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Deviations of brain age from chronologic age, known as the brain age
gap (BAG), have been linked to neurodegenerative diseases such as
Alzheimer disease (AD). Here, we compare the associations of MRI-
derived (atrophy) or 18F-FDG PET–derived (brain metabolism) BAG
with cognitive performance, neuropathologic burden, and disease
progression in cognitively normal individuals (CNs) and individuals
with subjective cognitive decline (SCD) or mild cognitive impairment
(MCI). Methods: Machine learning pipelines were trained to estimate
brain age from 185 matched T1-weighted MRI or 18F-FDG PET scans
of CN from the Alzheimer’s Disease Neuroimaging Initiative and vali-
dated in external test sets from the Open Access of Imaging and Ger-
man Center for Neurodegenerative Diseases–Longitudinal Cognitive
Impairment and Dementia studies. BAGwas correlated with measures
of cognitive performance and AD neuropathology in CNs, SCD sub-
jects, and MCI subjects. Finally, BAG was compared between cogni-
tively stable and declining individuals and subsequently used to
predict disease progression. Results: MRI (mean absolute error,
2.49 y) and 18F-FDG PET (mean absolute error, 2.60y) both estimated
chronologic age well. At the SCD stage, MRI-based BAG correlated
significantly with beta-amyloid1-42 (Ab1-42) in cerebrospinal fluid,
whereas 18F-FDG PET BAG correlated with memory performance. At
the MCI stage, both BAGs were associated with memory and execu-
tive function performance and cerebrospinal fluid Ab1-42, but only
MRI-derived BAG correlated with phosphorylated-tau181/Ab1-42.
Lastly, MRI-estimated BAG predicted MCI-to-AD progression better
than 18F-FDG PET–estimated BAG (areas under the curve, 0.73 and
0.60, respectively). Conclusion: Age was reliably estimated from MRI
or 18F-FDG PET. MRI BAG reflected cognitive and pathologic markers
of AD in SCD and MCI, whereas 18F-FDG PET BAG was sensitive
mainly to early cognitive impairment, possibly constituting an inde-
pendent biomarker of brain age-related changes.
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Brain aging entails changes in cognitive performance, brain
function, and structural parameters of brain integrity. Brain age
can be modeled using machine learning algorithms by estimating a
person’s chronologic age from their neuroimaging data. Higher
brain age than chronologic age, that is, a positive brain age gap
(BAG), is associated with neurodegenerative diseases such as Alz-
heimer disease (AD). A recent study (1) linked BAG with PET
AD biomarkers in patients with mild cognitive impairment (MCI)
and with progression from cognitively normal (CN) to MCI, or
MCI to dementia. This warrants further research on BAG as a
marker of individual cognitive performance and neuropathologic
burden in at-risk populations for AD dementia (subjective cogni-
tive decline [SCD] and MCI).
Age-related changes are evident in the brain’s anatomy, such as

loss of brain volume (atrophy), as well as in metabolism (neuronal
dysfunction), which can be quantified by T1-weighted MRI and
18F-FDG PET, respectively. 18F-FDG PET is generally acknowl-
edged as an earlier indicator of neurodegeneration than is structural
MRI, as neuronal dysfunction precedes atrophy (i.e., neuronal loss).
Moreover, regional proneness to age-related decline is different
when assessed with 18F-FDG PET or MRI (2). Consequently, it is
plausible to assume that an 18F-FDG PET–derived BAG is more sen-
sitive to neuronal changes preceding neurodegeneration, such as neu-
ropathologic burden or cognitive deficits below the threshold of AD.
To date, however, brain age estimation (BAE) frameworks are
almost exclusively modeled from MRI data. One recent study com-
pared the 2 modalities and showed highly accurate BAE when using
either MRI or 18F-FDG PET (1). This argues for further exploration
of 18F-FDG PET–derived BAG and its performance in delineating
the earliest deviations from normal aging in the absence of dementia.
Here, we investigated 18F-FDG PET– and MRI-derived BAE,

with a particular focus on how BAG is associated with cognitive
performance, neuropathologic burden, and disease progression in
cognitively unimpaired individuals and MCI patients. First, we esti-
mated brain age in cohorts of individuals who were CN, had sub-
jective but not objective cognitive impairment (SCD), or showed
MCI. Second, we calculated BAG and compared associations of
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18F-FDG PET– or MRI-derived BAG with cognitive performance
and AD neuropathology in these cohorts. Finally, we evaluated the
prognostic value of BAG in predicting disease progression as com-
pared with other established risk factors of cognitive decline.

MATERIALS AND METHODS

The code used for this project is available on GitHub.

Participants
Baseline T1-weighted MRI and 18F-FDG PET scans of 185 CNs

(interscan interval, 28 6 23 d) were acquired from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.
edu/). For external validation, 49 MRI and 18F-FDG PET scans of CNs
were acquired from the Open Access of Imaging Studies database,
release 3 (3) (OASIS, https://www.oasis-brains.org/). We also assessed
brain age in clinical samples of SCD (n 5 102) and MCI (n 5 595)
patient groups from ADNI. The significant findings from these analyses
were subsequently validated in SCD (18F-FDG PET, n 5 88) and MCI
(MRI, n 5 80) samples from the German Center for Neurodegenerative
Diseases–Longitudinal Cognitive Impairment and Dementia study
(DELCODE) (4). CN, SCD, and MCI diagnoses from ADNI, OASIS,
and DELCODE followed current recommendations for the respective

FIGURE 1. Nested cross-validation approach for brain age prediction. (1) Region-of-interest parcellation. (2) Outlier exclusion. (3) Five-fold cross-
validation. (4) Final model selection. (5) Bias correction. (6) Estimation of brain age in test sets. (7) Bias correction in test sets. (8) Ensemble averaging.
(Created with BioRender.com.)
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groups (details are provided in Supplemental Section 1a; supplemental
materials are available at http://jnm.snmjournals.org) (5,6). All partici-
pants gave written consent. Data collection was approved by local insti-
tutional review boards, and ethics proposals for retrospective dataset
analysis were approved by Heinrich Heine University D€usseldorf.

Estimation of Brain Age
Standardized MRI and 18F-FDG PET scans were used to compute

brain age (details on acquisition and preprocessing are in Supplemen-
tal Section 1b). We implemented a pipeline (Fig. 1) in Python 3.8.5
using the Julearn library (https://juaml.github.io/julearn/main/index.
html), which is based on scikit-learn (7). The same pipeline was run
independently for MRI and 18F-FDG PET. First, a modality-specific
signal of 90 cortical and subcortical regions of interest was extracted
(MRI: gray matter volume; 18F-FDG PET: SUV ratio) using the auto-
mated anatomic labeling atlas (8). The atlas dependence of our results
was assessed by repeating our analyses with a second composite atlas
(Schaeffer 1 Tian atlas). We applied a nested cross-validation
approach, with 5 folds in both the outer and the inner cross-validation.
Outlier exclusion was performed in the outer cross-validation. Subse-
quently, support or relevance vector regression models, recommended
for small sample sizes (9), were trained with hyperparameter optimiza-
tion to compute brain age in the inner cross-validation loop. Selection
of the final model across support and relevance vector regression mod-
els was based on the mean absolute error of the validation folds. Esti-
mation of bias correction parameters was then based on predictions
from the validation folds (10). The final model was used to estimate
brain age in the test and clinical samples, and bias correction was
applied (Supplemental Sections 1c–1e).

The nested cross-validation approach yielded one brain age per non-
outlier subject in the ADNI CNs, who were evenly spread across 5
test sets. Each cross-validation fold additionally yielded one estimate
per subject in the OASIS and clinical samples; thus, the average of 5
estimates was treated as the final brain age (ensemble averaging).

Statistical Analyses
BAG was calculated for each individual as the difference between

brain age and chronologic age, such that higher BAG reflected more
advanced brain age and vice versa.

Accuracy, Generalizability, and Variation of BAG. The accu-
racy of age estimation from MRI or 18F-FDG PET was assessed by
comparing the mean absolute error of BAE across modalities using a
paired t-test in the ADNI CN sample. To assess the generalizability of
our BAE frameworks, we compared the mean absolute error of MRI-
or 18F-FDG PET–based BAE between ADNI CNs and OASIS CNs
using t-tests. Whether BAG was higher in the clinical populations was
assessed by t-test comparisons of average BAG between ADNI CNs
and each clinical sample.
Regional Importance. To understand the similarity of brain age

models and to test whether AD-typical regions are relevant in BAE
from MRI or 18F-FDG PET, we assessed Pearson correlations of BAG
and feature importance (d) across modalities in ADNI CNs. Feature
importance was computed using permutation importance, with higher
values corresponding to greater relevance of a feature for the model.
For simplicity, we computed correlations using the average feature
importance over all final models per modality. We further summarized
regional feature importance per modality into median signal for lobes
(frontal, temporal, limbic, subcortical, occipital, parietal; details are in
Supplemental Section 1f), hemispheres (left, right), and lobes by hemi-
sphere to assess whether brain regions of a particular category were
preferred for BAE in a given modality.
Cognitive and AD-Neuropathologic Associations. To assess

whether BAG is associated with cognitive performance, we calculated par-
tial correlations between BAG and composite scores of memory (ADNI
memory) (11) and executive function (ADNI executive function) (12) for
the ADNI CN, ADNI SCD, and ADNI MCI groups (Supplemental Sec-
tion 1g). In addition, partial correlations of BAG with PET amyloid load
(18F-AV-45 PET) (13), and cerebrospinal fluid (CSF) markers (14) of
beta-amyloid1-42 (Ab1-42), and phosphorylated-tau181 (p-tau181)–to–Ab1-42

ratio (p-tau181/Ab1-42) (Supplemental Section 1h) (15) were calculated to
assess whether BAG is associated with AD neuropathology. Pearson or
Spearman correlations were assessed, depending on normality (Shapiro–
Wilk test), and all partial correlations were corrected for age, sex, educa-
tion, and APOE-«4 carriership. Individuals with missing data for the
dependent variable were excluded for each respective correlation. A
P value of less than 0.1 was considered trend-significant, and a P value of
less than 0.05 was considered significant. We also assessed the signifi-
cance after Bonferroni correction (cognitive performance: a 5 0.05/2,
AD neuropathology: a 5 0.05/3).

TABLE 1
Overview of Samples

Parameter ADNI CN OASIS CN ADNI SCD ADNI MCI DELCODE SCD DELCODE MCI

n total 186 49 102 595 88 80

Age at PET scan (y) 73.8 (6.46) 70.6 (5.07)* 72.3 (5.60)* 73.2 (6.93) 70.9 (5.57)* NA

Age at MRI scan (y) 73.8 (6.44) 69.2 (4.98)* 72.3 (5.60)* 73.2 (6.92) NA 73.4 (5.87)

Sex (female, %) 53% (0) 53% (0) 59% (0) 42% (2)* 36% (0)* 36% (0)*

MMSE score 29 (1.26) 29 (0.78) 29 (1.20) 28 (1.75)* 29 (1.03) 28 (1.67)*

Education (y) 16 (2.54) 16 (2.51) 17 (2.50)* 16 (2.67) 16 (3.00) 14 (3.06)*

CSF Ab1-42–positive (%) 41% (27) NA 35% (9) 64% (126)* 22% (28)* 38% (38)

APOE-«4 carrier (%) 29% (1) NA 31% (0) 49% (4)* 38% (3) 49% (0)*

Progression status decliner (%) 10% (32) NA 12% (19) 25% (135) NA 38% (12)

*Significantly different from ADNI CN. P , 0.05.
NA 5 not applicable.
Categorical data are percentages with number of individuals with missing information in parentheses; continuous data are means with SD

in parentheses. Percentage of CSF Ab1-42 status indicates percentage of amyloid-positive individuals according to established thresholds.
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Disease Progression. Finally, we assessed
whether BAG is associated with or even pre-
dicts disease progression. Relative to base-
line BAG assessment, we differentiated
between cognitively stable individuals, who
maintained their baseline diagnosis until the
2-y follow-up, and decliners, who received a
diagnosis of more severe cognitive impair-
ment within follow-up (Supplemental Sec-
tion 1i). Using analysis of covariance, the
BAG between stable individuals and decli-
ners was compared, while correcting for sex,
education, and APOE-«4 carriership in
ADNI CNs and ADNI SCD subjects and
additionally for age in ADNI MCI subjects
(where bias correction did not eliminate the
correlation between age and MRI BAG, Sup-
plemental Section 2a). Subsequently, we
trained multiple single-feature logistic
regression classifiers using stratified 10-fold
cross-validation to predict progression to AD
in ADNI MCI from 18F-FDG PET BAG;
MRI BAG; hippocampal volume (16); global
18F-AV-45 PET SUV ratio; 18F-FDG PET
SUV ratio in the precuneus (17); 18F-FDG
PET SUV ratio in a meta–region of interest,
previously suggested relevant for the pro-
gression of AD (18); p-tau181/Ab1-42 ratio;
ADNI memory score; or age. Notably, the
small number of decliners prevented the
development of reliable predictive machine
learning models in the ADNI CN and ADNI
SCD groups. To correct for the effects of
age, sex, education, and APOE status, stan-
dardized residuals were computed for all

FIGURE 2. Feature importance for brain age prediction. (A and B) Average regional importance for
brain age prediction using MRI (A) and 18F-FDG PET (B, threshold applied at 0). (C) Average feature
importance across final models from 18F-FDG PET and MRI by lobe (colors) and hemisphere
(shapes). GP5 globus pallidus.

TABLE 3
Associations of BAG with Cognitive Performance and AD Neuropathology

Cognitive performance AD neuropathology

Parameter Modality ADNI executive function ADNI memory 18F-AV-45 CSF Ab1-42 p-tau181/Ab1-42

ADNI CN MRI r 5 0.016
(20.14 to 0.18)

r 5 20.001
(20.16 to 0.16)

r 5 20.003
(20.17 to 0.16)

r 5 0.004
(20.17 to 0.18)

r 5 0.029
(20.15 to 0.20)

18F-FDG PET r 5 0.101
(20.06 to 0.26)

r 5 0.095
(20.07 to 0.25)

r 5 0.011
(20.15 to 0.17)

r 5 20.110
(20.28 to 0.06)

r 5 0.141
(20.03 to 0.31)

ADNI SCD MRI r 5 0.048
(20.18 to 0.27)

r 5 20.132
(20.34 to 0.09)

r 5 0.014
(20.21 to 0.24)

r 5 20.238*
(20.44 to 20.01)

r 5 0.017
(20.21 to 0.25)

18F-FDG PET r 5 20.190†

(20.39 to 0.03)
r 5 20.259‡

(20.45 to 20.04)
r 5 0.191†

(20.03 to 0.40)
r 5 20.161

(20.38 to 0.07)
r 5 0.087

(20.15 to 0.31)

ADNI MCI MRI r 5 20.225‡

(20.31 to 20.14)
r 5 20.397‡

(20.47 to 20.32)
r 5 0.095†

(20.01 to 0.02)
r 5 20.230‡

(20.32 to 20.13)
r 5 0.200‡

(0.10 to 0.30)
18F-FDG PET r 5 20.238‡

(20.32 to 20.15)
r 5 20.179‡

(20.27 to 20.09)
r 5 0.056

(20.05 to 0.16)
r 5 20.126*

(20.22 to 20.02)
r 5 0.101†

(20.00 to 0.20)

*P , 0.05.
†P , 0.1.
‡P , Bonferroni correction.
n is described in Supplemental Tables 1 and 2. Data in parentheses are 95% CIs.
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individuals and for each predictor variable
using a linear model trained on the stable
individuals in each training fold (19). We
compared the mean area under the curve
(AUC) obtained from the validation folds
across all predictors. If the BAG of one
modality predicted disease progression
(AUC . 0.7), we derived a cutoff given the
a priori probability of disease progression in
each training fold and validated this cutoff
in the DELCODE MCI cohort.

RESULTS

Participants
An overview of participant characteristics

is shown in Table 1. OASIS CN, ADNI
SCD, and DELCODE SCD subjects were
significantly younger than the main ADNI
CN cohort. The SCD and MCI cohorts fur-
ther differed from ADNI CNs in terms of
cognitive performance (ADNI MCI and
DELCODE MCI), years of education
(ADNI SCD and DELCODE MCI), amy-
loid status (DELCODE SCD and ADNI
MCI), and APOE-«4 carriership distribution
(ADNI MCI and DELCODE MCI).

Accuracy, Generalizability, and
Variation of BAG
MRI and 18F-FDG PET estimated age

with comparably high accuracy in ADNI
CNs (mean absolute error, 2.49 for MRI
and 2.60 for 18F-FDG PET; Table 2).
Within-modality comparison of mean abso-
lute error in OASIS CNs and ADNI CNs
yielded no significant differences (2.92 for
MRI OASIS and 2.54 for 18F-FDG PET
OASIS), suggesting that our frameworks
have high generalization performance to
external datasets comprising CN popula-
tions. Average 18F-FDG PET–derived,
but not MRI-derived, BAG was trend-
significantly advanced in ADNI SCD sub-
jects. Comparably, 18F-FDG PET BAG
was significantly advanced in DELCODE
SCD subjects. In all MCI samples, BAG
was significantly higher than in ADNI CNs
across modalities. Bias correction success-
fully eliminated the correlation of BAG
and age with the exception of MRI-derived
BAG in ADNI MCI individuals (Supple-
mental Table 3). Results using the com-
posite atlas were largely comparable
to those obtained here (Supplemental
Table 4).

Regional Importance
BAG was trend-significantly correlated

between MRI- and 18F-FDG PET–based
models (r 5 0.128; P 5 0.09; 95% CI,
20.02 to 0.27). Model selection returned
different model types with mostly linear

FIGURE 3. Correlation of BAG with cognitive performance in ADNI MCI. EF 5 executive function;
MEM5 memory. Correlations include correction for age, sex, and education.

FIGURE 4. Correlation of BAG with AD neuropathology in ADNI MCI. Correlations include correc-
tion for age, sex, and education.
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kernels (Supplemental Table 5). The left and right hippocampi were
most relevant for MRI-based BAE (d 5 0.098 on left and 0.103 on
right), whereas median permutation importance in the lobes, hemi-
spheres, or lobes by hemisphere showed no obvious trends (Fig. 2).
The subcortical regions (d 5 0.058: 0.058 on left and 0.067 on right)
and, to a lesser extent, the left-hemispheric frontal (d 5 0.013) and
temporal (d 5 0.012) regions were most relevant for 18F-FDG PET–
based BAE. No overall hemispheric preference was observed for
18F-FDG PET models. Average regional importance did not correlate
between MRI- and 18F-FDG PET–based models (r 5 20.069;
P5 0.52; 95% CI,20.27 to 0.14).

BAG and Cognitive Performance
In ADNI CNs, neither MRI nor 18F-FDG PET BAG was associ-

ated with cognitive performance (Table 3). In the ADNI SCD group,
18F-FDG PET BAG was significantly negatively associated with
memory performance after Bonferroni correction and was trend-
significantly associated with executive function. MRI BAG did not
correlate with these measures (Table 3). In the ADNI MCI group,

both MRI- and 18F-FDG PET–derived
BAG was significantly negatively correlated
with executive and memory performance
after Bonferroni correction (Table 3; Fig. 3).

BAG and AD Neuropathology
BAG and AD neuropathology did not sig-

nificantly correlate in ADNI CNs. In the
ADNI SCD group, lower levels of amyloid
in CSF significantly correlated with increased
MRI BAG, and a higher amyloid load in
PET was trend-significantly associated with
elevated 18F-FDG PET BAG (Table 3). In
the ADNI MCI group, MRI BAG was trend-
significantly correlated with all 3 markers of
AD neuropathology, whereas 18F-FDG PET
BAG was associated only with the CSF
pathology markers (Table 3; Fig. 4).

BAG and Disease Progression
Baseline BAG did not differ between sta-

ble individuals and decliners in the ADNI
CN group (MRI BAG: F1,149 5 0.617, P 5
0.43; 18F-FDG PET BAG: F1,149 5 0.023,
P5 0.88; Supplemental Fig. 1) or the ADNI
SCD group (MRI BAG: F1,78 5 0.247,
P 5 0.62; 18F-FDG PET BAG: F1,78 5
1.66, P 5 0.20; Fig. 5A). In the ADNI MCI
group, we found a significant main effect
of group for both MRI and 18F-FDG PET
BAG (MRI BAG: F1,454 5 59.64,
P , 0.001; 18F-FDG PET BAG: F1,454 5
10.18, P 5 0.002), with decliners showing
advanced baseline BAG (MRI: mean of
4.51 y and SD of 2.79 y; 18F-FDG PET:
mean of 1.35 y and SD of 3.38 y) compared
with stable individuals (MRI: mean of 1.58 y
and SD of 3.40 y; 18F-FDG PET: mean of
0.31 y and SD of 3.14 y; Fig. 5B). Men had
a higher BAG than women across groups.
Covariate effects are reported in detail in
Supplemental Section 2d.

Next, we trained a logistic regression classifier to predict MCI-to-
AD progression using corrected predictors. Progression to AD was
predicted by MRI BAG (AUC, 0.73), ADNI memory (AUC, 0.78),
18F-AV-45 PET (AUC, 0.77), hippocampal volume (AUC, 0.75),
SUV ratio in the 18F-FDG meta–region of interest (AUC, 0.72), and
CSF p-tau181/Ab1-42 ratio (AUC, 0.70). 18F-FDG PET BAG (AUC,
0.60) did not predict progression. Receiver operating characteristics
are shown in Figure 5C. In the external DELCODE MCI cohort,
MRI BAG predicted progression to AD with a similar AUC of
0.75. From a priori probabilities of cognitive decline in each training
fold, we derived a mean probability cutoff of 0.25 in the MRI
BAG–based model (range, 0.24–0.25), yielding sensitivities and
specificities of 0.69 and 0.69, respectively, in the ADNI MCI group
and 0.69 and 0.62, respectively, in the DELCODE MCI group.

DISCUSSION

Previous studies mainly used MRI to estimate brain age. Here,
we compared the accuracy of 18F-FDG PET– and MRI-estimated
age and provided a comprehensive overview of the associations of

FIGURE 5. BAG for prediction of disease progression. Density plots show MRI and 18F-FDG PET
BAG distribution by disease progression status in ADNI SCD (A) and ADNI MCI (B) and AUCs of pre-
diction of disease progression (C). GMV 5 gray matter volume; MEM 5 memory; n.s. 5 not statisti-
cally significant; SUVR5 SUV ratio.
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BAG from either modality with cognitive performance, AD neuropa-
thology, and disease progression in at-risk populations for AD demen-
tia. Similar to Lee et al. (1), we found that BAE from the 2 modalities
was comparably accurate. No associations were found for BAG
and cognitive performance or neuropathologic burden in CNs. At
the SCD stage, MRI-based BAG correlated significantly with CSF
Ab1-42, whereas

18F-FDG PET BAG, which was trend-significantly
elevated in SCD, was linked to memory performance. In MCI, both
BAGs were significantly elevated and associated with cognitive per-
formance and CSF Ab1-42. Only MRI-derived BAG correlated with
p-tau181/Ab1-42 and predicted MCI-to-AD progression.
MRI BAG was elevated in MCI patients compared with CNs

and reflected AD neuropathologic burden both in SCD subjects and
in MCI subjects. Moreover, MRI BAE was based mostly on hippo-
campal volume, a measure known to be associated with risk for
dementia, and MRI BAG showed a moderate potential to predict
MCI-to-AD progression. The increased association with CSF, com-
pared with PET amyloid information, is likely due to the compara-
bly early abnormality of CSF amyloid versus PET amyloid (20), as
fluid amyloid biomarker signal disrupted amyloid metabolism
whereas amyloid PET reveals resultant plaque aggregation. There-
fore, MRI BAG closely reflects cognitive performance and rela-
tively early pathologic markers of AD in SCD and MCI. The
moderate predictive performance of not only MRI BAG but also
the established biomarkers of MCI-to-AD progression suggests that
a multimodal framework is required for an accurate prognosis in
AD. To test the combined potential of established biomarkers and
MRI BAG for risk assessment of AD, and possibly neurodegenera-
tion in general, presents an interesting question for future research.

18F-FDG PET BAG was related to memory performance in
SCD and MCI subjects but not in CNs. In SCD subjects, although
memory performance is not yet objectively impaired, elevated 18F-
FDG PET BAG may reflect its incipient decline. The regions we
reported as relevant for 18F-FDG PET BAE are consistent with
previous findings (1). Yet, we found no significant indications that
18F-FDG PET BAG is a prognostic biomarker. MRI and 18F-FDG
PET BAG associations may differ because of regional differences
in the BAE or the relative timing of MRI (atrophy) and 18F-FDG
PET (neuronal dysfunction) changes in the course of AD. Future
research is warranted to explore whether longitudinal 18F-FDG
PET BAG may be valuable in tracking disease progression given
its sensitivity to early cognitive impairment, its association with
CSF amyloid burden in MCI, and the observed elevation of 18F-
FDG PET BAG in SCD and MCI individuals.
Some limitations should be acknowledged. First, 18F-FDG PET

BAG did not predict MCI-to-AD progression, although 18F-FDG
PET itself is an established marker of AD progression (21). How-
ever, our algorithms were trained to estimate age, and the fact that
relevant regions for 18F-FDG PET BAG did not include typical AD
signature areas might explain this paradox. Second, although gener-
alizability to OASIS data proved to be accurate, and despite train-
ing on multicentric data, we observed strong cohort effects for
BAE in the external clinical samples. These results suggest that
clinical and methodologic differences, such as variation in the
extent of pathology, or in the diagnostic or scan procedure (e.g., the
different acquisition times in DELCODE vs. ADNI or OASIS),
can significantly influence the applicability of BAE frameworks.
Finally, because of data availability and increased risk of cognitive
deficits due to neurodegenerative processes, we included partici-
pants only over the age of 60 y. Thus, we did not investigate BAE
before this age.

CONCLUSION

BAE from MRI or 18F-FDG PET was highly accurate. MRI
BAG reflected cognitive and pathologic markers of AD in SCD
and MCI subjects, whereas 18F-FDG PET BAG related mainly to
early cognitive impairment. Our study suggests that MRI BAG
may especially complement the identification of patients who are
likely to develop AD, whereas 18F-FDG PET BAG may represent
a more independent biomarker of brain age-related changes, possi-
bly occurring ahead of the clinical onset of neurodegeneration.
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KEY POINTS

QUESTION: How are BAGs that are derived from structural MRI or
18F-FDG PET linked to cognitive performance, AD neuropathology,
and AD progression?

PERTINENT FINDINGS: BAG was computed from structural
MRI or 18F-FDG PET and subsequently associated with cognitive
performance, neuropathologic markers of AD, and disease
progression. 18F-FDG PET and MRI BAG were sensitive mainly to
cognitive performance and amyloid burden in SCD, respectively.
In MCI, both MRI and 18F-FDG PET BAG reflected cognitive
performance and neuropathology. Finally, MRI BAG predicted
MCI-to-AD conversion comparably well to established biomarkers.

IMPLICATIONS FOR PATIENT CARE: Brain age is a thoroughly
discussed concept, and its applicability must be evaluated in a
modality- and group-specific manner. MRI-derived BAG may be
particularly useful to complement the identification of patients
who are likely to develop AD. MRI BAG may therefore benefit
diagnostic procedures or clinical trials.
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