients
Undergoing 177Lu-PSMA-I&T Therapy,” by John et al. (J Nucl Med. 2023;64:410–415), the first sentence of the Discussion on
page 413 currently reads “… between baseline and 6 wk of 177Lu-PSMA-617 therapy…” The statement should read “… between
baseline and 6 wk of 177Lu-PSMA-I&T therapy…” The authors regret the error.

In the article “[18F]FDG PET/CT in the Initial Staging and Restaging of Soft-Tissue or Bone Sarcoma in Patients with Negative
or Equivocal Findings for Metastases or Limited Recurrence on Conventional Work-up: Results of a Prospective Multicenter
Registry,” by Metser et al. (J Nucl Med. 2023;64:1371–1377), the last author’s surname was spelled incorrectly. Singunkar should
be Singnurkar. The authors regret the error.
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